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Enhanced transport of flexible fibers by pole vaulting
in turbulent wall-bounded flow
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Long, flexible fibers transported by a turbulent channel flow sample nonlinear variations
of the fluid velocity along their length. As the fibers tumble and collide with the boundaries,
they bounce off with an impulse that propels them toward the center of the flow, similar to
pole vaulting. As a result, the fibers migrate away from the walls, leading to depleted
regions near the boundaries and more concentrated regions in the bulk. These higher
concentrations in the center of the channel result in a greater net flux of fibers than what
was initially imposed by the fluid. This effect becomes more pronounced as fiber length
increases, especially when it approaches the channel height.
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The concentration and orientation of fibers in wall-bounded turbulent flows have been extensively
studied in the past decades [1,2]. Earliest work has focused on numerical simulations of rigid fibers,
either shorter [2–4] or longer [5] than the smallest length scale of the flow. These simulations have
shown that the fibers tend to adopt a random orientation in the center of the channel, while aligning
with the streamwise direction close to the walls. Near-wall coherent structures were found to play an
important role, as fibers could accumulate in vortices, depending on their length and inertia, leading
to large inhomogeneities in concentration and velocity distribution. Such accumulations have been
observed to mainly correlate with the length of the fibers [2]. Indeed pointlike particles tend to
accumulate within low-speed streaks [6], whereas fully resolved rigid particles seem to accumulate
in high-speed streaks [5]. Recent experiments [7–15], utilizing rigid fibers longer than the smallest
length scale of the flow, have confirmed the various findings from simulations. Notably, these
experiments provide evidence that long rigid fibers accumulate in high-speed streaks, as the particles
are observed to move faster than the fluid near the wall. Accumulation in near-wall structures can
result from various effects, such as turbophoresis (that causes inertial particles to migrate toward the
wall), as well as interactions with boundaries, especially for rodlike objects [5,10,14,16]. Still, these
studies focused on rigid fibers much shorter than the channel height. It is expected that longer and
more flexible fibers will be deformed by the flow, leading to new behaviors not yet fully explored.

Recent simulations have demonstrated that flexible fibers with inertia also tend to accumulate in
the near-wall region [17,18]. The fibers considered there are longer than the smallest scale of the
flow, but still much shorter than the channel height. To date, there are no studies on the behavior
of flexible fibers with sizes comparable to the channel height and, to the best of our knowledge,
they have only been investigated in homogeneous isotropic turbulence. In this context, laboratory
experiments have characterized the rigid-flexible transition [19] and curvature statistics [20] of long
flexible fibers. Long elastic chains have been simulated [21,22], suggesting that they tend to align
with vortex filaments and remain trapped for extended periods. Other numerical studies on long
flexible fibers in homogeneous isotropic turbulence have demonstrated their potential for measuring
two-point statistics of turbulence [23], or exploring modulation mechanisms of turbulence [24]. The
aim of this study is to investigate the near-wall dynamics of elongated flexible fibers induced by
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FIG. 1. Instantaneous distributions of fibers. (a) �+ = 30 and (b) �+ = 270. The colored panels show the
modulus of fluid vorticity in the planes x = Lx , y = −Ly/2 = h and z = 0. Note that near-wall structures or
streaks are visible close to the plane y = −h. The mean flow is from left to right.

collisions with boundaries, filling the gap in our understanding of their behavior in wall-bounded
turbulent flows.

In this study, our focus is on long, inextensible, and inertialess fibers immersed in a channel
flow with moderate Reynolds number. We consider a one-way coupling between the fibers and the
flow [25], which means that the fibers do not produce any feedback on the flow nor interact with
one another. The over-damped slender-body theory is used to describe the fibers, whereby each
fiber, with length � and thickness a, is parametrized by its arc length s ∈ [− �

2 , �
2 ], and its position

X (s, t ) is given by

∂t X = u(X , t ) + c

8πρfν
D

[
∂s(T ∂sX ) − E∂4

s X
]
, with D = 1 + ∂sX∂sXT and |∂sX | = 1. (1)

