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Two-layer baroclinic turbulence with arbitrary layer depths

Gabriel Hadjerci * and Basile Gallet
Université Paris-Saclay, CNRS, CEA, Service de Physique de l’Etat Condensé, 91191 Gif-sur-Yvette, France

(Received 18 September 2023; accepted 2 April 2024; published 6 May 2024)

While heat transport by baroclinic turbulence in oceans and planetary atmospheres is
well described by a two-layer model, the relative depth of the two layers varies greatly
depending on the situation of interest, making it an important parameter governing the
transport properties of the system. Focusing on the low-drag turbulent regime, we extend
the vortex-gas scaling theory to address the case of arbitrary layer depths. To wit, we
map the arbitrary-layer-depth system onto an equivalent equal-depth system with rescaled
parameters, establishing the asymptotic validity of the mapping for weak bottom drag.
This approach leads to quantitative predictions for the turbulent transport by two-layer
baroclinic turbulence with arbitrary layer depths, without additional free parameters. We
validate these predictions using an extended suite of numerical simulations with either
linear or quadratic bottom drag.
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Introduction. Oceans and planetary atmospheres host large-scale meridional temperature gradi-
ents that induce turbulence through the baroclinic instability mechanism. The resulting turbulent
flow enhances heat transport across latitudes, thus mitigating the temperature difference between
the equator and the poles. In the Earth atmosphere the typical scale of the eddies—the Rossby
deformation radius—is large and well resolved by global climate models. By contrast, ocean
mesoscale eddies have a core diameter of tens of kilometers. Ocean eddies thus remain unresolved
in most global climate models and the associated transport needs to be parametrized [1–4]. In
particular, eddy-induced turbulent transport in the Southern Ocean is one of the key processes
contributing to the stratification of the various ocean basins and to the slow meridional overturning
circulation [5–7].

While the scale separation between the ocean eddies and the larger ocean basins poses a challenge
for direct resolution by global climate models, this same scale separation is the starting point of a
useful asymptotic approach for physicists [8]. Indeed, a flow with a small turbulent mean-free path
(also known as the “mixing-length”) induces transport of diffusive nature. This motivates the study
of horizontally periodic “patches” of ocean, from which one infers the turbulent eddy diffusivity to
be included in larger-scale ocean models (see Ref. [9] for a pedagogical illustration). The physicist’s
approach further consists in reducing the problem to its bare minimum [10]. This led Phillips to
introduce in 1954 the two-layer quasigeostrophic (2LQG) model on an f plane [11–14]. Even for
this strongly idealized configuration, however, the parametrization of the turbulent transport proves
surprisingly challenging. Early attempts were framed in spectral space, based on the idea that energy
input by baroclinic instability at a scale comparable to the deformation radius is transferred to larger
scales following a Kolmogorov inverse energy cascade [1,15,16]. While qualitatively insightful, the
resulting spectral theory lacks quantitative agreement with numerical simulations [16]. The spectral-
space description was further challenged by Thompson & Young [17] who suggested that the flow
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FIG. 1. Two layers of fluid with densities ρ1 and ρ2 sit on top of one another, in a frame rotating at a rate
f /2 around the vertical axis. The base state consists of a vertically sheared zonal flow. The interface between
the layers is tilted as a consequence of thermal wind balance.

is better described in physical space because of the emergence of intense coherent vortices. Gallet
and Ferrari [9] recently embraced this idea to derive a scaling theory in physical space, based on the
idea that the flow can be described as a dilute gas of idealized vortices. The resulting “vortex-gas”
theory provides quantitative predictions that are validated by numerical simulations of the 2LQG
model with equal layer depths [9,18] and carry over to a three-dimensional (3D) model with uniform
density stratification [19]. In parallel with the development of the vortex-gas theory, a current line of
research consists in understanding how the standard cascade arguments must be corrected for if one
insists on describing the flow in spectral space [20–22]. Ultimately, the theory that best describes the
system (spectral- vs physical-space approach) is arguably the one that includes the smallest number
of adjustable parameters, while describing the largest number of model configurations of interest.
This is the first motivation for the present study.

