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Forced and natural dynamics of a clamped flexible fiber in wall turbulence
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We characterize the dynamical behavior of a clamped flexible fiber immersed in wall
turbulence over a wide range of natural frequencies ( fnat) by means of direct numerical
simulations. Only two flapping states are possible: one where the fiber oscillates at the
characteristic frequency of the largest turbulent eddies ( fturb) and another where the natural
structural response dominates. The former is obtained in the more flexible cases ( fnat <

fturb), while the latter in the more rigid ones ( fnat > fturb). We observe that in the turbulence-
dominated regime, the fiber always sways at a frequency proportional to the largest scale
of the flow, regardless of its structural parameters. The hindrance of the clamp to the wall
prevents the synchronization of the fiber with turbulent eddies of comparable size.
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Atmospheric winds and marine currents often interact with the solid surface of the Earth, giving
rise to geophysical boundary layers. Those are frequently disturbed by the presence of slender and
flexible obstacles, either natural or artificial, which protrude from the ground. The gentle swaying of
a tree in the wind or the dangerous oscillations of a pylon are only a couple of demonstrations of the
rich dynamical behavior which emerges as a consequence of the complex fluid-structure interaction
discussed in this Letter.

When a multitude of slender objects is uniformly distributed over a region that is wide compared
to their height (e.g., trees in a forest or seaweed on the seafloor, but also cilia on a membrane),
a canopy is attained [1–5]. With some noticeable exceptions in the field of microfluidics [6], the
flow above and within a canopy is typically turbulent. The turbulent flow established within and
immediately above a canopy differs significantly from a conventional boundary layer since the
structure of turbulence is altered [7–12] and the diffusion of passive species (such as suspended
sediments, seeds, and pollutants) is enhanced [13–17]. Recently, considerable effort has been spent
to investigate the features of the flow and the dynamics of the flexible canopy elements [18–21];
nevertheless, the dynamics of a single constitutive element was not characterized in detail. This
study therefore represents a step back from the existing body of works and aims to numerically
characterize the behavior of a clamped flexible fiber immersed in wall turbulence for different values
of its rigidity, length, and density. We provide solid ground for a thorough understanding of more
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FIG. 1. Flexible fiber clamped in a turbulent wall flow. The fiber is colored in red, while the flow structures
behind the fiber are visualized as blue isosurfaces of the vorticity magnitude, |ω|. Light and dark correspond to
|ω| = 6.5Ub/H and |ω| = 15.5Ub/H , respectively.

complex systems composed of several elements, where the relation between their individual and
collective dynamics becomes important.

In this Letter, we show how the dynamical response of a flexible fiber immersed in a wall bounded
turbulent flow (such as the one depicted in Fig. 1) can only vary among two different regimes,
depending on its structural properties. Specifically, the fiber is observed to either oscillate at its
natural frequency, fnat, or sway at a rate comparable to that of the largest turbulent eddies in the
flow, fturb. While the former scenario is attained when fnat/ fturb � 1, the latter corresponds to a
condition where fnat/ fturb � 1 and the flapping frequency of the fiber becomes independent of its
structural properties.

To tackle this fluid-structure interaction problem, we numerically solve a modified version of
the Euler-Bernoulli equations, which well describe the dynamics of an inextensible elastic fiber,
coupled to the Navier-Stokes equations, which fully represent the motion of the incompressible
Newtonian fluid in which the isolated fiber is immersed. The setup adopted is that of a conventional
turbulent channel flow at a Reynolds number Re = Ub2H/ν = 5600, where a fluid of kinematic
viscosity ν streams with a mean bulk-averaged velocity Ub along the positive x direction, between
two no-slip planes at a distance 2H in the y direction. We investigate the behavior of almost rigid
fibers as well as flexible ones, spanning different values of the Cauchy number, Ca, defined as
the ratio among the force exerted by the fluid and the restoring elastic force opposed by the fiber,
Ca = (ρ f dh3U 2

b )/(2γ ), where ρ f is the volumetric density of the fluid, d is the cross-section di-
ameter of the fiber, h is its length, and γ its bending rigidity. In particular, we vary the Cauchy
number by varying the length of the fiber, h, or its bending rigidity γ , and the density ratio between
fiber and fluid, ρs/ρ f , by varying the fiber density ρs. Further details on the values of the relevant
parameters employed throughout our simulations and about our numerical setup are provided in the
Supplemental Material [22].

