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Spherical thermal counterflow of superfluid 4He
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We generate quantum turbulence in spherically symmetric thermal counterflow of super-
fluid 4He driven by a central heater and probe it by second sound attenuation. We show that
normal fluid turbulence forms above a certain critical threshold and, in the absence of shear
flow, draws energy from a preexisting random tangle of quantized vortices corresponding
to Vinen-type turbulence. This experiment can serve as a model flow for cosmological
phenomena relating cosmic strings to quantized vortices, for processes occurring in neutron
stars, or cosmological structure formation within superfluid models of dark matter.
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Matter flows occurring in Nature on geophysical or astrophysical scales often defy any experi-
mental approach due to their complexity or the sheer length scales involved; a large part of these
flows are characterized by a spherical symmetry. Due to its unique properties, cryogenic helium may
be used with advantage to provide experimental evidence under conditions exceedingly difficult to
attain with classical fluids. Thermally driven flows such as Rayleigh-Bénard convection may be
studied in cryogenic helium gas [1], and a much wider range of flows becomes accessible using the
superfluid 4He phase (He II), via suitably constructed analogies.

Thermal counterflow (CF) of He II is unique in that it transports heat convectively with local
as well as global zero net mass flow. Realized in channels of constant cross section, it belongs
to the most investigated quantum flows [2–6]. Here we show that spherically symmetric thermal
CF, which so far has attracted only limited attention [5,7,8], displays important features which are
in striking contrast with properties of channel CF. Our preliminary data on the decay of spherical
CF turbulence in a 3D-printed plastic cell show features of Vinen-type turbulence (see Fig. 2 in
Ref. [5]), and this work provides a systematic study revealing unexpected features of this turbulent
flow driven in the absence of shear forces. There is no direct classical counterpart of spherical
CF. However, for spherically symmetric heat flows the closest analog is buoyancy-driven thermal
convection in a gravitational field, occurring typically in the interior of Sun-like stars [9], neutron
stars [10,11], or Earth-type planets [12]. From a broader view, condensed matter analogies to
cosmological phenomena [13], such as the Kibble-Zurek mechanism [14,15] relating cosmic strings
to quantized vortices in superfluids, or the possibility of structure formation in the Universe via the
collapse of spherical overdensities within the framework of superfluid models of dark matter [16],
make spherical CF interesting to a wide spectrum of scientific communities.

In this work spherical CF is studied above 1 K, where He II displays the two-fluid behavior.
Here channel CF can be easily set by applying heat flux q̇ to the dead end of a channel with
its other side open to the bath of He II; q̇ is carried in a convective manner by the normal fluid
of density ρn. By conservation of mass, a superfluid current arises in the opposite direction and
counterflow velocity is established [2–6]: uns = q̇/ρssT , where T is the temperature and s stands
for the specific entropy of He II. The motion of the inviscid superfluid component of density ρs

is constrained. Rotary flow may exist in it only due to quantized vortices, topological line defects,
each carrying one quantum of circulation κ = h/m4 ≈ 9.97 × 10−8 m2 s−1, where h is Planck’s
constant and m4 is the mass of a 4He atom [17]. For small enough q̇ the flow of the viscous normal
fluid is laminar, and there are nearly no quantized vortices in the superfluid component [18]. Upon
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increasing q̇, channel CF becomes turbulent, and a tangle of quantized vortices is generated by
extrinsic nucleation and reconnections. The first detailed investigation of channel CF turbulence
was performed by Vinen [6]. He introduced a phenomenological model describing a homogeneous
random vortex tangle characterized by the vortex line density (VLD), denoted by L. This type of
quantum turbulence (QT) is now called Vinen QT. Its turbulent spectral energy density peaks at
length scales � ≈ 1/

√
L, where it is driven via the interaction of individual quantized vortices [20];

here � is the mean distance between vortex lines, also referred to as the quantum length scale [5].
The temporal decay of VLD obeys the prediction of the Vinen equation [6] with L ∝ t−1 at long
times. This is contrary to Kolmogorov QT, where the energy spectrum contains a classical inertial
range of scales characterized, neglecting intermittency corrections, by the famous roll-off exponent
−5/3. This type of QT, driven at large energy containing scale M � �, displays quasiclassical decay
of VLD L ∝ t−3/2 at long times [5,21].

