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Gravito-capillary trapping of pendant droplets under wet uneven surfaces
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Pendant drops spontaneously appear on the underside of wet surfaces through the
Rayleigh-Taylor instability. These droplets are connected to a thin liquid film with which
they exchange liquid and are thus very mobile. Here, using experiments, numerical simula-
tions, and theory, I show that pendant drops sliding under a slightly tilted wet substrate can
get stuck on topographic defects, despite their lack of contact line. Instead, this trapping has
a gravito-capillary origin: liquid has to move up or down and the interface has to deform
for the drop to pass the defect. I propose a semianalytical model for arbitrary substrate
topographies that matches the trapping force observed, without any fitting parameter. I
finally demonstrate how to harness this topography induced force to guide pendant drops
on complex paths and expect it to be relevant for other contact line free systems.

DOI: 10.1103/PhysRevFluids.9.L081601

A thin liquid film covering the underside of a surface will spontaneously destabilize and form
an array of pendant droplets [1,2]. This process can be easily observed in kitchens, bathrooms, and
other everyday life situations [e.g. Fig. 1(a)], has important consequences for many applications;
it can impair the quality of coatings [3] or, conversely, be harnessed to pattern surfaces [4,5],
impacts geomorphological processes [6–8], and can be detrimental to engineering constructs with
wet surfaces [9,10]. For these reasons, the Rayleigh-Taylor instability in thin viscous films has been
thoroughly investigated [1,2,11–13] and various approaches to avoid it have been developed and
rationalized with linear stability analysis [14–20].

The late-time, nonlinear dynamics of the fully formed pendant droplets has received less attention
[21,22]. A distinctive feature of these drops is their absence of contact line, they are connected to
a thinner macroscopic film with which they continuously exchange liquid. This makes them very
mobile and under smooth, and uniformly wet substrates, any tilt or perturbation will set them in
motion and alter their growth rate [21,22]. However, surfaces in most practical situations are uneven.
For instance, the ceiling of caves is covered by speleotherms [8], and patterned surfaces have been
used to control the local thickness of coatings [4]. For sessile drops, surface roughness usually
hinders their motion by pinning their contact line [23–26]. Since pendant drops on the underside of
wet surfaces lack a contact line, the effect of topographical defects on their motion is unclear.

In this Letter, using experiments, numerical simulations, and theory, I show that topographic
defects can capture a single pendant drop sliding under a slightly tilted uniformly wet substrate.
The defect generates a trapping force which stops the drop if the inclination angle is too low. This
critical inclination angle depends on the defect dimensions, and not on the drop size or underlying
film thickness. I derive a gravito-capillary model that yields a semianalytical prediction for this
topography induced force and the critical angle that matches experiments and simulations without
any fitting parameters. Locally, as the drop slides on the defect, fluid is displaced vertically and
the interface is distorted, creating potential energy variations responsible for the force. Finally, I
demonstrate how to use this trapping force to guide the motion of pendant drops using the substrate
topography. This gravito-capillary force being generic, I expect these results to be relevant for
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FIG. 1. (a) Several pendant droplets on the ceiling of a swimming pool skimmer. Drop diameters ∼2 cm.
(b) Schematic of a thin liquid film of thickness h(x, y, t ) that contains a pendant drop sliding under a surface
with topography s(x, y), inclined by an angle α.

other systems lacking a contact line such as drops on liquid infused surfaces or bubbles under
walls.

The problem considered here is schematized in Fig. 1(b). The underside of a solid with a
nonflat topography, slightly tilted by an angle α, is wet by a thin layer of liquid over which lies
a pendant drop. Experimentally, I create controlled surface defects by milling PMMA plates and
use silicone oil (density ρ = 971 kg/m3, surface tension γ = 20.5 mN/m, viscosity η = 1 Pa.s)
as a fluid. Prewetting is achieved by spin-coating oil on the substrate which results in a uniform
film thickness h0, except close to the defects [28,29]. The substrate is then mounted upside down
to a rotation stage. A single pendant droplet of amplitude A0 ∼ �c is generated by adding oil on
the spin-coated film with a syringe. Here �c = √

γ /(ρg) ≈ 1.47 mm denotes the capillary length
with g the gravitational acceleration. The substrate is finally tilted by an angle α and the drop
dynamics is recorded (see Sec I A of the Supplemental Material [27]). Note that the spin-coated
film is sufficiently thin and smooth to neglect the growth of the Rayleigh-Taylor instability over
the timescale of the experiment, i.e., texp � 12τ with τ = ηγ /(h3

