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Thermal effect is essential to regulate the interfacial instabilities for diverse technol-
ogy applications. Here we report the fingering instability at the propagation front for a
spreading liquid film subjected to the supercooling at the vertical direction. We find the
onset timescale of hydrodynamic instability is strongly correlated with that of the vertical
solidification process. This correlation is further validated in a nonuniform geometry,
demonstrating the capability of controlling fingering instability by structure design. We
attribute the identified interfacial instability to a pronounced thermoviscous effect, since the
rapidly increased viscosity of propagation front undergoing solidification can significantly
enhance the mobility contrast locally in the vicinity of the spreading front, consequently
producing the instability analogous to viscous fingering. This work offers another valuable
dimension by gating the vertical temperature to exploit the interfacial stabilities and steer
liquid flow, consequently shedding light on the microfluidic cooling for electronics, and
the advanced functional fibers and fabrics.

DOI: 10.1103/PhysRevFluids.9.L072001

Introduction. Interfacial instabilities and the correlated intriguing patterns are not only ubiqui-
tous in nature, such as the snowflakes and patterns of bacterial colonies [1,2], but also essential for
technology applications, such as the coating processing, microfluidics, and Lab-on-a-Chip [3–5].
Particularly, thermal effect plays an indispensable role for the interfacial instabilities [6,7]. For
example, during the unidirectional freezing, Mullins-Sekerka instability occurs at the moving planar
liquid-solid interface [8]; and under a unidirectional temperature gradient, the thermocapillary
instability appears [9]. At the microscopic scale, the heat transfer becomes even more pronounced
for interfacial stabilities, significantly influencing the fluid dynamics and the subsequently produced
patterns [10,11]. In spite of these extensive studies, heat transfer and temperature gradient are mainly
confined within the liquid film.

Recently, by surveying an impacted droplet on a cold substrate [12], diverse patterns have been
clearly revealed, such as the crack pattern changing from a 2D fragmentation to a hierarchical frac-
ture [13], the self-peeling of impacting droplets [14], and morphology evolution from conical tips to
toroidal shapes [15]. Fingering growth emerges in a binary droplet, which freezes from the outside
prior to the impacting on the cold surface [16]. At a microscopic level, the nucleation process and
the associated solidification or crystallization during the droplet spreading and cooling have been
revealed to be responsible for the eventual morphology and the arrest of the contact line [17–20].
However, the freezing of impacted droplets and the correlated spreading process are extremely
complicated, because of the inherent complex interplay of the rapid impacting hydrodynamics, the
nonuniform liquid thickness, the transient heat transfer, and the intricate solidification.
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FIG. 1. Spatiotemporal evolution of fingering instability for an injected liquid at an elevated temperature
into a Hele-Shaw cell subjected to the side-wall supercooling. (a) Schematic diagram of the experimental setup;
(b), (c) Snapshot for a stable interface at a higher Tw ≈ Tm (Tw = 67 ◦C) and fingering instability at a lower
Tw < Tm (Tw = 25 ◦C) for a paraffin wax film in a glass cell (Q = 4 ml/s, h = 400μm); (d) Temporal evolution
of the azimuthal undulations along the radius r(θ ) for the interface in row (c).

In this work, using a Hele-Shaw cell, a liquid film with uniform thickness is produced and sub-
jected to cooling along the side walls, which not only circumvents the rapid dynamic deformation
of the liquid film but also enables us to focus on the interfacial instability quantitatively. We observe
fingering instability at the spreading front, and identify that the onset of the instability is primarily
determined by the solidification process at the vertical direction. Additionally, we demonstrate
this vertical-supercooling-induced fingering instability can be further engineered simply through
structure designing of a nonuniform geometry. Moreover, the unstable wavelength increases with
the critical velocity or the inlet flow rate, which can be explained by the thermal-viscous instability.