A natural question and motivation for our work emerges: does spherical CF of He II represent
Vinen- or Kolmogorov-type QT? A closer look at channel CF turbulence shows that this flow is
indeed complex. Above a first critical velocity ucr1

ns a vortex tangle is created in the superfluid
while the normal fluid remains laminar (so called T I state [2]); its velocity profile is altered
by mutual friction [22,23] with details still under investigation. The superfluid velocity profile
in a wide channel is almost uniform far from the boundary, and the turbulence in the superfluid
component is of the Vinen kind. The temporal decay of VLD originating from the T I state obeys
the prediction of the Vinen equation L ∝ 1/t [6], as was recently verified experimentally [24,25].
Upon reaching a second critical velocity ucr2

ns the turbulence appears stronger (the so-called T II
state [2]). As suggested theoretically [26] and confirmed by flow visualization [27], this transition
marks the onset of turbulence in the normal fluid. The existence of large eddies in the normal fluid
subsequently causes, via mutual friction, the creation of large superfluid eddies, and He II enters into
a remarkable double turbulent regime in which the large-scale normal and superfluid velocity fields
move in opposite directions. In the steady T II state, there are two energy inputs to the superfluid
component. Besides the already discussed one at � creating a peak at small scales, there is now a
classical-like energy input at large scale mediated by mutual friction. Upon stopping the heat input,
the energy peak at � quickly decays, and the energy content at large scales gradually cascades down,
forming an inertial range that acquires a classical Kolmogorov form. It results in late classical-like
decay of the form L ∝ t−3/2 [24,25].

Below we show that these basic features of channel CF are in striking contrast with properties of
spherical CF. Lacking the channel walls, it represents an unbounded flow, similarly as in 2D studies
of cylindrically symmetric flows [28,29]. From these works it is known that a radial temperature
gradient must exist in order for a stable steady-state flow to form. Details of the radial temperature
gradient are given in the Supplemental Material (SM) [30], following the studies of spherical CF
by Varga [7] and by Inui and Tsubota [8], as well as our measurements in channel and spherical
CF [31,32]. In this work we generate spherical CF by a tiny 150 � resistor (covered by Stycast
2850 epoxy ≈1.8 mm in diameter) located in the center of a spherical cavity of diameter 20 mm
made of three brass pieces. Another such heater is placed in the helium bath, allowing one to switch
the applied power q̇ between the bath and the cell, which is essential for temperature stabilization.
QT is probed by second sound attenuation [33]: a pair of circular second sound sensors is placed
at the poles of the spherical cavity, causing a small deviation ≈0.5 mm from spherical symmetry.
Careful mapping of second sound resonances reveals that below 10 kHz more than 100 standing
wave modes can be found. Their identification and calculation of spatial profiles is discussed in the
SM [30]. For the measurements we have chosen two modes, at 2950 Hz and 8923 Hz at 1.65 K on
account of their isolated frequencies and high Q factors >1000. Their sensitivity profiles are shown
in Fig. 1. A Ge/GaAs thermometer is installed on the outer wall of the cell and used to determine
the temperature inside and to evaluate helium properties.

In order to drive spherical CF, we apply power q̇ ranging up to 200 mW to the spherical heater
at different bath temperatures. We perform the steady-state measurements in two ways: (1) by
collecting full frequency sweeps across the studied peak at fixed q̇ and (2) by continuous tracking
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FIG. 1. Top: Spatial sensitivity maps of the resonant modes used, shown in the r-θ half-plane with the z
axis oriented normally, expressed in terms of the amplitude squared. Bottom left: Radial amplitude profiles of
the second sound resonances integrated over the angle θ . Bottom right: Example of the decay measurement
sequence (T = 1.65 K, q̇ = 100 mW).

of the resonance maximum using a PID algorithm while q̇ is ramped. In this case the signals
are corrected with respect to a linear background and time-averaged. Both methods show good
agreement; see Fig. 2. Decay measurements use the tracking algorithm with the results averaged
over 50 decays.

As both the VLD distribution, L(r), and the sensitivity profile of the second sound resonance are
functions of position in spherical CF, we characterize the steady-state VLD by the excess damping
of the second sound resonance, expressed as an inverse quality factor due to quantized vortices, Q−1

L .
It can be shown that this damping is proportional to the average VLD weighted by the sensitivity
map of the given second sound mode. For an order of magnitude estimate of the overall VLD in the
cell, one may also introduce a characteristic VLD, evaluated under the assumption of homogeneity
and isotropy: L∗ = 6π� f (a0/a − 1)/(Bκ ), where a0 and a are amplitudes of the second sound
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FIG. 2. The damping of second sound resonances due to quantized vortices given in terms of the inverse
quality factor Q−1 plotted against uns near the heater surface, measured at the lower (left) and higher second
sound resonance (right) at the bath temperatures indicated. Three distinct regimes are observed. Stars (triangles)
represent full frequency sweeps (tracker) data; color-coded vertical dashed lines for individual temperature
series mark the uns values for which Dnc = 50, coinciding with the onset of the plateau.
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resonance without and with quantized vortices, respectively, B is the mutual friction parameter
tabulated in [34] and � f stands for the full width of the unattenuated second sound resonance
[33].