0ρ
2g2 cos2 α) [4] (see Sec. I A of

the SM [27]).
I start by investigating the simplest topographic defect, a one-dimensional step of height hs

that spans the full width of the substrate see the inset of Fig. 2(a)]. Figure 2(a) shows two
chronophotographies of a pendant drop sliding under the same prewet surface with a step defect,
at two slightly different inclination angles. Below a critical inclination angle αc, the pendant drop
is stopped by the step. Above αc, the drop is slowed down but is able to pass (see also movie
S1 and Sec. II C of the SM [27] for a discussion on the drop dynamics). The step thus displays a
pinninglike force that hinders the drop motion. Note that this trapping force is directional. In the
experiment shown in Fig. 2(a), the drop climbs up the step. Inverting the step such that the drop
descends it instead results in the drop accelerating over the step. In principle, the critical angle, and
thus the trapping force, can depend on the droplet size A, the prewetting thickness h0, the step height
hs, and its sharpness δ [see the inset of Fig. 2(a)]. To explore this large parameter space efficiently,
I turn to numerical simulations.

Taking advantage of the problem thinness, I use the lubrication approximation to solve the steady
Stokes flow in the film of thickness h(x, y, t ) over an uneven substrate of profile s(x, y) inclined by an
angle α [see Fig. 1(b)]. In the Cartesian frame aligned with the substrate, this yields a parabolic flow
profile u = (z−s)2−2h(z−s)

2η
[∇P − ρg sin αex] with u = (ux, uy) [29]. The thin-film equation is then

obtained by applying mass conservation over a film element ∂t h = −∇ · q with q = ∫ s+h
s udz =

−h3

3η
[∇P − ρg sin αex] the local flowrate. Inserting the capillary and gravitational pressures P =

p0 − ρgcos α(h + s − z) − γ κ , with κ the interface curvature, yields Eq. (S1) [1,8,13,21,22,28–
30]. After rescaling {x, y} with �c/

√
cos α, {h, s}, with h0 the initial uniform thickness far from the
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FIG. 2. (a) Side view chronophotography of two experiments showing pendant drops of initial size A/�c =
{1, 0.7} sliding under a surface with a step of height hs = 330 µm and sharpness δ ≈ 400 µm (see inset), prewet
with a film of thickness h0 ≈ 60 µm, at two different inclination angles α = {2.2, 2.5} deg. The images include
the drop reflection on the wet substrate. Scale bar 5 mm, time interval 2 min. (b) Numerical replication of the
experiment in (a) (identical parameters except for the step sharpness δ = �c). The profiles are slices through
the center of the 3D simulations, color codes the time, and the scale bar is 5 �c. The inset shows the step
dilated vertically by a factor of 5. See also movies S1, S2, and Sec. II C of the SM for a discussion on the drop
dynamics [27].

drop and t with τ , it reads in dimensionless form

∂ h̄

∂ t̄
+ α̃h̄2 ∂ h̄

∂ x̄
+ 1

3
∇̄·[h̄3∇̄(h̄ + s̄) + h̄3∇̄κ̄] = 0,

with κ̄ = ∇̄·

⎡⎢⎣ ∇̄(h̄ + s̄)√
1 + (h0

√
cos α/�c)2(∇̄(h̄ + s̄))2

⎤⎥⎦. (1)

Here a bar indicates rescaled variables, and the parameter α̃ = (�c tan α)/(h0
√

cos α) accounts for
the substrate inclination (for small angles α̃ ≈ �cα/h0). I numerically solve Eq. (1) with COMSOL,
using the initial condition h̄(x̄, ȳ, 0) = 1 + h̄d (x̄, ȳ), where hd (x, y) is the profile of a static pendant
drop of amplitude A0 solved independently (see Sec. I B of the SM [27]).