The tension T (s, t ) is here a Lagrange multiplier associated to the inextensibility constraint, E = Y I
is the fiber’s bending modulus (with Y the Young modulus and I = πa4/64 the fiber’s moment of
inertia), ρf the fluid density, ν its kinematic viscosity and c = −[1 + 2 log(a/�)] a parameter related
to the shape [26]. Equation (1) involves the fluid velocity u(X , t ) along the fiber. It is obtained in
our numerical simulations from the open-source spectral code Channelflow 2.0 [27], used to solve
the incompressible Navier-Stokes equation in a rectangular channel of size Lx = 4πh, Ly = 2h,
Lz = 4πh/3 (see Fig. 1), periodic in the x and z directions and with no-slip boundary conditions at
y = ±h. The fluid flow is integrated with a resolution of 128 × 129 × 128 collocation points. It is
maintained in motion by imposing a constant bulk velocity, such that the friction Reynolds number is
equal to Reτ = uτ h/ν ≈ 180 (with uτ the friction velocity). From now on, we will be using classical
wall units (denoted by a superscript +), where time and length scales are nondimensionalized by
τν = ν/u2

τ and δν = ν/uτ .
The dynamics of fibers in Eq. (1) are numerically integrated using a second-order finite-

difference scheme [26,28]. To prevent their crossing of the walls at y = ±h, we employ a
soft-boundary approach, widely used in modeling discrete particles interacting with walls and/or
each other [29]. In such models, particles are allowed to slightly overlap with the wall, and the
contact force is computed from the relative velocity and the degree of overlap. In practice, this
entails replacing the fluid velocity outside the domain with u = (0, v, 0), where v = −γ (y + h)
for y < −h and v = −γ (y − h) for y > h. The parameter γ is adjusted to the time step 
t as
γ = 0.5/
t . In our simulations, fiber lengths take values in the range �+ = �/δν ∈ [15, 270],
i.e., �/h ∈ [0.08, 1.5]. Each fiber is discretized with a given number of grid points Ns along its
arc-length, chosen to keep a constant step size δs+ = �+/Ns ≈ 0.9. The number of simulated fibers
Nfib ∈ [100, 1250] decreases with increasing length �+ for the sake of computational time.

In the model we are using, inextensible and inertialess fibers are characterized by two length
scales. The first scale is their extension length �, which is expressed in wall units as �+ = �/δν .
This value indicates how far into the turbulent boundary layer the fibers can extend. The second
scale is the elastic length �E = [c Eτν/(8π ρf ν)]1/4, which is maintained constant to �+

E ≈ 7.1 in
our simulations. It is determined by balancing in Eq. (1) the bending rate of the fibers, given by
cE/(8πρfν�4), with the typical shear rate τ−1

ν of the channel flow. Note that the definition of elastic
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FIG. 2. Near-wall alignment and tumbling. (a) Mean-square components of the tangent ∂sX to the fiber
in the streamwise (solid lines) and wall-normal (dashed lines) directions, as a function of the distance
y+ to the wall and for various fibers lengths �+. The horizontal dashed line corresponds to an isotropic
orientation 〈(∂sXi )2〉 = 1/3. (b) Root-mean square amplitude of the tumbling rate ∂t∂sX , again conditioned
on y+. The dashed line shows here the value 〈|∂t∂sX |2〉 ≈ 0.1/τ 2

η expected for rods in homogeneous isotropic
turbulence [2,30], where the Kolmogorov time τη = (ν/ε)1/2 is computed using the bulk-flow turbulent
dissipation rate ε.

length introduced in Ref. [19] for homogeneous isotropic turbulence is recovered when using the
Kolmogorov time scale τη instead of τν . The dimensionless flexibility of the fibers, defined as F =
�/�E, measures their ability to bend near the walls of the channel, with smaller values of F indicating
more rigid fibers. In order to examine how flexible fibers behave in comparison to rigid rods (which
are formally defined as having �+ → 0 and F = 0), we also integrated the Jeffery equations for
threadlike ellipsoids in the same flow along tracer trajectories. Figure 1 shows two snapshots of the
fiber distribution with different lengths. Upon qualitative inspection, it is apparent that short, rigid
fibers remain very straight, whereas long, flexible fibers bend into complex shapes. We first report
results on the statistics of the fiber orientation as a function of their distance to the wall. Figure 2(a)
represents the average orientation of the local tangent vector to the fiber conditioned on the distance
y+ to the nearest boundary. Only the streamwise (x) and wall-normal (y) components are repre-
sented, the spanwise component (z) being deduced from the inextensibility condition |∂sX |2 = 1.
Our findings confirm the previously observed behavior of stiff rods (�+ → 0, black lines) that tend
to align with the mean flow near the boundaries and have a random orientation in the bulk [2].
Finite-size, flexible fibers show a qualitatively similar trend. However, their preferential orientation
with the mean flow persists at larger distances, in particular for the longer fibers. Notably, longer
fibers show a nonzero alignment with the wall-normal direction in the viscous sublayer, as observed
for flexible fibers with inertia [17].