Fingering instability. As shown in Fig. 1(a) (Note 1 in the Supplemental Material [21]), paraffin
wax is molten into a viscous state at an elevated temperature (Tl = 95 ◦C) above its melting point
(Tm = 69 ◦C). Subsequently, this viscous liquid is injected into a Hele-Shaw cell consisting of two
glass plates with a gap thickness h = 400μm through a central inlet (2rin = 2.5 mm). The flow rate
of injection is varied by a syringe pump (Q = 0.25 − 4 ml/s), and the cooling process is controlled
or gated by the wall temperature of the Hele-Shaw cell (Tw). At a higher Tw = 67 ◦C (Tw ≈ Tm),
when the injected liquid spreads within the Hele-Shaw cell, the moving front is stable, and the
circular symmetry of the interface is preserved [Fig. 1(b)].

However, at a lower Tw = 25 ◦C (Tw < Tm) [Fig. 1(c)], the injected viscous liquid accordingly
undergoes the supercooling process, and an interfacial front instability is identified with the pro-
nounced fingering patterns along the radial direction (Movie 1 in the Supplemenal Material [21]).
As shown by the spatiotemporal snapshots, initially the liquid film spreads outward uniformly
(t = 305, 430 ms), and the propagation front forms a nearly perfect circular interface. Once its
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FIG. 2. Snapshots for the onset of fingering instability with various flow rate Q and gap thickness h at Tw =
25 ◦C. (a) Q = 0.5 mL/s, h = 0.253 mm; (b) Q = 0.5 mL/s, h = 0.368 mm; (c) Q = 2 mL/s, h = 0.340 mm.

radius is beyond a critical value (r > rc), some little notches appear at the moving front and signify
the onset of the fingering instability (t = 555 ms). As the fluid is continuously injected, the front
progressively propagates radially, and fingers further extend longer outward (t = 680, 805 ms).
This fingering instability is quantitatively characterized by temporal evolution of the azimuthal
undulations along the interface [r(θ )] as shown by Fig. 1(d). Note that the notches at the interface
are pinning points during the subsequent growing process, and the wavelength λ between the nearest
pinning points is associated with the circumferential length and the number of the observed fingers
(Nf ), λexp ∼ 2πrc/Nf (Note 2 in the Supplemental Material [21]).

Onset of the fingering instability. To explore the effect of flow rate (Q) and gap thickness (h) on
the fingering instability, a series of experiments are performed in the Hele-shaw cell with various Q
and h (Fig. 2). With the increase of gap thickness (h) at a fixed flow rate (Q), the critical time (tc)
for the onset of fingering instability tends to increase [Figs. 2(a) and 2(b)]. With the increase of flow
rate (Q) at a similar gap thickness (h), the critical radius (rc) for the onset of fingering instability
tends to increase [Figs. 2(b) and 2(c)].

A quantitative understanding of the onset of the instability is obtained by checking the critical
radius (rc) with various physical parameters (such as Q, h) (Movie 2 in the Supplemental Material
[21]). The temporal evolution of radius (r) for various flow rates (Q) [Fig. 3(a)] indicates the turning
point for the onset of instability (a critical time tc or radius rc), after which the fingering instability
further develops (the radius is denoted for the length of typical fingers r f ). Prior to the instability,
based on the mass conservation, Q = 2πrh dr/dt , the radius dependent on time is obtained,

r ∼ (Qt/πh)1/2 ∼ t1/2. (1)

As shown in Fig. 3(b), the experimental data collapse into a master curve with a 1/2 scaling law,
r/rc ∼ (t/tc)1/2.

Because of the geometric confinement in the Hele-Shaw cell, the injected viscous liquid at
a high temperature Tl is subjected to conductive cooling due to the bottom and top plate at a
low temperature (Tw) at the vertical direction, likely resulting in the aforementioned instability.
By balancing the diffusive heat flux with the solidification rate [13,15], the timescale of the
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FIG. 3. Scaling analysis for the onset of instability. (a) The temporal evolution of r dependent on flow rates
Q; (b) Prior to the instability onset, the spreading radius has a power law of 1/2 with time, r/rc ∼ (t/tc )1/2;
(c) At the onset of the instability, the experimental data of tc agreeing with theory of Eqs. (2) and (3) excellently
tc = ts ∼ h2; (d) Critical radius rc ∼ (Re)1/2.

