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Gyre turbulence: Anomalous dissipation in a two-dimensional ocean model
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The exploration of a two-dimensional wind-driven ocean model with no-slip boundaries
reveals the existence of a turbulent asymptotic regime where energy dissipation becomes
independent of fluid viscosity. This asymptotic flow represents an out-of-equilibrium state,
characterized by a vigorous two-dimensional vortex gas superimposed onto a western-
intensified gyre. The properties of the vortex gas are elucidated through scaling analysis for
detached Prandtl boundary layers, providing a rationalization for the observed anomalous
dissipation. The asymptotic regime demonstrates that boundary instabilities alone can be
strong enough to evacuate wind-injected energy from the large-scale oceanic circulation.
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Introduction. In three-dimensional turbulence, the transfer of energy from large to small scales
results in an energy dissipation rate that remains independent of viscosity, regardless of its smallness
[1,2]. This dissipative anomaly is a robust empirical observation sometimes referred to as the zeroth
law of turbulence [3]. Conversely, two-dimensional flows are subject to an inverse energy cascade
[4], which results in the self-organization of the flow at the domain scale [5]. To ensure efficient
dissipation in two-dimensional flows, an additional mechanism is required to generate small-scale
structures where dissipation can operate, thus disrupting the inverse cascade. The strong shear near
lateral boundaries could serve as a means to create such dissipative structures [6]. Numerical studies
of the bounded Navier-Stokes equations have examined the relationship between dissipation and
viscosity during a dipole-wall collision [7–9]. The possibility for dissipation to remain finite in the
inviscid limit has been raised [10,11], yet remains a topic of debate [12,13].

The existence of a dissipative anomaly in two-dimensional flows with boundaries would bear
significant practical implications, for example, in contributing to a deeper understanding of the
energy cycle in the ocean [14–17]. In fact, classical linear models for the emergence of western-
intensified currents [18,19], such as the Gulf Stream or the Kuroshio, do provide a remarkable
example of a dissipative anomaly. Here, we show that this dissipative anomaly persists in a nonlinear
regime, and unveil a gyre turbulence regime with a western-intensified mean flow and finite-energy
dissipation rate.

Flow model. The simplest model describing western intensification of oceanic currents is the
rigid-lid barotropic quasigeostrophic model on a closed domain tangent to the Earth [18]:

∂tω + J (ψ,ω) + β∗∂xψ = ν∗�ω − ∂yτ, (1)

ω = �ψ, τ = − cos (πy). (2)
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FIG. 1. (a) The β-plane model with an inlet for the streamlines of the time-average sea surface velocity
field in the North Atlantic. Colors show the corresponding relative vorticity field. (b) Temporal average of
the streamlines in the gyre turbulence regime (ν∗ = 2.5 × 10−5), superimposed on the corresponding relative
vorticity field (colors). (c) Snapshot of relative vorticity in the gyre turbulence regime (ν∗ = 2 × 10−6). Blue:
anticyclonic vortices; red: cyclonic vortices (see Supplemental Material [33] movie S2 for an animation).

The term J (ψ,ω) = (u∂x + v∂y) ω is the advection of vorticity ω by the stream function ψ , with
u = −∂yψ the zonal (x-direction) and v = ∂xψ the meridional (y-direction) velocity components.
We solve this two-dimensional model on a square domain with no-slip boundary conditions. Forcing
comes from the wind stress curl −∂yτ . Time and length have been rescaled such that both the length
of the domain L and the maximum value of the wind stress τ0 are 1. The shape of the forcing
corresponds to a single gyre, and is somewhat relevant to the North Atlantic case, with net injection
of negative vorticity, as observed in the subtropical gyre [Fig. 1(a)]. The only difference to the
incompressible two-dimensional Navier-Stokes equations is the term β∗∂xψ . This term comes from
the curl of the Coriolis force, assuming linear variations of the Coriolis parameter in the meridional
direction y. This framework is called the β-plane approximation, and it captures the effects of
differential rotation induced by a rotating planet [18].

Earlier studies of the single-gyre model with free-slip boundary conditions exhibited an iner-
tial runaway in the invicid limit: a solution with unrealistically large velocities, and lacking an
intensified western boundary current [20–26]. One way to prevent this inertial runaway is to use
no-slip conditions [27–29]. It was also noticed that no-slip boundary conditions in two-dimensional
turbulence can drastically alter flow organization [30–32]. In the context of a wind-driven shallow
water model, Ref. [29] observed that no-slip conditions induced the intermittent formation of intense
vortices through boundary layer detachment. We show below that this mechanism enables the
large-scale flow to remain in an oceanic gyre regime when considering the inviscid limit of Eqs. (1)
and (2) (see Supplemental Material [33] movie S1 for a direct comparison of the free-slip against
the no-slip regimes).