The most evident effect of the flow on a clamped fiber is the deflection of its time-averaged
position: the fiber reconfigures its shape, bending in the streamwise direction proportionally to the
value of Ca, and experiences a reduced drag compared to its typical quadratic scaling with the
velocity, especially when the hydrodynamic force is most intense [23–25]. The fiber reconfiguration
is shown in Fig. 2, where black lines denote its time-averaged positions for different values of Ca.
Instead, the gray regions represent the envelope in which the fiber oscillates. The amplitude of the
oscillations increases while moving away from the root and depends on both the structural properties
of the fiber (namely, Ca and ρs; more details on this can be found in the Supplemental Material [22])
and the turbulent state of the flow at the wall-normal distance where the fiber is located, overall
exhibiting a nonmonotonic trend.
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FIG. 2. Time-averaged configuration (black lines) of the fiber that is 0.25H long for logarithmically
increasing values of Ca in the range [3.1 × 10−2, 3.1 × 103]: (a) side and (b) front views. The fiber is deflected
by the mean flow according to its rigidity, and hence oscillates about its time-averaged configuration. Gray
regions show the root mean square of the displacement from the time-averaged configuration.

To better understand the relation between the motion of the fluid and that of the fiber, we compare
the probability density functions (PDFs) [26] of their respective velocities. For the fiber, we consider
the velocity of the tip (where the motion is most pronounced) and compute the Lagrangian PDF
from its time history. For the fluid, instead, we take into account the velocity fluctuations in a
channel at the same Re without the fiber and compute the Eulerian PDF from the space and time
signal measured at a wall-normal position correspondent to that of the deflected tip. On comparing
the Eulerian and Lagrangian PDFs, two different behaviors are observed when varying the rigidity
of the fiber. At a high value of Ca, the PDFs of the fiber overlap well with those of the flow up to
absolute values of the velocity that are twice as big as the root mean square (rms) of the flow velocity
fluctuations for both the spanwise [Fig. 3(a)] and wall-normal components. This is indicative of
a regime where the fiber, deflected forward by the current, coherently sways with the turbulent
fluctuations in the directions not forced by the mean flow and does not exhibit any independent
dynamics. The flow also dominates the streamwise dynamics of the fiber, but the inextensibility
constraint and the clamp to the wall hinder its motion. After reaching a critical value of Ca (which
lays roughly in the middle of our investigated range), all the PDFs of the fiber start widening and
drift away from those of the flow [Fig. 3(b)], as the fiber moves independently. Further decreasing
Ca always leads to states where the PDFs of the flow and of the fiber do not match.

FIG. 3. Different regimes of motion of the fiber, identified with the PDFs of the spanwise velocity
component w (i.e., the only one not directly affected by the presence of the mean flow and the inextensibility
constraint, or by the confinement of the walls). Solid lines refer to the data taken from the fiber tip velocity,
while dashed lines are associated to the flow velocity fluctuations measured at a wall distance corresponding
to the mean position of the deflected fiber tip. The rms of w at such position, denoted wrms, is adopted to
adimensionalize w itself. (a) A flexible fiber (Ca = 3.1 × 102, h = 0.25H , ρs = 1.08ρ f ) for which the two
PDFs overlap, hence suggesting that the fiber is moving with the flow. (b) A more rigid fiber (Ca = 3.1,
h = 0.25H , ρs = 1.08ρ f ) for which the two PDFs are radically different, thus hinting at an independent motion
of the fiber. On a wider scale (inset), the PDF of the fiber appears bimodal and compatible with nearly sinusoidal
oscillations.
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FIG. 4. Second-order structure function of the spanwise velocity component w. Solid black lines refer to
the Lagrangian data taken from the fiber tip velocity, while dashed black lines are associated to the Eulerian
flow velocity fluctuations measured at a wall distance corresponding to the mean position of the deflected
fiber tip. (a) A flexible fiber (Ca = 3.1 × 102, h = 0.25H , ρs = 1.08ρ f ) for which S2 saturates at τ ≈ 1/ fturb,
reaching a value 2〈w2

fiber〉 ≈ 2〈w2
fluid〉, highlighting the passive motion of the fiber in the flow. (b) A more rigid

fiber (Ca = 3.1, h = 0.25H , ρs = 1.08ρ f ) for which the natural response is visible and the saturation value
does not correspond to that of the fluid, suggesting an independent motion of the fiber.