solidification process at the vertical direction is obtained,

ts = ρL(h/2)2/2κ�T ∼ h2, (2)

where �T = Tm − Tw, L, ρ, κ for the supercooling, latent heat, density, and thermal conductivity
(see Table I for the materials parameters). Indeed, the experimental data of tc for the onset of the
instability agrees excellently with the ts for the solidification timescale at the vertical direction in
theory [Fig. 3(c)],

tc = ts. (3)

Additionally, the scaling law holds for various gap thicknesses as well (tc = ts ∼ h2).
Further, from Eqs. (1)–(3), the critical radius rc is attained,

rc ∼ (Qh)1/2(ρL/8πκ�T )1/2 ∼ Re1/2, (4)

where Re = ρvinh/μ (vin = Q/πr2
in, μ for viscosity) for Reynolds number. This rc ∼ Re1/2 scaling

is consistent with the experimental observation for paraffin wax [Fig. 3(d)].
For other materials with various physical and thermal properties (Note 3 and Table I in the

Supplemental Material [21]), the 1/2 scaling law still holds [Fig. 1(d)] in eicosane (C20H42) with
similar thermal properties of paraffin wax. But for the different thermal properties, such as liquid
metal of Bi-Sn alloy with a larger thermal conductivity and smaller latent heat, rc becomes smaller
to be comparable with rin, hence the instability appears immediately right after the injection of this
liquid metal.

Geometry with a nonuniform gap. Since the timescale of heat transfer along the vertical direction
determines the onset of instability [tc ∼ h2 in Eq. (2)], we further directly demonstrate the effect of
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FIG. 4. Geometry effect on the fingering instability. (a) Schematic diagram of the nonuniform gap thickness
with a small constant gradient (ϕ � 1); (b) Interface susceptible to instability in the narrower side, while
maintaining stability in the wider side; (c) r at the interface as a function of azimuth at different times;
(d) Emergence of fingering instability, once t̃ > 2 (as shaded in the green), consistent with the experimental
observation in (b). Orange dots in (b)–(d) marking the region of interfacial instability.

thickness in a nonuniform geometry on the resultant instability. In this wedge-shaped Hele-Shaw
cell [Fig. 4(a)] [22], the constant depth gradient is extremely small on the order of O(10−3) [23].

When the molten paraffin wax is injected into this cell at Tw = 25 ◦C and Q = 4 ml/s, the high-
speed images show the pattern evolution [Fig. 4(b) and Movie 3 in the Supplemental Material [21]),
and the interfacial profile r(t, θ ) depends on time and the azimuthal angle [Fig. 4(c)]. Initially, the
spreading profile remains a nearly circular shape (t = 160 ms). Afterwards, in the left-side region
with a narrower gap, the interface or the propagation front is more susceptible to the instability
because of rapid cooling, and fingering instability becomes pronounced beyond a critical time (tc ∼
344 ms). Alternately, in the right-side region with a wider gap, the interface still remains stable and
smooth (t = 560 ms). In this way, the asymmetry pattern is formed, i.e., the stability is persisted at
the wider gap while the instability is triggered at the narrower gap (t = 720 ms).

This geometry effect on the pattern stability is further analyzed by a simple scaling analysis.
By combining Eq. (2) and the local height at the interface which is described by h(r, θ ) =
hin + r(t, θ )cosθsinϕ, where hin = (hn + hw )/2, the local solidification timescale at the interface
is obtained,

ts(r, θ ) = ρLh2/8κ�T ∼ h(r, θ )2. (5)

We establish the stability diagram for the interface at propagation front by defining dimensionless
time t̃ (θ ) = t/ts [Fig. 4(d)]. The interface is stable for t̃ < 2, while fingering instability sets up
for t̃ > 2. The experimental data agrees reasonably well with this scaling analysis, which is built
on the heat transfer at the vertical direction by addressing the solidification timescale during the
supercooling process.