Regarding angular velocities, there are several ways to define a tumbling rate for flexible
particles. We measure here the amplitude |∂t∂sX | of the time derivative of the tangent vector along
the fiber arc length. This definition retrieves when � → 0 the well-known tumbling rate of rigid
fibers |dp/dt |, where p is the rod’s orientation [2,31]. Figure 2(b) displays the root-mean-square
value of the fibers tumbling rate conditioned on the wall-normal distance y+. In the channel
center, they are all comparable and approach the value expected for rods in homogeneous isotropic
turbulence [2,30]. Interestingly, we observe that the smallest fibers with �+ = 15 tumble similarly to
rigid rods, except in close proximity to the wall, at distances y+ � �+/2, where tumbling is slightly
enhanced compared to rods. For intermediate sizes, tumbling is depleted far from the boundary
but enhanced close to the wall. This effect becomes significantly more pronounced for the longest
fibers (�+ = 180, 270), where tumbling is drastically amplified in close proximity to the wall.
These strong angular velocities may result from wall contacts [14] and, as we will see, give rise to
important motions away from the boundary. Insights into the near-boundary dynamics can be gained
by considering a simple two-dimensional model where the fiber is confined in the (x, y) plane and
the flow over the wall is a pure linear shear flow u = σ y x̂. In this scenario the elastic length directly
reads �E = [c E/(8π ρf νσ )]1/4. If a fiber is initially straight but slightly slanted downward, it will
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FIG. 3. Fibers tumbling in a pure shear flow u = σ y x̂. (a) Rigid fiber bouncing on the wall. (b) Flexible
fiber ending up in a hook position. The red dotted lines represent the trajectories of the fiber’s center of mass.
(c) Phase diagram showing the final distance yf of the fiber’s center of mass from the wall as a function of
flexibility F and its initial distance y0. The dashed line separates bouncing and hook configurations. The solid
line separates trajectories ending further from the wall from those approaching it.

undergo a tumbling motion following a Jeffery orbit. If the fiber’s center of mass is initially within
a distance �/2 from the wall, the fiber will touch the boundary during this rotating motion. Upon
collision, it will fold and the resulting displacement will be strongly influenced by its elasticity.
Figure 3(a) illustrates that when the fiber is rather rigid it bends and is propelled further from the
wall. This effect, comparable to pole vaulting, is responsible for the fiber finishing its course at
a higher height than initially. Similar pole-vaulting effects have been observed experimentally for
rodlike particles [10,13,14,16]. On the other hand, when the fiber is more flexible, as shown in
Fig. 3(b), it buckles upon contact with the wall and remains folded, ending its course in a hook
shape. As a result of this folding, the final height of the fiber’s center of mass can be lower than
before tumbling occurred.

The outcome of a near-wall tumbling event depends upon two parameters: the local nondi-
mensional flexibility F and the initial distance y0 of the fiber from the wall. The occurrence of a
pole-vault effect is intricately determined by these parameters, as demonstrated in the phase diagram
of Fig. 3(c). After a tumbling motion near the wall, fibers can end up either closer to or further away
from the boundary. This depends whether the parameters are above or below the red solid line that
behaves approximately as y0 ∝ −� logF . The gray dashed line is the separatrix between the two
types of near-wall motion: bounce or hook. It confirms that the hook shape only occurs for fibers
that are flexible enough. Yet, both types of motion can bring fibers closer or further to the wall. The
impact of fiber inertia on these behaviors is briefly discussed in the Supplemental Material [32].
Qualitatively, our simulations suggest that pole-vaulting is intensified, as inertia hinders hooklike
configurations and enables multiple bounces during tumbling, thereby augmenting the separation of
fibers from the wall. In actual turbulent boundary layers, the situation is even more complex due to
local fluctuations of the shear and to the presence of near-wall structures. Furthermore, we consider
fibers that are longer than the viscous scale δν , so their tumbling motion involves scales falling in the
turbulent logarithmic layer. Nevertheless, pole-vaulting during near-wall tumbling seems a frequent
occurrence in turbulent channel flow. Figure 4 serves as an illustrative example, wherein the fiber is
bent in three dimensions but still undergoes a strong enough impulse to migrate away from the wall.
As we will now see, these interactions with the boundaries are the underlying cause of nonuniform
fiber distributions in the channel, ultimately leading to the enhancement of their transport.

