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We present a length-scale-based rheology for dense sheared particle suspensions as
they transition from inertial- to viscous-dominated. We derive a length-scale ratio using
straightforward physics-based considerations for a particle subjected to pressure and drag
forces. In doing so, we demonstrate that an appropriately chosen length-scale ratio intrin-
sically provides a consistent relationship between normal stress and system proximity to
its “jammed” or solidlike state, even as a system transitions between inertial and viscous
states, captured by a variable Stokes number.
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I. INTRODUCTION

Particle flows and particle-fluid flows are ubiquitous in natural phenomena and industrial pro-
cesses, such as landslides, debris flows, rock falls, and concrete [1–3]. Complex environmental
conditions make it difficult to obtain a unified constitutive law for their flow characteristics, partic-
ularly for dense flows, where short-range interactions are enduring and often generate long-range
correlations [4].

In last two decades, significant progress has been made in modeling wet and dry granular flows,
focusing on dimensional analysis and time scales. For dry granular flows, the local normal stress
Pp (which is associated with interparticle interactions only), particle density ρs, particle size d ,
and shear rate γ̇ are combined into a single dimensionless ratio of two time scales, microscopic
(
√

ρsd2/Pp) and macroscopic (1/γ̇ ): I = γ̇ d/
√

Pp/ρs [5–7]. Various articles have shown that
dynamic parameters such as the apparent friction coefficient μ = τ/Pp (here, τ is a local shear
stress) and the solid fraction φ can be represented using functions of I in both steady-state [5] and
transient (e.g., column collapse) systems [8]. Cassar et al. [9] adapted this framework to submerged
particle systems by replacing the microscopic (inertial) timescale with a viscous time scale (η f /Pp,
where η f is the fluid viscosity), and the appropriate dimensionless control parameter is J = γ̇ η f /Pp.
Boyer et al. [10] further validated the saturated framework and generalized the mathematical form
to include much sparser suspensions.
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In the last decade, work on dense flows has broadened to include systems in which both hydro-
dynamic forces and particle inertial effects contribute to the rheology. Toward this, Trulsson et al.
[11] proposed an effective shear stress in the form of a linear superposition of inertial and viscous
stresses (τeff = λ × ρsd2γ̇ 2 + η f γ̇ normalized by Pp that produces a new dimensionless number:
K = λI2 + J , where λ is a single-valued fitting parameter). Based on their experimental data, Tapia
et al. [12] argued that λ = 1/Sttr , where Sttr is a transitional Stokes number (St = I2/J = ρsγ̇ d2/η f )
close to 1. They observed that φ and μ exhibit distinct scaling behaviors, thus requiring two fitted
parameters to collapse their μ and φ data (Sttr,μ = 114 and Sttr,φ = 10, respectively).

These efforts have revolutionized the representation of dense suspension flows. However,
significant knowledge gaps remain, associated with issues of material properties [12,13] and
representations of transitions from inertial-dominated to viscous-dominated dynamics [14]. Recent
rheologies based on combinations of I and J use single-valued fitted variables to represent the
transition from I− to J− dominated behaviors [11,12,15], but the lack of physical meaning of these
parameters, and the multiple values they can take for the different variable involved (μ and φ),
greatly limits the physical insight that can be obtained from them.

In this work, we address these points by proposing an alternative length-scale-based rheology
for dense sheared flows based on the ratio of average relative (“macroscopic”) displacements
(associated with streamwise travel in the shearing direction) to deviations from those displacements.
The latter (“microscopic” displacements), are increasingly restricted relative to the streamwise
displacements as the system φ approaches its maximum value φc. We start by using a conceptualized
model to show how near φc dynamics are partially represented in increasingly limited streamwise-
normal movements (compared to streamwise movements) as the system deviates from φc. Through
the momentum balance equation at particle scale, we demonstrate that μ depends on three factors:
interparticle friction μp, solid structure (which can be represented by the length-scale ratio), and
fluid-structure interaction (which is a function of rescaled confining pressure I/J = √

ρsPpd/η f ,
which is introduced in the work of Trulsson et al. [11]). Then, we theoretically derive the appropriate
length-scale ratio between average displacements and average variants from those displacements
to model how the ratio varies with solid and fluid properties and forcing conditions. This gives
rise to a structure-based rheological parameter that requires no fitting parameters and includes a
function of the Stokes number Sttr that varies through the inertial-to-viscous transition, intrinsically
capturing the transition for all values of φ/φc within the dense flow regime [16]. Moreover, we
present a unified expression for μ/μc based on a function involving the structural parameter
(length-scale ratio), and the fluid-structure interaction parameter I/J . We demonstrate that the new
lengthscale-based framework contextualizes previously proposed time-scale-based frameworks, and
also fits published experimental and computational data [10,12,15,17,18].