Proposed mechanism of thermo-viscous fingering instability. In order to unravel the role of the
supercooling process in this fingering instability, the spatial-temporal evolution of temperature for
the viscous liquid is directly recorded by a thermal camera [Fig. 5(a), and Movie 6 and Note 4 in the
Supplemental Material [21]]. Figure 5(b) presents temperature distribution along the radial direction
of the marked finger (the black arrow in the snapshot at 296 ms). Adjacent to the inlet (r ≈ rin),
the injected liquid is immediately cooled down by contacting the sidewall; then in the spreading
region (rin < r < r f ), temperature decreases with the radius slowly. Typically paraffin wax has
a strongly temperature-dependent viscosity [24–26], which increases rapidly with the decreasing
temperature, especially when it approaches to solidification. The temperature-dependent viscosity
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FIG. 5. (a) Spatiotemporal evolution of temperature for the viscous liquid of the paraffin wax at Tw =
24◦C, Q = 0.25 ml/s, h = 270μm; (b) Temperature evolution along the radial direction of the black arrow in
the last snapshot of (a); (c) The viscosity of paraffin increases significantly with the decreased temperature.
(d) Sketch for the thermal-viscous fingering instability. As the molten paraffin wax passing through the thin
gap, its viscosity increases sharply with the decreased temperature, and this pronounced mobility contrast
between the central warm fluid and the cold fluid in the vicinity of the spreading front consequently leads to
the occurrence of thermal-viscous fingering instability.

of the used paraffin wax [Fig. 5(c)] is measured by a rotational rheometer (MARS3 HAAKE). As
shown in the sketch of Fig. 5(d), based on the observation of the decreased temperature and the
increased viscosity accordingly at the spreading front, we hypothesize that the viscosity contrast
between the internal warm fluid and the outer cold fluid is enhanced and the local mobility near
the spreading front is much less than that in the center, consequently leading to a thermal-viscous
fingering instability [27,28].

Linear stability analysis. Despite the complicated process, the spacing between the pinning
points correlated with the instability wavelength (λexp) is reproducible and increases with the flow
rate Q [see Fig. 6(d)]. The linear analysis in a 2D radial coordinate frame will be much more
complicated mathematically, such as the radial flow decays with time as the front move radially.
Here to link the previous theory in a 2D (x, y) coordinate system [27] with the current work, we
obtain the instability wavelength by employing the local spreading velocity at the propagation front
(v f = dr/dt , rather than vin), implicitly including the radial effect in our experiments. Also, the
ratio between rc/rin ∼ 10 during the instability occurrence implies the negligible curvature effect.
Specifically, the linear stability analysis is performed within a rectangle Hele-Shaw cell to seek
the relation between the uniform constant inlet velocity and the instability growth. This uniform
constant inlet velocity in the rectangle Hele-Shaw cell refers to the front velocity v f in the present
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on injection flow rates Q, the line for the model, squares for experiments, and error bars for five reproducible
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radial flow. Then we can obtain the relation between the instability and critical velocity vc, i.e.,
v f (r = rc) which varies with the inlet flow rate Q.

As sketched in Fig. 6(a), the hot liquid at Tin with a uniform constant inlet velocity u and viscosity
μ(T ) is forced into the gap, where L is the length of the rectangle Hele-Shaw cell. Since the flow
here is in the horizontal plane and the thickness of the liquid film is much smaller than the length
scale of the flow, the effects of gravity and buoyancy are ignored. In our experiments, the Peclet
number is Pe = vinrc/α ∼ 105 for the typical values vin ∼ 1 m/s, rc ∼ 0.01 m and the thermal
diffusivity of paraffin α = 10−7 m2/s, so within the flow plane we only consider the heat advection,
while in the vertical direction we only consider the heat loss to the sidewall.