Building upon prior observations, we now present our findings on the spatial distribution and
velocities of fibers. Figure 5(a) depicts the average concentration as a function of the wall-normal
distance y+. A depletion in the boundary layer is readily apparent, which becomes more pronounced
with an increase in fiber length. As a result, fibers tend to accumulate far from the boundaries,
towards the bulk of the channel flow. The inset (b) of Fig. 5 shows the same data, but in semilog-
arithmic coordinates and as a function of the ratio between the wall-normal distance and the fiber
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FIG. 4. Near-wall tumbling of a fiber of length � = 0.25 h ≈ 45 δν in the turbulent channel flow, leading to
an instance of pole vaulting. Different colors correspond to various instants of time, expressed in viscous units.

length y+/�+. Notably, the data seem to collapse well, suggesting that fiber length is indeed an
appropriate scale to characterize boundary depletion and thus pointing towards the mechanisms
described previously.

A higher concentration of fibers in the bulk region, where the flow speed is higher, may suggest
that fibers are transported more efficiently by the flow. However, as the fibers are not expected to
follow exactly the fluid due to their important length, it is essential to examine first their velocity
in the streamwise direction x. Figure 5(c) shows this mean velocity, with statistics conditioned
on X2(s, t ) = y and therefore not carrying any information on the concentration. One observes
an increase in velocity close to the boundary and a minor decrease in the bulk, both of which
become more pronounced with fiber length. The increase close to the walls could be attributed to
the concentration of fibers in high-velocity streaks, as already reported in the literature [5,11–15]
for shorter fibers, but still longer than the smallest scale of the flow. However, a long fiber in a
channel flow can sample different regions of the flow simultaneously. Thus, segments of the fiber
located at different distances from the wall experience different average fluid velocities. As the fiber
is inextensible, the segments located in the channel center with a higher mean fluid velocity tend to
pull the whole fiber, while those near the walls with a lower velocity slow it down. This mechanism
results in a higher fiber streamwise velocity than the fluid near the walls and lower in the center, as
observed in Fig. 5(c).

By combining the concentration and velocity measurements to obtain the average flux in a (y, z)
plane, we find that these effects ultimately result in an increase in fiber transport by several percent,
as shown in Fig. 5(d). Interestingly, the dominant effect on flux modification is the concentration
profile, despite the fact that the fibers are slightly slower than the fluid in the center of the channel.
In particular, we observe that the enhancement only occurs for fibers whose lengths are within the

FIG. 5. Inhomogeneous fiber distributions and velocities. (a) Average density as a function of the distance
to the wall for the various fiber lengths. (b) Same, plotted as a function of y+/�+. The dashed line shows a
behavior ∝ log �+. (c) Average fiber velocity in the streamwise direction, as a function of the wall-normal
coordinate. (d) Fiber fluxes normalised to that of the fluid. The dashed line represents a log behavior.
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log-layer of the wall (typically �+ > 25). When �+ ∈ [25, 270], the increase seems proportional to
log �+.

To conclude, we have observed an enhancement in the transport of inertialess flexible fibers in
the case when they can be modeled as slender-bodies and interact with boundaries through a simple
soft-boundary approach. However, many questions still remain. One such question is the need for
more realistic models for interactions with boundaries to take into account the dissipation that can
occur during collisions due to wall-normal lubrication forces, plastic deformations during contact
and/or tangential friction. These interactions could affect the transfer of momentum toward the
wall-normal direction and influence the migration of fibers into the bulk as well as to modify the
range of values where hooking occurs. This might result in an increase of their concentration near
the boundary, as observed in the turbophoresis of inertial particles [33]. This actually brings out a
second question as to whether similar behavior can be observed for fibers possessing inertia. In that
case, the fiber concentration in the vicinity of the wall may be the result of a balance between the
pole-vaulting mechanism identified here and turbophoresis. This balance is expected to depend on
the Stokes number of the particles, with depleted near-wall regions at low Stokes number and over
concentrated near-wall regions when the Stokes number becomes large. It is also important to note
that inertia may modify significantly the fibers’ general dynamics in the flow, i.e., their orientation
statistics, tumbling dynamics, mean velocity, etc., as well as the pole vaulting mechanism [32].
Another issue that requires further exploration is the role of two-way coupling [25] in pole-vaulting
effects. As fibers deform, they can store some of the fluid kinetic energy, which they can restore
later to the flow, potentially reducing the significance of pole vaulting in the migration of fibers
away from the wall. Additionally, in practical applications such as in the papermaking industry [1],
fibers can display internal properties that fluctuate along their arc length, such as thickness or
flexibility. This could lead to mixed states upon collisions with boundaries, with partial hook and
pole-vaulting effects, or even to their break-up into smaller fragments. All these aspects are kept for
future work.
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