II. THEORETICAL DERIVATION OF GENERALIZED LENGTH-SCALE
AND TIME-SCALE RATIOS

We begin with a two dimensional (2D) conceptual model of one particle among a conglomeration
of particles sheared under uniform shear and normal stresses τ and Pp [Fig. 1(a)] in a fluid with a
viscosity of η f . For a shear rate of γ̇ , the average streamwise velocity between particles in layer
i + 1 and i is ≈ d γ̇ . During the macroscopic time scale 1/γ̇ our particle in the layer i + 1 [ in
Fig. 1(b)] moves streamwise by ≈ d . It also moves down and up in the y − direction, a distance “δ”,
e.g., Fig. 1(b)–1(d). In this context we consider how a representative solid fraction varies based on
different values of δ corresponding to different forcing conditions. We calculate this representation
as φc = Vp/Vs, in which Vp represents the solid volume contained in triangle ABC (πd2/8 in all
cases) and Vs is the total space. When γ̇ is relatively low and Pp high, a particle in layer i + 1 remains
in contact with particles in layer i and it travels a maximum vertical distance [Fig. 1(c)], generating
a dense packing φc = Vp/Vs,min, where Vs,min = √

3d2/4 is the space required by the three particles
in this dense configuration, represented as the equilateral triangle (�ABC). In contrast, when Pp is
low and/or γ̇ is high, we expect our particle A to break contact with particle B in layer i before
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FIG. 1. (a) Shear behavior of dense suspensions: The top plate applies a pressure Pp on the particles,
inducing shear within the granular assembly as the top plates move at a velocity v, while the bottom plate
remains fixed. (b) Schematic of a 2D conceptual model of a particle in layer i + 1 subjected to shear and
normal stresses over particles in layer i. (c) Relative motion for low γ̇ (and/or high Pp). (d) Relative motion
for higher γ̇ (and/or lower Pp). (e) Force analysis of the particle A during shear.

connecting with C, reducing the value for 2δ, e.g., Fig. 1(b)–1(d). Hence, a general expression of
the space required by the three particles is Vs = d (d − δ)/2, and, a representative solid fraction ratio
may be expressed by:

φ

φc
=

√
3d2/4

d (d − δ)/2
=

√
3

2
(
1 − δ

d

) = f (d/δ). (1)

This shows that φ/φc is dependent on the internal structure identified by δ/d . This suggests the
importance of displacement length scales in capturing the evolution of the solid fraction.

We continue using the same conceptual model to analyze the likely physical parameters needed
for the stress ratio μ = τ/Pp [Fig. 1(e)]. In the quasisteady state, momentum transfer per particle
in one layer can be described as follows: FN = πd2Pp/4 in the vertical direction and Fτ = πd2τ/4
in the shearing direction. In a densely packed suspension where φ → φc, there is little space for
a particle to fluctuate. The fluid flow inside the dense suspension is a result of fluid-granular
interaction, distinct from fluid flow through a porous medium, in which the solid phase is essentially
rigid and thus the fluid velocity can be considerably higher than that of the solid phase. In this
condition, the relative velocity between the fluid and solid phases is small, resulting in a low
Reynolds number. Consequently, we assume that the hydrodynamic force of the particle inside
a dense suspension is the Stokes force. We aspire to achieve a comprehensive description of the
hydrodynamic forces under various conditions. However, it is a significant challenge that requires a
substantial breakthrough in fluid mechanics. While the Stokes force may not encompass all aspects
of the dense suspension system’s behavior, its use to represent fluid-particle interactions can still
enhance our understanding of the interplay between fluid dynamics and inertial effects in this
complex system.