By simply following the linear-stability analysis in [27], the governing equations for the Darcy’s
law, incompressible flow velocity and heat transfer are modified accordingly as below:

12μ

h2
u = −∇p, (6)

∇ · u = 0, (7)

∂T

∂t
+ u · ∇T = −δ′(T − Tw ). (8)

Here u = (u, v) and T are the gap-averaged velocity and temperature, t the time, and p the pressure.
Heat loss to the side walls is approximated by the last term in Eq. (8) with the heat transfer coefficient
δ′ ≈ π2α

h2 .
Generally, the viscosity for wax varies with temperature in a much more complicated way, but for

the simplicity of theoretical analysis, we assume that the thermophysical parameters of the paraffin
wax are constant except for the viscosity variation to be simplified as a function of the temperature
decrease with the constant coefficient γ ′ as follows [27]:

μ = μmeγ ′(Tm−T ). (9)
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Here the value of γ ′ is set to be 0.18 per Celsius degree [24,26], γ = γ ′(Tm − Tw ) = 7.2 with
the temperature difference Tm − Tw ≈ 40 ◦C. In addition, the measured temperature-dependent
viscosity is comparable with the simplified model Eq. (9) [Fig. 5(c)].

The governing equations and the viscosity Eq. (9) are then normalized with nondimensional pa-
rameters (x̃, ỹ) = (x, y)/L, t̃ = tU/L, (ũ, ṽ) = (u, v)/(Ph2/12Lμ2

m), θ̃ = (T − Tw )/(Tm − Tw ), and
δ = δ′L/U , γ = γ ′(Tm − Tw ). The velocity scale U = Ph2/12Lμ2

m is obtained from the Poiseuille
relation for fluid with viscosity μm and the driven pressure gradient of P/L.

By eliminating p with the stream function defined as (ũ, ṽ) = (ψy,−ψx ), Eq. (6) gives

∇2ψ = γ∇ψ · ∇ θ̃ . (10)

Then Eq. (8) becomes as below, respectively,

∂θ̃

∂t
+ J (ψ, θ̃ ) = −δθ̃ , (11)

with the Jacobian J (a, b) = axby − aybx.
The inlet velocity and temperature are kept at ũ0 and Tin, so the inlet boundary conditions are

θ̃ = 1 at x̃ = 0, (12)

ũ = ũ0 at x̃ = 0. (13)

With the assumption of uniform oulet pressure for Eq. (6), the outlet boundary condition is

ṽ = −ψx = 0 at x̃ = 1. (14)

By neglecting the variations and flow in the y direction, a steady basic state with the constant inlet
x velocity ũ0 is

� = ũ0ỹ, � = e− δx̃
ũ0 , M = eγ (1−�). (15)

Here �, �, M are the basic-state stream function, temperature, and viscosity, respectively. The
pressure drop between x̃ = 0 and 1 is

�p = 1 = ũ0

∫ 1

0
M(x̃)dx̃. (16)

From Eq. (16), for a certain value of γ , the relation between the inlet velocity ũ0 and heat transfer
coefficient δ can be numerically solved. By employing the perturbations φ = f (x)sin(ky)eσ t and
θ̃ ′ = g(x)cos(ky)eσ t with the wavenumber k in the y direction and the growth rate σ from the basic-
state �, �,

ψ = � + φ(x, y, t ); θ̃ = � + θ̃ ′(x, y, t ), (17)

Eqs. (10) and (11) become as follows:

∇2φ = γ (ũ0 + φy)θ̃ ′
y + γ (�x + θ̃ ′

x )φx, (18)

θ̃ ′
t + ũ0θ̃

′
x + φy�x + J (φ, θ̃ ′) = −δθ̃ ′. (19)

The boundary condition on θ̃ ′ [from Eqs. (12), (15), and (17)] and φ [for inlet from Eqs. (13), (15),
and (17) while for outlet from Eq. (14)] are

θ̃ ′ = 0 at x̃ = 0, (20)

φy = 0 at x̃ = 0, (21)

φx = 0 at x̃ = 1. (22)
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From Eqs. (18) and (19) and the boundary conditions Eqs. (20), (21), and (22), the eigenvalue
problem for the growth rate σ and structure functions f (x) and g(x) is obtained,

d2 f

dx2
− γ

d�

dx

df

dx
− k2 f + kγ ũ0g = 0, (23)

ũ0
dg

dx
+ (σ + δ)g + k

d�

dx
f = 0, (24)

with

g(0) = 0,
df (1)

dx
= 0, f (0) = 0. (25)

Using the Runge-Kutta method with shooting in MATLAB, this eigenvalue problem can be
solved numerically to find the growth rate σ dependent on ũ0 and the wavenumber k. For the
rectangle Hele-Shaw cell, the dimensionless velocity u can be obtained by typically taking the
characteristic velocity as U = Ph2/12Lμ2

m. However, in the radial Hele-Shaw flow, it is hard to find
a characteristic velocity since the flow decelerates during the spreading process. Here we simply
use a constant velocity vp to obtain the dimensional critical unstable velocity vc = vpũ0.