In channel CF, uns is related to the observed VLD: L = γ 2(uns − uc)2 ≈ γ 2u2
ns, where uc is the

critical velocity typically of order 1 mm/s and γ is a temperature dependent parameter, known with
the accuracy of about 20%. In spherical CF, the steady-state profile of local VLD is inhomogeneous:
we would expect roughly L ∝ r−4, since uns ∝ r−2. This approach, however, takes into account
neither the specific dynamics of vortices in the counterflow, nor the generation and decay of vortices
on the surface of the heater, which requires deeper analysis as discussed by Holm [35]. From
numerical simulations [8] a vortex shell forms in the vicinity of the heater with maximum density
in some nonzero distance from the surface. Finally, uns is affected by the temperature profile, and
we can expect a deviation from L ∝ r−4; for further details see SM [30].

Figure 2 displays values of Q−1
L vs uns evaluated at the heater surface. The data sets show that

the expected quadratic relationship Q−1
L ∝ L∗ ≈ γ 2u2

ns generally does not hold in the entire range
of counterflow velocities, but remains valid for low uns (regime I), while at high uns the data seem to
agree better with a linear relationship (regime III). We have attempted to detect a critical counterflow
velocity at which the vortex tangle is first created; however, as seen from Fig. 2, our sensitivity
allows one only to set an upper limit for it, about 1 mm/s. It is a striking observation that for
intermediate uns the observed growth of Q−1

L is much weaker or, in some cases, suppressed (regime
II). This region is also the only one showing a systematic temperature dependence, with the plateau-
like feature starting first at higher temperatures, while at lower temperatures it happens at higher uns

and more abruptly. In the following we will discuss the origin of this unexpected plateau.
The lower second sound resonance experiences higher damping at any temperature than the

higher mode; spatial distribution of VLD may thus be important. We showed [36] that measurements
with given harmonic modes give the mode-shape weighted average of VLD in the probed volume.
Assuming spherical symmetry L(r) = γ 2u2

ns = Ar−4 and linear damping, we obtain

Q−1 ∝
∫

L(r)φ2(r) d3�r∫
φ2(r) d3�r ∝ A

∫ R2
R1 φ2(r)r−2 dr

∫ R2
R1 φ2(r)r2 dr

∝ u2
ns, (1)

where φ(r) is the radial amplitude profile of the second sound resonance (see Fig. 1) and the
integrals are evaluated over the spherical cavity. The obtained scaling Q−1 ∝ u2

ns means that, under
these simplifying assumptions, the experimentally observed plateau in regime II cannot be caused
by the interplay of the radial profile of the second sound resonance with the changing spatial
distribution of L(r). In reality L(r) ∝ r−4 is not satisfied exactly due to temperature gradients,
especially close to the heater, but we show in the SM [30] that the temperature variations amount to
units of mK at most and cannot cause this effect. While perfect spherical symmetry assumed above
need not be satisfied in the experiment, this is also unlikely to cause the systematically observed
plateau.

It is then natural to ask: Could turbulence in the normal fluid affect the quantized vortices in
the superfluid component? Could it be responsible for the slowly growing region at intermediate
counterflow velocities? If this were true, the instability in the steady flow of the normal component
would have to be triggered at a certain value of the Donnelly number, Dn(r) = unrρn/η, acting as an
effective Reynolds number, Re, for the normal fluid of kinematic viscosity η/ρn [5,37]. Furthermore,
the critical Dnc would have to be comparable to Rec obtained in a class of classical flows, where
some degree of similarity to our case can be claimed. Figure 2 shows the tentative onset of this
instability at several temperatures, where the normal fluid fraction changes between ≈ 50% at 1.95 K
and ≈ 5% at 1.35 K. This onset agrees quite well with Dnc � 50, evaluated at the heater surface,
although the first instability may actually occur at a lower Dn before we detect it reliably. The
classical instability in diverging channels [38] or in diverging jets [39,40] occurs at reported 20 �
Rec � 50, similar to our Dnc.
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Let us consider why the transition to turbulence in the normal fluid could reduce the number of
quantized vortices in the spherical cell, in contrast to channel CF. In channel CF, the shear flow near
the walls drives the normal turbulence at large scales, leading to energy transfer via mutual friction
to the superfluid, where no large-scale flow would exist otherwise. The cascade process then leads to
transfer of energy to smaller scales in both fluids and to generation of additional VLD. On the other
hand, in the spherical geometry the flow exhibits essentially zero shear stresses (except near the
thin capillary holding the heater), and large vortical structures are thus unlikely to form. The only
dynamically relevant length scale is the radius, r. Rotating vortical structures are unlikely to develop
around a symmetric central source, although it might, in principle, happen due to imperfections of
the cell. More likely, the instability appears in the form of bifurcations as in classical diverging pipe
flows, which would mean driving the turbulence at smaller length scales. These perturbations would
at first draw energy from small-scale fluctuations in the superfluid velocity field via the mutual
friction force acting between randomly moving quantized vortices and the normal flow, hence it
seems plausible that the normal fluid turbulence is triggered and partly driven by its preexisting
superfluid counterpart at the onset, before sufficient energy input due to imperfect symmetry is
provided that would warrant the development of large flow structures.