In Fig. 2(b), I show a numerical reproduction of the experiment shown in panel (a), where the
step is idealized as a hyperbolic tangent: s1d (x, y) = (hs/2)(1 − tanh(2x/δ)) (see also movie S2
[27]). There is a critical inclination angle to pass the step αc which matches the experimental
one, despite the different step shape and sharpness. Varying the liquid parameters, i.e., the drop
initial amplitude (0.65 < A0/�c < 1.42) and the prewetting film thickness (0.04 < h0/�c < 0.08), I
observe an influence on the drop speed and growth rate, as previously shown on flat surfaces [21,22].
Yet, surprisingly, they have no impact on the critical angle to pass the step αc. The topography,
however, does impact the capture process. For sharp enough steps, δ � R with R ≈ 3.58�c the drop
radius [22], the critical angle appears independent of the sharpness (see Fig. S4 [27]), while for very
smooth steps δ � R, it varies with it (see Fig. S5a [27]). The step height hs affects αc in all cases:
the higher the step, the larger the critical angle. The smooth step regime (δ � R) can be understood
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FIG. 3. (a) Phase diagram for the drop capture by a sharp step with δ < 2�c (see legend). The black line and
background colors are Eq. (4): αc = 0.1703hs/�c. (b) Dimensionless trapping force for a drop of size A = �c

on a sharp step (δ = �c, black solid curve with abscissa x/�c). The gravitational and capillary contributions to
the total force are highlighted (see legend).

as a local slope variation such that αc ∼ hs/δ (see Sec. II A of the SM [27]). In the following,
I focus on the more complex sharp regime and show in Fig. 3(a) a phase diagram for the drop
behavior combining simulations where all parameters are varied while keeping δ < 2�c (points for
different values of δ, h0, and A0 are superimposed). I observe a linear relationship αc ∝ hs, which
is confirmed by experiments done on five milled steps of different heights with h0 ≈ 60 µm and
0.55 < A0/�c < 1.07, also shown in Fig. 3(a).

Since there is no contact line, the origin of this trapping force has to be gravito-capillary. As the
drop advances on the step, locally some of the drop volume is lifted up, which costs gravitational
energy and its surface may deform which costs capillary energy [31]. Both effects combined
create a potential energy barrier responsible for the trapping. While estimating the capillary energy
contribution is not straightforward, one can easily get a scaling for the gravitational one. In the sharp
limit, the volume to be lifted over a distance hs is maximum when the apex of the drop reaches the
step and can be estimated as dV ∼ 2ARdx. The energy cost is thus dEg ∼ −ρg(2ARdx)hs and the
force is Ftrap = −dEg/dx ∼ ρgARhs. Neglecting the droplet growth during the step crossing, the
surface inclination generates a driving force Fd = ρgV sin α with V ∼ AR2. Equating the two yields
for small angles αc ∼ hs/R. Viscous effetcs are neglected here since close to the critical angle the
drop velocity approaches zero. They are, however, important to determine the drop dynamic above
αc (see Sec. II C of the SM [27]). Finally, the radius of pendant drops being R ≈ 3.58�c [22], I
recover the scaling observed in Fig. 3(a). The prefactor of this simple scaling argument, however,
is not correct since it neglects the capillary contribution which I expect to be significant given that
pendant drops have a size comparable to �c. To go beyond, I have to compute the total energy barrier
that also includes the capillary contribution.

In the reference frame aligned with the surface [see Fig. 1(b)], the gravitational energy has
two contributions: one from the slope responsible for the driving force Fd = ρgV sin α and one
from the surface unevenness Eg = ∫∫∫

ρgcos(α)z dxdydz = ∫∫
1
2ρgcos(α)((h + s)2 − s2) dxdy

(see Sec. I C of the SM [27]). The capillary energy is Ec = ∫∫
γ

√
1 + ( ∂ (h+s)

∂x )2 + ( ∂ (h+s)
∂y )2dxdy.

To compute the total energy E = Eg + Ec as a function of the drop position (xd , yd ) with respect
to the topography, I neglect any variations in film or drop thickness and assume that h(x, y) =
h0 + hd (x − xd , y − yd ). Using the small slope approximation, and assuming a small inclination
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angle yields (see Sec. I C of the SM [27])

E (xd , yd )

ρg
= Eg0 + Ec0 +

∫∫
hd (x − xd , y − yd )s(x, y)dxdy

+ �2
c

∫∫ ⎛⎝ ∂hd

∂x

∣∣∣∣x−xd
y−yd

∂s

∂x
+∂hd

∂y

∣∣∣∣x−xd
y−yd

∂s

∂y

⎞⎠dxdy. (2)

Here Eg0 and Ec0 are constant terms with respect to the drop position. The prewetting thickness
h0 enters in these terms and does not participate to the energy barrier. Rescaling {x, y} with the
capillary length �c, hd with the drop amplitude A, and s with the topography scale hs, the trapping
force is then

Ftrap(x̂d , ŷd )

ρgAhs�c
= −∇̂

[
(ĥd ∗ ŝ) +

(
∂ ĥd

∂ x̂
∗ ∂ ŝ

∂ x̂

)
+

(
∂ ĥd

∂ ŷ
∗ ∂ ŝ

∂ ŷ

)]
. (3)

Here ·̂ denotes dimensionless variables, and (∗) the convolution operator ( f ∗ g)(xd , yd ) = ∫∫
f (x −

xd , y − yd )g(x, y)dxdy. While not fully analytical, Eq. (3) can be integrated very efficiently by
computing the 2D convolutions in Fourier space.