To that end, we now express the fluid force (Stokes drag) scaling along with other forces on
Particle A at the time interval indicated in Fig. 1(e). Particle A is subjected to Stokes drag in
both vertical (FdN = 3πη f v

∗
N d) and shear directions (Fdτ

= 3πη f v
∗
τ d), where v∗

N and v∗
τ denote the

magnitude of relative velocities between the fluid and the particle in the vertical and shear directions,
respectively. The frictional force between particles A and C scales as Fμ = μpFc, where Fc is the
magnitude of the contact force in the direction normal to the plane of contact and μp is the particle
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friction coefficient. Hence, we can obtain
FN = Fc cos θ − μpFc sin θ + 3πη f v

∗
N d = πd2Pp/4, (2a)

Fτ = Fc sin θ + μpFc cos θ + 3πη f v
∗
τ d = πd2τ/4. (2b)

The apparent frictional coefficient μ = τ/Pp can be expressed as

μ = 12η f v
∗
τ

Ppd
+

(
1 − 12η f v

∗
N

Ppd

)
(tan θ + μp)

1 − μp tan θ
. (3)

We define the characteristic velocity v∗
N as the final velocity of a particle settling in fluid over

a distance of a particle diameter d under Pp, and tμ is the traveling time. We can obtain
v∗

N = Ppd
12η f

(1 − h(I/J )), where h(I/J ) = e−216J2/I2−1−W (−e−216J2/I2−1 ), where W (·) is the Lambert-W
function. We calculate the shear velocity via v∗

τ = tan θvv
∗
N , where θv = θ if we approximate the

direction of velocity perpendicular to the plane of contact. Refer to Appendices A and B for detailed
calculations. We identify a contact angle:

tan θ =
√

d2 − (d − δ)2

d − δ
=

√(
1

1 − δ/d

)2

− 1, (4)

we can express the apparent frictional coefficient as

μ = (1 − e−h(I/J ) ) tan θv + e−h(I/J )(tan θ + μp)

1 − μp tan θ
= g(μp, d/δ, I/J, tan θv ). (5)

To summarize, μ depends on three key components, represented by three dimensionless vari-
ables: (1) Particle scale friction μp, which directly impacts momentum exchange between sheared
particle layers; (2) The solid skeleton structure represented by the ratio d/δ (or φ/φc, due to
d/δ = f −1(φ/φc)), as shown in Eqs. (3) and (4). (3) Fluid-structure interaction denoted by I/J
in various systems. Given a specific particle distribution and particle friction, i.e., keeping d/δ and
μp constant, variations in fluid and solid properties result in different momentum exchanges. As
I/J increases from 0 to infinity, signifying a decrease in the role of fluid effect from maximum to
minimum, Eq. (5) undergoes the following transition:

lim
I/J→0

μ = tan θ + μp

1 − μp tan θ
, (6a)

lim
I/J→+∞

μ = (1 − e−1) tan θv + e−1(tan θ + μp)

1 − μp tan θ
. (6b)

This implies that when fluid-structure interaction reaches its maximum or becomes negligible,
μ becomes independent of I/J . This observation aids us in establishing a unifying expression for
the rheological model, a discussion of which follows. Although the dynamic process of granular
material during shearing is much more complex, this simplified conceptual model still provides
physical insights into the behavior of granular materials and allows us to use a length-scale ratio to
build a rheological model.

We next derive a quantitative expression for what we might call a “microscopic” length scale lμ
in the context of representative forces on a particle. This is analogous to δ, as conceptualized above,
though the direction of lμ is arbitrary. As previously noted by Cassar et al. [9], when inertia, drag
force, and Pp are all significant, we may write:

(π/6)ρsd
3 dv

dt
= (π/4)Ppd2 − Fd , (7)

for the response of a particle to a contact force on one side (scaling with Pp), in a viscous fluid,
with no particle contact on the other side (e.g., due to a “hole” in the contact network). As discussed
earlier, we assume that a particle within the dense suspension is subjected to a Stokes drag, expressed
as Fd = 3πη f vd . We integrate Eq. (7) to find the speed v(t ) and the distance traveled l (t ) for a