The second motivation is that any practical situation of interest departs from a uniform strat-
ification, so that the associated two-layer model must include unequal depths for the two layers.
We have not hidden our predominant interest in mesoscale ocean turbulence, which typically
corresponds to an upper layer five times shallower than the lower layer [23,24]. By contrast, the
atmosphere corresponds to an upper layer twice thicker than the lower layer [25]. Arbitrary layer
depths complicate the problem at both the quantitative and the qualitative levels. New terms arise in
the equations, inducing lower levels of barotropization [24,26–28], a term that refers to the tendency
for the system to form an intense vertically invariant flow [23,29]. Predicting the overall transport
induced by baroclinic turbulence in a two-layer model with arbitrary layer depths is thus both a
challenge to test the robustness of the relatively recent vortex-gas theory, and the natural next step
to extend it to realistic situations of interest.

The 2LQG system has been extensively described in the literature [12,26,30]. Two shallow layers
of fluid sit on top of one another in a frame rotating at a rate f /2 around the vertical axis ez. We
denote with a subscript 1 (resp. 2) quantities in the upper (resp. lower) layer. When the system is
at rest, the total fluid depth is H , with H1 the depth of the upper layer, H2 = H − H1 the depth of
the lower layer, and α = H1/H the relative depth of the upper layer. The small difference between
the upper-layer density ρ1 and the lower-layer density ρ2 is associated with a reduced gravity g′ =
g(ρ2 − ρ1)/ρ1, where g denotes the standard gravity, and we define an overall Rossby deformation
radius as λ = √

g′H/(2 f ). The base state consists of uniform arbitrary velocities U1;2 in each layer.
We denote as x the direction of U1 − U2 and we introduce the shearing velocity Uex = (U1 −
U2)/2. Leveraging Galilean invariance, the governing equations are then conveniently written in
the frame moving at the velocity (U1 + U2)/2, which we adopt in the following. The system is
represented schematically in this frame of reference in Fig. 1: the base velocities reduce to +Uex

in the upper layer and −Uex in the lower layer. Through thermal-wind balance, the shear flow is
associated with a tilt of the interface: there is a meridional gradient in vertically averaged density,
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which is the potential energy reservoir feeding baroclinic instability. We denote as ψ1;2(x, y, t ) the
departure streamfunctions with respect to this base state, the velocity fields in the two layers being
u1 = +Uex − ∇ × (ψ1ez ) and u2 = −Uex − ∇ × (ψ2ez ).

The potential vorticity (PV) in each layer reads Q1;2 = G1;2 y + q1;2(x, y, t ), where G1;2 are the
background meridional PV gradients associated with the base state and q1;2 are the departure PVs:

G1 = U

2αλ2
, q1 = ∇2ψ1 + ψ2 − ψ1

4αλ2
, (1)

G2 = − U

2(1 − α)λ2
, q2 = ∇2ψ2 + ψ1 − ψ2

4(1 − α)λ2
. (2)

The evolution of the system is governed by the material conservation of PV in each layer:

∂t q1 + U∂xq1 + J (ψ1, q1) + U

2αλ2
∂xψ1 = 0, (3)

∂t q2 − U∂xq2 + J (ψ2, q2) − U

2(1 − α)λ2
∂xψ2 = drag, (4)

where J (ψ, ϕ) = ∂x(ψ )∂y(ϕ) − ∂y(ψ )∂x(ϕ).
We have included a bottom drag term in the lower layer to damp kinetic energy. Frictional

dissipation in the lower layer balances the release of energy by baroclinic instability in the
equilibrated state. We consider either linear bottom drag with a coefficient κ or quadratic drag
with a coefficient μ, that is drag = −2κ∇2ψ2 or drag = −μ[∂x(|∇ψ2|∂xψ2) + ∂y(|∇ψ2|∂yψ2)].
We are interested in the statistically steady solutions of Eqs. (3) and (4) with periodic boundary
conditions in both x and y, in a large enough domain for the transport properties of the flow to
be independent of the horizontal extent of the domain. Additionally, when numerically simulating
the evolution equation for q1;2 we include a small hyperdiffusive term ν
4q1;2 (respectively) to
damp the small-scale vorticity filaments, making sure that the transport properties of the flow are
independent of the small hyperdiffusion coefficient.