Performing this calculation for the steps ŝ1d , I obtain the theoretical trapping force shown in
Fig. 3(b). The capillary contribution partially counteracts the gravitational one and the trapping
force is maximum when the drop apex sits on the step. Extracting this maximum and equating it
with the drop driving force Fd ≈ ρgV α, I obtain the critical inclination angle for the drop to pass
the step

αc = c1d
hs

�c
, with c1d = A�2

c

V
max
x̂d ,ŷd

(
− ∂

∂ x̂

[
(ĥd ∗ ŝ1d ) +

(
∂ ĥd

∂ x̂
∗ ∂ ŝ1d

∂ x̂

)])
≈ 0.1703. (4)

The prefactor c1d is almost constant. It varies very slowly with δ in the sharp limit (see Fig. S5 [27])
and is almost independent of the choice of static pendant drop hd to convolve (see Fig. S6a [27]).
This is due to the near self-similarity of pendant drops: the rescaled profiles ĥd used in the model
are nearly identical (see Fig. S3d and Sec. II B of the SM [27]). In Fig. 3(a), I overlay the result
of Eq. (4) on numerical and experimental data and find an excellent agreement without any fitting
parameter. I further test the model to see if it can capture the transition between sharp and smooth
steps (δ > 2�c) in Fig. S5 [27] and again find a very good agreement.

I now extend the analysis to bidimensional steps, or bumps, s2d (x, y) = hs
2 (1 −

tanh[
2
√

x2+y2−w

δ
− 1]) which introduce the bump width w as a new parameter. Note that the

width w is defined around the top of the bump rather than at midheight: s2d (w/2, 0) ≈ 0.88hs. This
choice allows to compare the numerical results with milled experimental surface where the width
is defined at the top in the milling process. As a results, the surface s2d (x, y) departs from a smooth
bump for w < δ and is nonflat for w = 0 (see Fig. S3a [27]). I run numerical simulations keeping
δ = �c fixed to remain in the sharp regime, and w � 2R since bumps much wider than the drop will
reduce to 1D steps. Qualitatively, bumps behave similarly to steps (see movie S3 [27]). For small
enough inclination angles, the drop is captured by the bump while for larger angles it is able to pass
over it. However, the capture here is omnidirectional, as expected from the symmetry of the defect.
Turning the bump into a trough (hs < 0) on the opposite repels the drop (see movie S3 [27]).

I construct a multidimensional phase diagram from which I extract the critical angle αc shown in
Fig. 4(a) as a function of the bump height hs and width w (color coded). As shown, wider and taller
bumps generate a larger critical angle. The prewetting film thickness h0 still has no effect on the
observed critical capture angle while the drop size A has a negligible impact. Equation (3) predicts
a Ftrap ∝ hs. Thus, in Fig. 4(b) I plot the critical angle rescaled by the bump height αc�c/hs as a
function of the dimensionless bump width w/�c and observe a good collapse of the numerical data.
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FIG. 4. (a) Critical angle αc as a function of the dimensionless bump height hs/�c and width w/�c (color
coded). The model, i.e., Eq. (5), is shown as dashed lines for integer values of w/�c and a pendant drop of
size A = �c. (b) Reduced critical angle αc�c/hs as a function of the dimensionless bump width w/�c. Same
data as (a), the color represents the drop dimensionless height A/�c. (c) Dimensionless trapping force field
Ftrap/(ρgAhs�c ) (arrows) for a bump of width w/�c = 4 (background color with axes {x, y}/�c) and a pendant
drop of size A = �c. The white arrow act as a scale with a magnitude of one. (d) Slice of the data in (c) through
the center of the defect.

I compare these numerical results to experiments with five milled surfaces (see Sec. I A of the SM
and Figs. S1d and f [27]), also shown in Figs. 4(a) and 4(b). The experimental critical angles are in
line with the numerics.