We propose the following model of QT in our cell. At the lowest uns, energy is mainly imposed
into the excitation of quantized vortices, while the effect of the laminar normal flow is negligible.
For uns between ≈2 mm/s and ≈100 mm/s, the energy of the vortex tangle is additionally consumed
by the emergence of turbulence in the normal component, driven at small scales by the superfluid
and limited at first to the vicinity of the heater. This leads to a lower energy budget for the tangle
itself and results in a slower growth rate, as observed. The energy transfer must occur at small scales
of order � as there is no efficient way to drive normal turbulence at larger scales. For this reason,
the energy transfer from normal to superfluid component observed in channel CF is absent in the
spherical case. Finally, for uns higher than ≈100 mm/s, the direct energy input of the heater may
become divided between the classical and superfluid turbulence, the imperfections of the cell now
driving the instability in the normal flow with sufficient intensity. Upon increasing q̇, the normal
turbulence may thus develop large-scale eddies and spread into the entire cell. At the same time,
small eddies of size ≈ � will receive energy from large-scale flow and can in turn excite additional
quantized vortices, as observed. This scenario is confirmed by measurements of the temporal decay
of L∗(t ), according to the protocol shown in Fig. 1. Power q̇ is applied to the heater in the cell
for ≈100 s, resulting in the development of statistically steady QT. Then q̇ is switched from the
heater in the cell to an identical heater in the He bath and QT decays. This is repeated ≈50 times
and averaged. In order to obtain the correct power law of the decay, one has to take into account
the virtual origin time t0 and remnant vortex line density L∗

0 remaining in the cell after individual
decays.

Figure 3 displays almost two decades of inverse time decay of L∗(t ), a fingerprint of the
Vinen-type QT [5]. We point out that the decay data were taken mostly at lower velocities in
the first two regimes of turbulence described above, with the single exception of the data series
at 1.65 K and 0.127 m/s, which corresponds to the end of the plateau in Fig. 2. The reason
is difficulty in stabilizing the frequency of the second sound resonance used for detection of
vortices, which is strongly temperature-dependent. It is thus possible that a quasiclassical decay
with L∗(t ) ∝ t−3/2 could be observed at higher initial velocities above the plateau, but the inter-
mediate range certainly displays the characteristics of Vinen turbulence, providing further proof
that the normal turbulence observed at the plateau lacks significant flow structures larger than �.
This is in contrast to channel CF turbulence, where in the T II state, large-scale turbulence in
both components develops due to interactions of the normal fluid with the channel walls, and
the late decay L(t ) ∝ t−3/2 is observed. It is fair to note that QT in spherical CF is inhomoge-
neous and anisotropic, requiring care in interpreting the experimental results. This is discussed
in Ref. [5] as follows: Milliken et al. [41] showed that local decay of vorticity dominates over
diffusive phenomena, and therefore the decay rate dL/dt ∝ −L2 first leads to homogenization
of the vortex tangle. This occurs on the timescale of seconds for the estimated VLD profile in
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resonance frequencies at various uns near the surface of the heater at bath temperatures as indicated, average of
50 decays. The dashed purple lines illustrate the inverse time decay. L∗
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vortex line density and varies between 104 and 105 m−2; cf. also Fig. 2 in Ref. [5].

our experiment. Remaining vortices then decay as homogeneous Vinen turbulence, L(t ) ∝ 1/t , as
observed.

We conclude that QT generated in spherical CF differs qualitatively from channel CF turbulence
of He II and represents Vinen-type QT. Our data indicate that turbulence in the normal fluid is
driven at small scales by a preexisting random tangle of quantized vortices, limiting its energy
content and density, in stark contrast to channel CF, where shear flow leads to vortex line density
enhancement. While the present phenomenology is incomplete, it captures the observed features of
spherical CF within the range of investigated parameters. We believe that our results will stimulate
further research needed for deeper understanding of this unique flow.
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