The existence of two different regimes of motion for the fiber, as well as their main features, can
also be appreciated by comparing the second-order Lagrangian temporal structure function of the
fiber tip spanwise velocity to the Eulerian one of the fluid, at the mean position of the deflected fiber
tip. In Fig. 4, we therefore observe S2(τ ) = 〈[w(t + τ ) − w(t )]2〉 for the same two fibers considered
in Fig. 3. In both cases, for the smallest values of the separation τ , S2 ∼ τ 2 follows directly from
the Taylor expansion of S2 as τ goes to 0: the fluctuating signal w is smooth over those timescales.
The signal decorrelates [〈w(t + τ ) − w(t )〉 ≈ 0] for larger values of τ and the behavior of the fiber
emerges. In the most flexible case [Fig. 3(a)], the Lagrangian structure function associated to the
motion of the fiber saturates at τ ≈ 1/ fturb, reaching a value of 2〈w2

fiber〉 ≈ 2〈w2
fluid〉, suggesting that

the motion of the fiber is coupled to that of the fluid. In the most rigid case [Fig. 3(b)], instead,
the fiber exhibits its natural response, which is decoupled from the turbulent fluctuations of the
flow and characterized by nearly sinusoidal oscillations [as confirmed by the bimodal nature of the
fiber PDF on the larger scale reported in the inset of Fig. 3(b)]. The Lagrangian structure function
associated to the motion of the fiber has local minima at τ ≈ 1/ fnat and higher harmonics [where
fnat ≈ 3.516/(dh2)

√
γ /(ρsπ3) is the natural frequency of the fiber], and saturates at a different

value from that of the fluid.
Interestingly, our results bear similarities with previous investigations in the field of vortex-

induced vibration (VIV) [27]. Despite the significant differences in the setup (our clamped fiber is
extremely slender and flexible, while VIV investigations mainly deal with more rigid and intrusive
bluff bodies, with usually only one or two degrees of freedom), we identify two regimes of motion:
one in which the fiber follows the flow and one in which it independently oscillates at its natural
frequency. We are now keen to better investigate and understand the dynamics of the fiber by
sampling the motion of its tip for a sufficiently long time span, removing any initial transient and
looking at the frequency spectra. After inspecting the Fourier transforms of all the displacement and
velocity components, we decide to focus once again on the spanwise velocity: conclusions similar
to those drawn in the following could also be reached by observing the other components, while
dealing with a more disturbed signal affected by external constraints. Two scenarios are possible,
as shown in Fig. 5: When the fiber is flexible and sways with the flow (as previously established
from the PDFs), the spectrum exhibits a broad-band peak [Fig. 5(a)], spread over roughly a decade.
Instead, when the fiber is more rigid and sways at its natural frequency (as previously established
from the second-order structure functions), the peak is narrower and more prominent [Fig. 5(b)]. In
this second case, we confirm that the frequency of the peak corresponds to the natural frequency of
the fiber.
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FIG. 5. Spectra of the tip spanwise velocity w for (a) a flexible (Ca = 3.1 × 102, h = 0.25H , ρs = 1.08ρ f )
and (b) a more rigid (Ca = 3.1, h = 0.25H , ρs = 1.08ρ f ) fiber. In the former, the broad-band peak of the
signal spans roughly a decade of frequencies, while in the latter, the peak is narrow and more prominent; we
emphasize this difference by shading the region among the two frequencies at which the signal achieves a value
that is one decade below its maximum, approaching the peak from the left and from the right. By representing
the natural frequency of the fiber with a vertical dashed line, we confirm that the more rigid fiber, in (b), is
exhibiting its natural response. Both spectra follow a f 2 scaling in the low-frequency region by construction.
After the peak, instead, the fiber exhibits a f −2+ξ decay, with ξ = −3 for the flexible fiber, characteristic of a
smooth regime, and with ξ = −5/3 for the more rigid one, typical of fully developed turbulence.

The spectra always follow a f 2 scaling in the low-frequency region by construction, being the
transform of a Lagrangian velocity signal, while at high frequencies they decay according to a f −2+ξ

law [28,29]. When the fiber is more flexible, it is deflected in the lower part of the viscous wall region
(0.05 � y/H � 0.1) by the mean flow and oscillates under the forcing of a smooth turbulent field,
thus hinting towards a ξ = −3 decay of the spectrum [30]. This argument is well supported by the
high-frequency range of our data in Fig. 5(a). When the fiber is more rigid, instead, it spans the buffer
layer and turbulence takes over, thus justifying the recovery of the conventional ξ = −5/3 exponent.
We therefore point out the interesting counterposition between the dynamics of a more rigid fiber,
dominated by its natural response but “reflecting” the turbulent flow in the high-frequency range,
and that of a more flexible one, dominated by the flow but forced by the smooth turbulent field to
which the fiber is exposed as a consequence of its deflection in the near-wall region. The temporal
spectra of the turbulent kinetic energy at the mean position of the deflected fiber tip, representing
the forcing to which the fiber is exposed, are reported in the Supplemental Material [22].