Linear dynamics. Linear theories for wind-driven gyres compute steady states of Eqs. (1) and (2),
by neglecting the advection term [18,19]. In the domain bulk, the vorticity equation simplifies into
the Sverdrup balance, a cornerstone of midlatitude ocean dynamics, β∗v = −∂yτ , meaning that an
injection of negative vorticity is balanced by a southward transport of the fluid. To ensure mass
conservation, this interior circulation must be complemented by boundary layers. The majority
of this recirculation occurs within the western boundary layer, thereby breaking the East-West
symmetry established by the Sverdrup balance. In the viscous solution found by Munk [Fig. 2(a),
top left inset] the boundary layer thickness scales as δM = (ν∗/β∗)1/3 [34], which implies that total
dissipation is dominated by contributions from the boundary layer while energy injection comes
from the domain bulk. The confinement of energy dissipation in a western boundary layer holds
when viscosity is replaced by other dissipation mechanisms, such as a linear drag [18]. In this
scenario, large-scale gyre patterns and therefore energy injection do not depend on details of those
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FIG. 2. (a) Parameter space (no-slip boundary conditions). Insets show typical instantaneous vorticity fields
(color) and stream functions (lines). (b) Energy dissipation rate, rescaled by the energy injection through a
Sverdrup interior. (c) Energy rescaled by the energy of the inertial western boundary layer. Error bars show the
standard deviation.

linear boundary layers. This is a strong incentive to look for a turbulent dissipative anomaly in this
system, adding back nonlinearities into the problem.

Parameter regimes. The linear Munk solution is a limiting case in the (ν∗, β∗) parameter space,
corresponding to β∗ � 1 and a restricted range of ν∗ to be discussed below. The parameter space
can be dissected into four regions [Fig. 2(a)]: In the limit of weak β∗, the effects of differential
rotation are negligible with respect to other terms and the flow response is equivalent to that of
the two-dimensional Navier-Stokes (NS) equations, with a transition from laminar to turbulent flow
when ν∗ decreases [31]. The same transition from laminar to turbulent flow occurs when differential
rotation is important (β∗ � 1). When ν∗ = 10−2, we observe that the flow consists of a domain
interior in which a Sverdrup balance holds with a stationary western boundary layer, similar to the
linear Munk solution.

When viscosity is decreased, the boundary layer becomes increasingly inertial and its thickness
will be governed by δI = β∗−1 [18,35]. The transition between the laminar Munk regime and this
inertial regime occurs around δM = δI , i.e., ν∗ = 1/β∗2. When viscosity is decreased further below
this threshold, the boundary layer becomes unstable, and those instabilities feed the domain with
filaments and vortices. As friction is further reduced the system eventually enters into the gyre
turbulence regime: While the time mean flow remains close to a Sverdrup interior with western-
intensified boundary layers [Fig. 1(b)], the instantaneous vorticity field is dominated by a vigorous
heterogeneous vortex gas which is densest in the northwestern corner of the domain [Fig. 1(c);
for an animation, see Supplemental Material [33] movie S2]. The gyre structure is not observed
on instantaneous stream-function fields, which is instead dominated by contributions arising from
Rossby basin modes [36] (not shown here), and to a lesser extent by contributions from vortices.

Energy budget. The central result of this Letter is depicted in Fig. 2(b) showing that the dissipative
anomaly of the linear Munk regime persists in the nonlinear gyre turbulence regime. Dissipation ε

appears in the energy budget as

∂E

∂t
= P − ε, P =

∫
τu dA, ε = 2ν∗Z, (3)

L051801-3



MILLER, DEREMBLE, AND VENAILLE

FIG. 3. (a) Contour plot of the mean stream function 〈ψ〉 at ν∗ = 2.5 × 10−5, with colored areas identified
as inertial boundary layers. (b) q − ψ relations in the inertial boundary layers.

where E = ∫
(u2 + v2)dA/2 is the total energy and Z = ∫

ω2 dA/2 the total enstrophy. We define
time average and fluctuations as

〈ψ〉 = lim
T →∞

1

T

∫ s+T

s
ψ dt, ψ ′ = ψ − 〈ψ〉, (4)

where the integration is started from a moment s in time after which the system is observed to be in
statistical equilibrium, for which 〈P〉 = 〈ε〉.