L012302-4



UNIFYING LENGTH-SCALE-BASED RHEOLOGY OF DENSE …

particle released from rest:

v(t ) =
∫ t

t ′=0
[dv(t ′)/dt ′]dt ′ = v f (1 − e−t/t0 ), (8a)

l (t ) =
∫ t

t ′=0
v(t ′)dt ′ = v f t − v f t0(1 − e−t/t0 ). (8b)

v f = Ppd/(12η f ) is analogous to a settling velocity, and t0 = (ρsd2)/18η f , to a settling time
scale. We use Eq. (8b) to derive either a “microscopic time scale” tμ for a particle to travel distance
l = d or a “microscopic length scale” lμ a particle can travel in time T = 1/γ̇ :

tμ = 12η f

Pp
+ ρsd2

18η f

[
1 + W

(
− e−216η2

f /(ρsd2Pp)−1
)]

, (9a)

lμ = Ppd

12η f γ̇
− Ppd3ρs

216η2
f

(
1 − e−18η f /(ρsd2γ̇ )

)
, (9b)

where W (·) is the Lambert-W function. See Appendix A for calculation details.
With these, we find a dimensionless time- scale ratio by dividing tμ by the (“macroscopic”)

timescale T = 1/γ̇ :

� = tμ
T = 12J + St

18

[
1 + W

(
− e−216J/St−1

)]
, (10)

and a dimensionless length-scale ratio by dividing a (“macroscopic”) length scale L = d by lμ:

G = L
lμ

= 216J2

18J − I2(1 − e−18/St )
= 12(J + λStI

2); (11a)

λSt = (1 − e−18/St )

18 − St × (1 − e−18/St )
. (11b)

III. RELATIONSHIPS AMONG RHEOLOGICAL VARIABLES: G AND � VS I, J, K

The relationship between G and K is apparent. The expressions are nearly identical, except for
the need for a fitting parameter λ. In the case of K , λ = λo, is a constant that needs to be determined
based on the system e.g., material properties and boundary conditions. In the case of G, λ = λ(St ),
a variable that adjusts naturally to the system as it transitions between J and I and thus has one
fewer fitting parameter.

When the inertial force is dominant over the hydrodynamic force (St 	 1), we find

lim
St/J→+∞

� = 2I√
3

[
6
√

3

√
J

St
+

√
3

36

√
St

J
+

√
3

36

√
St

J
W (−e− 216J

St −1)

]
(12)

= 2I√
3

×
√

3

36

√
St

J
[1 + W (−e− 216J

St −1)]. (13)

We use limSt/J→+∞ W (−e−216J/St−1) = W (−1/e) = −1, and then apply the Taylor expansion to
W (x) as x → −1/e. In that limit W (x) = −1 + √

2(1 + ex) − O(1 + ex) [cf. 19]. Thus,

lim
St/J→+∞

� = 2I√
3

√
3

36

√
St

J
[
√

2(1 − e− 216J
St ) − O(1 − e− 216J

St )] (14)

= 2I√
3

√
3

36

√
St

J

[√
2 × 216J

St
− O

(
216J

St

)]
(15)

= 2I√
3

[
1 − O

(
6
√

3

√
J

St

)]
≈ 2I/

√
3. (16)
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TABLE I. Near − φc dynamics and rheological parameters for viscous to inertial behaviors (St ≈ 0 → ∞)

Flow regimes Published �φ(Pp, γ̇ ) � = t f /T G = L/l

Viscous (St → 0) φc
φ

− 1 ∝ J0.5 [9,10] lim
St/J→0

� = 12J lim
St→0

G = 12J

Inertial (St → ∞) φc
φ

− 1 ∝ I [5–7] lim
St/J→∞

� = 2√
3
I lim

St→∞
G = 4

3 I2

Visco-inertial φc − φ ∝ √
K [11,12]a φc

φ
− 1 ∝ �α φc

φ
− 1 ∝ G0.5

(St ≈ 0 → ∞) φc
φ

− 1 ∝ √
K [15] α = 0.5 → 1b

aK = λiI2 + J; where λi is a fit parameter that can have two values, one each for i = φ or μ [12];
b� and G are in Eqs. (10) and (11). α is a fit parameter for �. No fit parameters are needed for G.