The key quantity of interest is the effective diffusivity of the equilibrated flow [1,8,9]. Denoting
with angular brackets a time and horizontal area average over the domain, the PV diffusivity in
each layer is obtained by dividing the eddy-induced meridional PV flux 〈q1;2 ∂xψ1;2〉 by minus the
background PV gradient −G1;2. Conveniently, after a few integrations by parts using the periodic
boundary conditions, this operation results in the same expression for the PV diffusivity in the
two layers. That is, the transport of PV in both layers (as well as the heat transport, see below) is
governed by a single eddy diffusivity coefficient [9,17,20]

D = 〈ψ1 ∂xψ2〉
2U

. (5)

The goal of the present study is to determine D in terms of the control parameters of the problem:
U , λ, α, and the drag coefficient κ or μ. Nondimensionalizing space and time using λ and U , we
seek the expression of the dimensionless diffusivity D∗ = D/(Uλ) in terms of the relative depth of
the layers α and the dimensionless drag coefficient κ∗ = κλ/U or μ∗ = μλ. That is, we seek the
dimensionless functions Dl (α, κ∗) and Dq(α,μ∗) such that

D∗ = Dl (α, κ∗) or D∗ = Dq(α,μ∗) (6)

for linear and quadratic drag, respectively.
To wit, we have performed numerical simulations of Eqs. (3) and (4) using a pseudospectral

solver [31], with large enough domain size and small enough hyperviscosity for these two param-
eters to be irrelevant. The suite of simulations consists of sweeps of the dimensionless friction
coefficient for several values of the relative layer depth α. Once the system has reached a statistically
steady state we extract the eddy diffusivity by performing the spatial and time average arising in
Eq. (5). The resulting values of D∗ are shown in Fig. 2. A striking feature is that the diffusivity
varies significantly with the relative depth α of the layers, for otherwise constant parameters.
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FIG. 2. Dimensionless diffusivity as a function of the dimensionless drag coefficient for four different
values of the relative layer depths, using either linear drag (open symbols) or quadratic drag (filled symbols).

Barotropic-baroclinic decomposition. The dynamics are better characterized by recasting the
governing equations in terms of the “barotropic” streamfunction ψ associated with the verti-
cally averaged flow ψ = αψ1 + (1 − α)ψ2, together with the “baroclinic” streamfunction τ =√

α(1 − α)(ψ1 − ψ2):

∂t (∇2ψ ) + J (ψ,∇2ψ ) + J (τ,∇2τ ) + χU∂x(∇2τ ) = (1 − α) drag, (7)

∂t

(
∇2τ − τ

χ2λ2

)
+ J

(
ψ,∇2τ − τ

χ2λ2

)
+ J (τ,∇2ψ )

+χU∂x

(
∇2ψ + ψ

χ2λ2

)
+ T = −χ

2
drag, (8)

where T = 2(1−2α)
χ

[J (τ,∇2τ ) + χU∂x(∇2τ )] and we have introduced the short-hand notation

χ = 2
√

α(1 − α). The baroclinic streamfunction τ is sometimes referred to as the temperature
variable, whose dynamics is coupled to that of the vertically averaged (or barotropic) flow. Because
of thermal-wind balance, the background shear flow is associated with a background meridional
gradient in vertically averaged density, visible as a tilt of the interface in Fig. 1. That is, there is
a background meridional gradient Gτ = −χU for the temperature variable, and a straightforward
calculation shows that the meridional heat transport by the vertically averaged flow is characterized
by the same diffusivity −〈ψxτ 〉/Gτ = D as PV transport.

The equal-depth case is recovered by substituting α = 1/2 (and therefore χ = 1) in the equa-
tions above, which also leads to T = 0. An important qualitative difference between the equal-depth
case and the unequal-depth case is therefore the presence of the additional term T in the latter
situation. To make progress on the unequal-depth case, we first briefly recall the low-drag behavior
of the equal-depth system.