The analysis of the single spectrum conducted above proves informative, but not exhaustive: the
location of the transition between the two oscillation regimes remains unknown and the physical
meaning associated to the frequency of the spectral peak fflap is unclear in the more flexible cases.
To tackle these issues, we investigate multiple values of the parameters Ca, h/H , and ρs/ρ f ; we
therefore extract fflap for each case [31] and compare the outcomes. For the highest values of
Ca considered in this study, the fiber is observed to oscillate at fflap ≈ 0.5Ub/H regardless of
its structural parameters. We therefore set fturb = 0.5Ub/H and map every case on a fflap/ fturb

vs fnat/ fturb diagram in Fig. 6, where fnat is a direct consequence of the choice of the structural
parameters and it scales as fnat/ fturb ∝ Ca−0.5 upon fixing h/d and ρs/ρ f . As shown in Fig. 6,
the two regimes of motion of the fiber appear as two very distinct branches on the diagram: for
fnat/ fturb � 1, the data plateaus, confirming our previous observation that fflap

∼= fturb, while for
fnat/ fturb � 1, the data collapse on a line with unitary slope, highlighting that fflap

∼= fnat. The
horizontal branch therefore corresponds to the condition in which the fiber is compliant with the
turbulent fluctuations of the flow: independently from the choice of the structural parameters, the
dominant spectral component of the tip motion lays at a frequency dictated by turbulence. The
apparent absence of any relation among the value of fturb sampled by the fiber and its structural
characteristics is a interesting phenomenon, demanding further experimental verification. On the
other hand, the structural parameters play a major role along the ascending branch of the diagram,
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FIG. 6. Values of the spanwise flapping frequency ( fflap) as a function of the fiber natural frequency ( fnat).
All frequencies are scaled with respect to the turbulent frequency measured by the most flexible filaments,
fturb = 0.5Ub/H . The error bars represent the variation in the measured value of fflap when halving the time
history.

where they set the value of the natural frequency at which the fiber oscillates. The transition between
the two regimes occurs at fnat/ fturb ≈ 1. Finally, we investigate the physical reasons justifying the
value of fflap measured along the horizontal branch of the diagram, when fnat/ fturb � 1 and the
fiber always oscillates at the same frequency. We observe that the timescale 1/ fflap ≈ 2H/Ub is
comparable to the turnover time of the largest eddies in the flow, which span the whole width
of the channel and contain most of the overall turbulent kinetic energy. Simulating an additional
turbulent channel flow at Re = 10 000, we confirm that the flapping frequency of a fiber satisfying
fnat/ fturb � 1 is proportional to the largest flow scale and not to the turbulent eddies of size
comparable to the fiber length. High-Re results are reported as gray squares in Fig. 6.

The existence of two distinct dynamical regimes for the fiber is in qualitative agreement with pre-
vious works studying free fibers suspended in homogeneous isotropic turbulence (HIT) [10,32–34],
notwithstanding the anisotropic and nonhomogeneous nature of the flow we considered here, thus
hinting towards a more general behavior of slender flexible bodies in turbulent flows. Nevertheless,
a substantial quantitative difference here is that the fiber is clamped to the wall, which hinders its
motion and prevents it from following the flow in a Lagrangian way. Because of this, the flapping
state of the fiber nontrivially relates to the largest scale of the flow and not to the turbulent eddies of
comparable size, as previously found for the free fibers [10,32–34]. This behavior, contrasting with
any previous result, is observed here and is the main outcome of this Letter.

In this study, we have shown that a clamped flexible fiber immersed in a turbulent wall flow
can exhibit only two different regimes of motion, depending on how its structural properties (and
hence its natural frequency fnat) relate to a characteristic turbulent frequency proportional to the
largest scale of the flow, fturb. For fnat/ fturb � 1, the fiber oscillates at its natural frequency, while
for fnat/ fturb � 1, it sways at fturb regardless of its structural parameters. We also notice that
the existence of a state where the turbulent fluctuations are passively followed by the fiber, as
highlighted by the PDFs in Fig. 3, retains practical relevance since quantities of engineering interest,
such as the flow rate or the Reynolds number, can be measured relying on this phenomenon.
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