For the dimensionless length scale

lim
St→+∞

G = 216J2

18J − I2(1 − e−18J/I2 )
= 216J

18 − St (1 − e−18/St )
(17)

= 216J

18 − St
(

18
St − 9×18

St2 + 3×182

St3 − O
(

1
St4

)) = 216J
9×18

St − 3×182

St2 − O
(

1
St3

) (18)

= 4J × St

3 − 18
St − O

(
1

St2

) ≈ 4I2/3. (19)

In other words, in the limit of large St , � recover to the inertial number (time ratio in inertial regime),
while, G transform into a square of the inertial number. Albeit subtle, this difference in the exponent
of I is critical as will be shown later on. When the hydrodynamic force is dominant, one obtains

lim
St/J→0

� = 12J[1 + St

216J
+ St

216J
W (−e− 216J

St −1)] = 12J, (20)

where W (0) = 0. The dimensionless length scale is

lim
St→0

G = 216J2

18 − St (1 − e−18/St )
≈ 216J2

18J
= 12J. (21)

In the limit of small St , both � and G have the same limiting value: ≈12J . As granular materials
change from a free fall regime to a viscous regime, the generalized time-scale ratio � naturally
transforms from the inertial number I (time-scale ratio in inertial regime defined in work of [5])
to the viscous number J (time-scale ratio in inertial regime defined in the work of Ref. [9]),
when ignoring the constant parameter. However, G naturally recovers the transition from the
inertial number based (φc/φ − 1) ∝ I ∝ √

G in the inertial regime to the viscous number based
(φc/φ − 1) ∝ J0.5 ∝ √

G in the viscous regime. This is another argument supporting the choice of
G as the key dimensionless parameter.

We summarize some details in Table I including their relationships with I, J, and K . The first
column details conditions for comparisons (i.e., high, low, and moderate St). The second column
summarizes previously published relationships for I, J, and K . In the third and fourth columns, we
see that in the high-St limits, � and

√
G scale identically with I . However, at the lowest values of

St , � scales with J , while
√

G scales with
√

J suggesting the need for an additional fit parameter
may be needed for � to fully reconcile with the data. In fact, the form of G is similar to K with an
important difference which will be highlighted later on.
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FIG. 2. Normalized solid fraction (a) and apparent frictional coefficient (b) plotted vs. data from G for data
from Refs. [10,12,17,18,20]. The solid line in (a) are from Eq. (22b), using b = 0.188, and the solid line inset
of (b) are from Eqs. (22a) and (23) with ai = 1.0, au = 4.0, and c = 41.

IV. RESULTS

Based on the theoretical analysis in Sec. III, we plot φ/φc and μ/μs vs G using previously
published experimental and computational data [10,12,17,18,20] in Figs. 2(a) and 2(b). And the
rheological parameters can be expressed by previously proposed relationships [12]:

μ = μc(1 + aG0.5), and (22a)

φ = φc(1 − bG0.5). (22b)

We determined that b ≈ 0.188 remains a constant across all systems, as illustrated in Fig. 3(a),
aligning with our analytical findings from the conceptual model. φ/φc = �(G) is consistently

FIG. 3. Evolution of fitting parameter (a) b and (b) a vs I/J for data from Refs. [10,12,17,18]. The solid
black line in (b) is from Eq. (23) with ai = 1, av = 4, and c = 41.
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TABLE II. Critical apparent friction and solid fraction.

η f (cp) φc b μc a
Savage [17] Air - - 0.414 0.66
Azéma and Radjaï [18] Dry 0.578 0.178 0.382 0.92
Tapia et al. [12] 0.0183 (Air) 0.596 0.206 0.394 1.30
Tapia et al. [12] 1 0.586 0.194 0.411 1.20
Tapia et al. [12] 11 0.615 0.176 0.315 1.04
Tapia et al. [12] 20 0.617 0.177 0.315 1.70
Tapia et al. [12] 50 0.615 0.188 0.312 2.30
Tapia et al. [12] 86 0.615 0.200 0.311 3.02
Tapia et al. [20] 2000 0.584 0.181 0.372 4.13
Boyer et al. [10] 3000 0.584 0.250 0.30 3.88

represented by a single function of a structure-based parameter, the length-scale ratio G. However,
μc, φc, a are system-dependent parameters. Both φc and μc represent critical values in the jamming
transitions, and recent work has shown that μc accounts for the effect of the particle-scale friction
μp [21]. Parameter a varies, starting from a constant value in dry conditions (ai ≈ 1.0) and
increasing to a larger constant value in highly viscous conditions (av ≈ 4.0), as depicted in Fig. 2(b).
The fitting parameter φc, μc, a, and b for different systems are presented in Table II (refer to
Appendix C for details).