Vortex-gas scaling theory. The low-drag scaling behavior of the equal-depth system is accurately
described by the vortex-gas scaling theory [9,18,19,32]. At low drag the flow barotropizes, with
most of the kinetic energy in the barotropic flow u = −∇ × (ψez ). The corresponding barotropic
vorticity field resembles a dilute gas of coherent vortices [17], which we model as isolated vorticity
patches of typical radius rcore separated by a typical intervortex distance iv � rcore. The vortices
have circulation ±� and they wander around as a result of mutual induction with a typical core
velocity V ∼ �/iv . One further assumes that the transport properties of the gas are correctly
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inferred by considering an isolated dipole of opposite-sign vortices. This leads to fluctuations of
the baroclinic streamfunction of order τ ∼ Uiv and a typical diffusivity that scales as D ∼ ivV .
The vortex core radius was initially assumed to be of the order of the deformation radius, a
reasonable assumption for moderately low bottom drag [9]. However, investigation of the very-low
drag regime indicates that rcore becomes significantly greater than λ and scales as rcore ∼ √

λiv

instead, as inferred from a potential vorticity conservation argument and detailed in Ref. [32]. One
completes the theory using two energetic arguments: first, the “slantwise-freefall” argument consists
in considering a fluid column initially at rest that travels “freely” over a typical mean free path iv .
Equating the drop in potential energy of the fluid column with its final kinetic energy leads to
V/U ∼ iv/λ. The second energetic argument is the energy balance equation: in stationary state,
the rate of release of potential energy by baroclinic instability DU 2/λ2 equals the frictional energy
dissipation rate. Because of the strong barotropization, we estimate the latter using the frictional
dissipation acting on the barotropic flow only, of order κ〈u2〉 for linear drag and μ〈u3〉 for quadratic
drag (in the equal-depth case). As detailed in Ref. [32], combining these scaling relations leads to
the following expressions for the dimensionless diffusivity of the equal-depth system (α = 1/2), for
linear and quadratic drag, respectively:

Dl (1/2, κ∗) = c1 exp

(
c2

κ∗

)
, (9)

Dq(1/2, μ∗) = c3

μ
4/3
∗

. (10)

Mapping onto an equal-depth system. The characterization of the equal-depth system allows us
to understand the unequal-depth one in the following way. Let us first assume that the term T in
Eq. (8) is negligible in the low-drag regime, an assumption that we will justify a posteriori. The
key observation is then that, in the absence of the term T , the left-hand sides of Eqs. (7) and (8) are
exactly those of the equal-depth system, with the rescaled parameter values Û = χU and λ̂ = χλ in
place of U and λ, respectively. We thus expect the system to be governed by the vortex-gas scaling
theory with these rescaled parameter values. In line with the vortex-gas theory, the rescaled drag
coefficient is obtained by neglecting the drag force in the τ equation, Eq. (8), and neglecting τ in
the expression of the drag force that arises in the ψ equation, Eq. (7). In other words, only the
drag force acting on the dominant barotropic mode comes into play in the low-drag regime. The
latter drag force is −2κ (1 − α)∇2ψ for linear drag and −μ(1 − α)[∂x(|∇ψ |∂xψ ) + ∂y(|∇ψ |∂yψ )]
for quadratic drag. Once again, these terms are identical to those arising in an equal-depth system,
up to a rescaling of the friction coefficient as κ̂ = 2(1 − α)κ or μ̂ = 2(1 − α)μ. To summarize,
provided the term T can be neglected, the unequal-depth system can be mapped onto an equal
depth system with rescaled parameter values Û , λ̂, and κ̂ or μ̂. We conclude that the scaling laws of
the equal-depth system govern the scaling behavior of the unequal-depth system provided one uses
the rescaled parameter values. That is, the temperature diffusivity D = 〈ψxτ 〉/Û satisfies

D

Û λ̂
= Dl

(
1

2
,
κ̂λ̂

Û

)
or

D

Û λ̂
= Dq

(
1

2
, μ̂λ̂

)
(11)

for linear or quadratic drag, respectively. Recasting these equations in terms of the original param-
eters yields

Dl (α, κ∗) = 4α(1 − α)Dl

[
1

2
, 2(1 − α)κ∗

]
, (12)