In gyre turbulence, the average dissipation 〈ε〉 is observed to be insensitive to a decrease in ν∗
[Fig. 2(b)]. Our rescaling by β∗−1 shows that the dissipation rate remains close to that predicted by
energy injection through an interior flow governed by a Sverdrup balance. However, the dissipation
mechanism changes drastically as fluctuations become increasingly important at smaller values of
ν∗, while the mean flow contributes only a negligible fraction to the total dissipation. The importance
of the fluctuations can also be seen in the total energy of the flow [Fig. 2(c)]. The rescaling by β∗−1

reveals that the total energy of the mean flow remains close to the energy in a western inertial
boundary layer, while the magnitude of the fluctuations increases when ν∗ decreases. To rationalize
these observations, we describe below the mean flow structure (related to energy injection), and the
production of filaments and vortices (related to energy dissipation).

Mean flow structure. In the gyre turbulence regime, the time-averaged production term 〈P〉 must
be independent of ν∗, as it balances the time-averaged dissipation 〈ε〉. This constraint, together with
the observation in Fig. 2(b) that the energy of the mean flow reaches a plateau, suggests that the bulk
stream function 〈ψ〉 displayed in Fig. 1(b) only has a weak dependence on ν∗ in the gyre turbulence
regime. While the order of magnitude of the mean flow agrees with Sverdrup balance in the domain
interior [Fig. 3(a)], the gyre pattern is different than the prediction from linear theory, likely due to
nonlinear rectification mechanisms in the presence of Rossby waves [32,37]. We observe only weak
changes in this pattern when lowering viscosity in the gyre turbulence regime (see Supplemental
Material [33] Fig. 2).

The gyre pattern is connected to inertial boundary layers with a well-defined functional relation
between stream function and potential vorticity 〈q〉 = 〈ω〉 + βy, such that J (〈q〉, 〈ψ〉) = 0. We
identified two regions where such relations hold (Fig. 3), which we will call the inflow (blue)
and the outflow (red) layer. The inflow layer is consistent with classical theory predicting 〈q〉 =
−(β∗/Uin)〈ψ〉, which leads to a western boundary layer thickness δI = 1/β∗, where Uin < 0 is the
westward inflow scaling as 1/β∗ [18,35]. The northward velocity in the inertial boundary layer is
UI ∼ 1, so that mass transport in this layer compensates the southward Sverdrup bulk transport.
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FIG. 4. (a) Probability distribution functions  of log(ω2) for different values of ν∗. Also shown are the
values responsible for dissipation, ω2. (b) Values responsible for dissipation after rescaling by ωmax = 1/

√
ν∗.

The area under the curves is equal to the total dissipation 〈ε〉.

A no-slip boundary condition is guaranteed by a Prandtl sublayer with thickness δP ∼ √
ν∗. The

vorticity within this Prandtl layer is

ωmax = UI

δP
∼ 1√

ν∗ . (5)

Assuming that dissipation of the mean flow is governed by these viscous sublayers yields

ν∗
∫

〈ω〉2dA ∼ ν∗ω2
maxδP ∼ ν∗ 1

2 , (6)

which compares well against the observed dissipation due to the mean flow [see Fig. 2(b)].
The outflow layer close to the northern boundary corresponds to a meandering jet with velocity

Uout and a strong cyclonic recirculation. In this area, we observe a negative correlation between 〈q〉
and 〈ψ〉. A stationary Rossby wave meanders and a stationary vortex on a β plane with mean flow
Uout both select the size δout ∼ √

Uout/β∗. We assume that this length sets the vortex and jet width,
and that jet transport is set by the transport of the western boundary layer, which yields

δout ∼ β∗−2/3 and Uout ∼ β∗−1/3. (7)

An adaptation of classical Charney theory to this inertial region leads to 〈q〉 = −β∗/Uout〈ψ〉 + β∗,
which fits well with numerical results [see Fig. 3(b) and Supplemental Material [33] for further
information on boundary layers].

Statistics of dissipation. While the production term 〈P〉 depends crucially on the mean flow,
we showed that, in the turbulent regime, the dissipation term is dominated by contributions from
fluctuations of vorticity [Fig. 2(b)]. Since dissipation is proportional to enstrophy, we show the
probability distribution function of ω2 in Fig. 4(a) (we checked that the distribution of ω2 is close
to the distribution of local dissipation |∇ · u|2). The core of the distribution [log(ω2)] is close to a
Gaussian distribution, similar to recent observations from more comprehensive ocean models [17].