As shown in Fig. 6(b), the flow is unstable only when the front velocity slows down, which is
consistent with the experimental observation (Note 5 in the Supplemental Material [21]). The most
unstable wavenumber kfast for σmax increases with the decreased critical unstable velocity vc. As
for a typical critical unstable velocity, the dispersion relationship σ (k) is shown in Fig. 6(c), which
indicates that the instability has both long- and short-wave cutoffs.

The relation between the critical unstable velocity vc and the inlet flow rate Q is attained from
the mass conservation Q = 2πrhv f together with Eq. (4),

vc = Q

2πrch
∼ Q

2π (Qh)1/2h
∼ Q1/2. (26)

From Eq. (26) and the definition of the most unstable wavelength as λfast = 2πrp/kfast , where rp

is taken as the typical critical radius from the experiments, we can achieve the theoretical λfast

as a function of the flow rate Q, as shown in Fig. 6(d). the observed instability wavelength is
quantitatively comparable with the fastest instability growth mode. For large k, vc decreases to a
certain value, correspondingly to the left cutoff of λfast in Fig. 6(d).

Discussion and outlook. The vertical-supercooling-controlled fingering instability offers several
unique advantages to further survey and control fluid instabilities in general. First, the spreading of
the injected jet is confined between the two plates at a moderate Re number down to Re ∼ O(1, 102),
circumventing the complicated dynamics in the other relevant systems, such as the droplet impacting
on the substrate with splashing, retreating, and bouncing [29]. Although the radial fingering instabil-
ity can be found during droplet impacting, this phenomenon originates from a completely different
mechanism of Rayleigh-Taylor instability, as the interfacial front undergoes a strong deceleration at
a high Reynolds number up to Re ∼ O(104) [30].

Second, here two states of the stability or instability (fingering patterns) are demonstrated by
simply setting or gating the side-wall temperature at either an elevated temperature or a low
temperature. At an elevated temperature, the fingering instability is inhibited, but once the gated
temperature at the side wall is below the melting temperature, the instability is triggered by the
thermal-viscous effect during the supercooling process. The timescale for the onset of instability
is plainly determined by the solidification timescale during the supercooling process [tc = ts of
Eq. (3)].

Third, the fluid instabilities can be engineered through the structure design in a Hele-Shaw cell.
As shown in Fig. 4, the asymmetry pattern is obtained in the wedged geometry, and more sophis-
ticated structures together with the patterned surfaces [11] are expected to extend our capability to
further engineer the liquid flow.
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Lastly, despite the simplified model, the key role of viscosity contrast during the solidification
process has been essentially captured in the theory, evidently highlighting the underlying physical
mechanism for the observed fingering instability here. A more accurate and complete theory is
beyond the scope of this work and will be worthy of thorough investigation in the future. Neverthe-
less, considering the simplified model for such complicated coupling processes of hydrodynamics,
heat transfer, and phase change, this remarkable agreement between theory and experiment clearly
validates the proposed mechanism based on the thermoviscous fingering instability during the
solidification, which is determined by the ambient cooling at the vertical direction.

This work presents that the strategy of the vertical supercooling and the structure design to
control and steer the liquid flow and the subsequently correlated instabilities for the potential techno-
logical implications, such as microfluidic cooling for semiconductor devices [31]. Particularly, this
supercooling process of the molten jet and liquid film is inherent within the state-of-the-art thermal
drawing process, which involves heating and the subsequent cooling stage, and consequently sheds
light on the diverse fluid instabilities to fabricate versatile functional structures for the advanced
functional fibers and fabrics [32–35].
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