Dq(α,μ∗) = 4α(1 − α)Dq

[
1

2
, 4

√
α(1 − α)3/2μ∗

]
, (13)
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FIG. 3. Rescaled diffusivity as a function of the rescaled drag coefficient for linear drag (open symbols)
and quadratic drag (filled symbols). Same symbols as in Fig. 2. The low-drag data collapse onto the vortex-gas
predictions Eqs. (9) and (10), plotted using c1 = 1.7128, c2 = 0.7644, and c3 = 0.3436.

and after substituting Eqs. (9) and (10) on the right-hand side:

Dl (α, κ∗) = c1 4α(1 − α) exp

[
c2

2(1 − α)κ∗

]
, (14)

Dq(α,μ∗) = c3
α1/3

41/3(1 − α)μ4/3
∗

. (15)

These expressions provide the dependence of the eddy diffusivity on the relative layer depth
α without any additional free parameter as compared to the equal-depth case. They are valid
provided the term T can be neglected in Eq. (8). We are now in a position to justify—in the
sense of a scaling estimate—this assumption by evaluating T based on the vortex-gas scaling
theory. The vortex-gas scaling theory involves two dominant processes in the temperature Eq. (8):
distortion of the background temperature gradient by the meridional barotropic velocity and,
crucially, transport of the resulting temperature fluctuations by the barotropic flow, through the
term J (ψ,∇2τ − τ

χ2λ2 ). For a fixed value α = O(1) of the relative layer depth, the two terms

in T correspond to the advection of ∇2τ by the baroclinic velocity −∇ × (τez ) and by the
base flow velocity U , both of which are much smaller than the barotropic velocity −∇ × (ψez )
because of the strong barotropization of the flow. In other words, the two advective terms in T are
subdominant as compared to the advective term J (ψ,∇2τ − τ

χ2λ2 ) entering the dominant balance
of the vortex-gas scaling theory. Based on this scaling estimate we conclude that T indeed appears
to be negligible, making the derivation above self-consistent (as confirmed by the numerical results
below).

Numerical validation. The theoretical predictions Eqs. (14) and (15) suggest plotting the
rescaled diffusivity D∗/[4α(1 − α)] as a function of the rescaled drag coefficient 2(1 − α)κ∗ or
4
√

α(1 − α)3/2μ∗. As shown in Fig. 3 this representation leads to an excellent collapse of the
low-drag numerical data onto two master curves, whose low-drag asymptotic behaviors are captured
by the theoretical predictions Eqs. (9) and (10) with excellent accuracy. An alternative way to probe
the validity of the predictions Eqs. (14) and (15) consists in varying the relative layer depth α for
fixed drag coefficient acting on the barotropic mode, denoted as K = (1 − α)κ∗ for linear drag and
M = (1 − α)μ∗ for quadratic drag. Specifically, in Fig. 4 we plot D∗ normalized by its value for the
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FIG. 4. Diffusivity coefficient normalized by its equal-depth value for a fixed low value of the drag
coefficient acting on the barotropic mode (linear drag, K = 5 × 10−2; quadratic drag, M = 5 × 10−4). The
lines are the parameter-free predictions Eqs. (16) and (17).

equal-depth case α = 1/2 and the same value of K or M. Based on Eqs. (14) and (15) we expect
this ratio to be given by the parameter-free predictions:

Dl (α, K/[(1 − α)])

Dl (1/2, 2K )
= 4α(1 − α), (16)

Dq(α, M/[(1 − α)])

Dq(1/2, 2M )
= [4α(1 − α)]1/3, (17)

for linear and quadratic drag, respectively. The data in Fig. 4 are in excellent agreement with these
predictions for both types of drag.

Conclusion. We have determined the dependence of the eddy diffusivity induced by baro-
clinic turbulence in the two-layer model with arbitrary layer depths. The derivation hinges on
the barotropic-baroclinic decomposition, which we combined with the vortex-gas scaling theory.
The predictions include no additional free parameters as compared to the equal-depth case. They
are validated quantitatively by the numerical simulations, which indicate the robustness of the
vortex-gas theory. In the context of the parametrization of transport by ocean mesoscale turbulence,
a theory for the unequal-depth case allows one to properly account for the strongly nonuniform
ocean stratification. This brings us one step closer to being able to project fully three-dimensional
patches of ocean [33,34] onto their first two vertical modes, with the goal of inferring the overall
transport properties of an ocean patch based on the associated two-layer description.
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