To understand the width dependence, I use Eq. (3), as in the step case, but now with ŝ2d (x̂, ŷ). I
show in Figs. 4(c) and 4(d) the theoretical force field for a pendant drop of size A = �c on a bump
of width w/�c = 4. The bump defect acts as an omnidirectional attractor for the drop with a range
∼w/2 + R. The maximum trapping force does not occur at the center of the bump but on an annulus,
in line with the observed off-centered drop capture (see movie S3 and Figs. S1d–f [27]). Equating
this maximum trapping force in the slope direction x with the driving force, I calculate the critical
angle:

αc = c2d

(
w

�c

)
hs

�c
,

with c2d

(
w

�c

)
= A�2

c

V
max
x̂d ,ŷd

(
− ∂

∂ x̂

[
(ĥd ∗ ŝ2d ) +

(
∂ ĥd

∂ x̂
∗ ∂ ŝ2d

∂ x̂

)
+

(
∂ ĥd

∂ ŷ
∗ ∂ ŝ2d

∂ ŷ

)])
. (5)

I compare Eq. (5) to simulations and experiments in Figs. 4(a) and 4(b) and find a good agreement.
The width function c2d (w/�c) increases with the bump width until it eventually plateaus around the
step value c1d for bumps larger than the drop w � 2R. As shown in Fig. 4(b), the influence of the
pendant drop size A/�c, while still small, is more pronounced than in the step case. In particular,
as the drop gets larger, c2d (w/�c) develop kinks due to the competition of multiples maximas in
the pinning force field Ftrap (see Sec. II B of the SM [27]). This size dependence is not so clear
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(a) (b)

FIG. 5. Bottom view chronophotography of two pendant droplets sliding under a prewet tilted plate milled
with an elevated path (α ≈ 1 deg from top to bottom, h0 ≈ 44 µm): sinusoidal in (a) and X shaped in (b) (see
movie S4 [27]). Each droplet’s trajectory is indicated by a white dashed arrow. White dye was used for
visualization. Scale bars 1 cm, time interval 15 min.

in simulation data, perhaps because the drop profile shifts from its flat static case assumed in the
model.

Now that I understand the gravito-capillary trapping force generated by elementary defects, I
can design surfaces to guide pendant droplets along a chosen path. One can either use trenches that
repel the drop, or elevate the surface along the desired path to attract the droplet [32]. The guiding
element(s) width w and height hs can be tuned using Fig. 4(b) or Eq. (3) to retain the drop on
the path at the desired inclination angle. As a proof of concept, I mill a surface with an elevated
sinusoidal path, of width w = 12 mm and height hs = 250 µm (see Fig. S2 [27]). As shown in
Fig. 5(a) and movie S4 [27], pendant droplets under this prewet surface inclined by α ≈ 1 deg follow
the prescribed sinusoidal path. In Fig. 5(b) I show a more complex X shaped path that features a
branching point (hs = 250 µm, varying width, α ≈ 1 deg, see Fig. S2 [27]). Two drops traveling on
the converging branches of the X will merge if they meet at the branching point, but will continue
on their respective branch if they pass sequentially (see movie S4 [27]).

In summary, I have demonstrated that topographic defects impact the motion of pendant droplets
on the underside of wet substrates, despite their lack of contact line. Using numerical simulations,
experiments, and theory, I have shown that defects generate a gravito-capillary force capable of
capturing a drop; for the drop to slide over the defect, some liquid has to change altitude and the
liquid surface has to deform. I propose a model for the trapping force, Eq. (3), that predicts the
critical capture angle observed in experiments and numerical simulations quantitatively without any
fitting parameter. Finally, I show how to use these findings to design topographies that control the
motion of pendant drops.

These results not only shed light on an unusual form of droplet capture but could also be
harnessed to design surfaces that control the position and motion of pendant drops [4,5]. Besides,
gravito-capillary trapping is relevant to thin film dynamics on natural nonsmooth surfaces and could
affect the formation of some geomorphological patterns, like curtains and draperies in natural caves
[8]. Finally, the trapping mechanism being generic, it should apply to other systems lacking a contact
line such as sessile droplets on liquid infused surfaces [33] or nonwetting bubbles [34].

I thank T. Perrin and C. Hasson from the Drahi-X Novation Center for their help in milling the
surfaces. I am grateful to P.G. Ledda, F. Gallaire, and P.-T. Brun for their feedback on the manuscript.
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