The peak of [log(ω2)] changes little upon varying the viscosity, revealing that most of the
values of vorticity in the bulk are only weakly dependent on ν∗. A much stronger dependence on ν∗
is observed in the tails of the distributions, where we notice important deviations from lognormality.
In fact, the average dissipation is dominated by contributions from the tails, which can be seen by
plotting the quantity ω2. We show these tails in Fig. 4(b) after rescaling the vorticity by ωmax

defined in (5), collapsing the tails onto a single curve centered around unity. This confirms that the
primary mechanism for vorticity injection is the detachment of the Prandtl layer. This scaling for
the vorticity can now be used to estimate the energy dissipation rate.

Scaling analysis of the vortex gas. The cyclonic recirculation we observe in the mean flow is
a signature of the presence of intense cyclonic vortices in this region [see Fig. 1(c)]. These large
vortices result from the coalescence of smaller vortices in the interior. If the vortices grow too large,
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their drift velocity overcomes the advective velocity from the detached jet, and the vortex collides
with the wall, detaching the sublayer over a length δout (see Supplemental Material [33] movie S2).

Building upon this observation, the theory for the mean flow, and the observed statistics of the
dissipation, it is possible to propose a scaling theory that predicts the ν∗ dependency of the energy
of the vortex gas. For this, we suppose that the energy is determined by N characteristic vortices
of size λ. If we assume that the vortices are created by the roll-up of the detached sublayer of the
western boundary along a length δout, then the characteristic vortex radius scales as λ ∼ √

δoutδP.
Furthermore, in the inviscid limit we observe a balance between the dissipation of these vortices and
the injection of energy through the mean Sverdrup flow. The balance between energy dissipation
through the characteristic vortices and injection through a Sverdrup interior takes the form

ν∗Nλ2ω2
max ∼ β∗−1. (8)

This determines the area fraction of the vortices as Nλ2 ∼ β∗−1, which we verify (see Supplemental
Material [33] Fig. 2). The total energy of the vortex gas is then given by

E ∼ Nλ2(ωmaxλ)2 ∼ ν∗−1/2β∗−5/3, (9)

with additional logarithmic corrections [38]. Although the ideas behind this scaling do not in-
corporate the fragmentation or coalescence and the resulting inhomogeneity of the vortex gas, a
reasonable agreement between simulations and this scaling theory is observed [Fig. 2(c)].

Discussion. Our study challenges the consensus that a weakly dissipated two-dimensional
ocean model would lead to energy accumulation due to the absence of a forward energy cascade
[16,18]. Instead, no-slip boundaries offer a compelling route to dissipation, sustaining low-energy
western-intensified gyres with a vigorous vortex gas. This gyre turbulence regime is a genuine out-
of-equilibrium state defying description using equilibrium statistical mechanics [2,5], or quasilinear
approaches [39,40].

Originally discovered in freely decaying two-dimensional (2D) flows [41], the vortex gas regime
emerges in baroclinically unstable stratified quasigeostrophic flows or any two-dimensional flow
with forcing amplifying vorticity extrema [38,42–45]. Gyre turbulence, lacking bulk instabilities,
generates intense vortex cores solely at the boundary layers. The interplay of a western boundary
and the β effect also seems to prevent crystallization previously observed on a polar cap [46],
although this feature may yet occur at lower viscosity not attained in the presented simulations.
A quantitative description of the large-scale gyre pattern will require an examination of potential
vorticity mixing induced by the vortex gas, as in Refs. [38,47,48].

In the broader context of the real ocean, turbulent western boundaries have long been recognized
as significant energy sinks [15], with the potential for a linear forward cascade mediated by planetary
vorticity gradients [49] and intense vortex generation through boundary layer detachment [29]. Our
study reveals that incompressible two-dimensional β-plane turbulence serves as a minimal model
sustaining wind gyres coexisting with mesoscale vortices that contain the majority of the flow
energy. However, the two-dimensional model falls short in capturing the fate of these vortices, as
evidenced by their energy increase with ν∗−1/2. Three-dimensional and ageostrophic effects [16,50],
interactions with bottom topography [51–53], and air-sea interactions [54] are expected to play vital
roles in dissipating these fine-scale structures. We conjecture that a large part of the energy flux
toward these fine scales will continue to be governed by larger scales, a hypothesis currently under
examination using more comprehensive ocean models.
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