As discussed in Sec. II, the introduction of the rescaled confining pressure I/J is necessary to
account for the effect of fluid-solid interaction on μ. Consequently, we plot the last fitting parameter
a in Eq. (22a) against I/J and fit their relationship with

a = av − av − ai

1 + c/(I/J )
, (23)

where av ≈ 4.0 is a constant upper limit at extreme viscous regime [derived from the data of
10,20], ai ≈ 1.0 is a lower limit value in the dry condition [derived from the data of 12,17,18]. The
parameter c = 41 is a fitted constant parameter. Equation (23) demonstrates that for a fixed G (in
relation to a specific φ/φc, assuming the similar internal solid structure) within a P-imposed system
with constant particle friction μp, increasing the fluid viscosity from 0 to a high value (resulting in
a decrease of I/J from infinity to 0) leads to a progression in the influence of the fluid, transitioning
from negligible to a peak. This aligns with the theoretical analysis presented in our conceptual
model.

As depicted in Fig. 4(a), we observe scaling relations between φ/φc and the general form of
the time scale ratio �α as the system transform from an inertial to viscous regime, the exponent
α undergoes a transition from 1.0 to 0.5. We find � impractical and do not consider it further
herein. In contrast, G does not require such a compromise. This study confirms recent discoveries
showcasing distinct scaling laws for φ and μ [cf. 12]. We attribute this discrepancy to the variations
in fluid-structure interaction as a function of I/J , as elucidated through theoretical analysis using
our conceptual model [see Eq. (5)]. Furthermore, we propose a universal constitutive law among
different systems. The root mean square error for predicting μ using the data from [12] decreases
from 2.2e-3 to 4.3e-4 when utilizing Eq. (22a) in comparison to their established relations.

Before we conclude, we briefly revisit the question of appropriate system scales. As we recall,
I and J were derived using ratios of macro- to micro- time scales for inertial and viscous systems,
respectively, while the intentionally-designed cross-rheology parameter K was initially proposed
based on a linear superposition of stress scales [11] (similar to Im =

√
α1I2 + α2J [cf. 15]). Starting
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FIG. 4. (a) 1 − φ/φc vs generalized time-scale ratio �, where � transforms from a inertial number (2/
√

3)I
to a viscous number 12J and α = 0.5 → 1 as the fluid-granular system varying from a dry condition to a very
viscous condition, the dash line is plotted by 1 − φ/φc = 0.188�α with α = 0.5, 0.72, and 1. (b) shows λ vs
St , the solid line is plotted by Eq. (11b).

from these superpositions ends with forms that require additional fit parameters (λo or λμ and λφ

for K or α1/α2 for Im). Our new time-scale ratio � provides a generalized form of J and I from
the viscous regime to the inertial regime. However, it still requires a fit parameter α, that varies
from 1/2 to 1 as the system transitions from viscous to inertial (Table I). While undesirable, this is
still intuitive: it forces a transition between a γ̇− rheology in the viscous limit to a γ̇ 2− rheology
in the inertial limit, as shown previously to hold for these systems [10,12]. Our new length-scale
ratio G does not require a fitting parameter and, at the same time, contains the functional form
of λ(St ) necessary to transform G into K Eq. (11b). The length-scale can effectively capture the
evolution of φ/φc of the granular assembly. Furthermore, the length-scale ratio combined with
I/J can better capture the evolution of μ/μc. The importance of length scales is highlighted by
the proposed conceptual model. We elaborate on additional relationships between the length-scale
ratio and macroscopic properties φ and μ through this conceptual model along with force analysis
and geometric operation. The proposed constitutive relations Eqs. (22a), (22b), and (23)] provide a
precise reflection and correlation with the physical influencing factors for each rheological parame-
ters. For example, φ/φc = f (d/δ) = �(G), and μ = g(μp, d/δ, I/J ) = G(μc, G, I/J ), where G is
analogous to d/δ and μc represents the effect of μp [21].

In addition to the rheological studies reviewed here, studies of near-jammed (near φc) systems
have illustrated that spatial structures play important roles during particle transport [e.g., 16,22,23].
For example, the dynamical processes of granular flows are strongly correlated to larger-scale
correlated movements within a granular assembly. While the relationships between the structures
and flows remain open questions, we have provided significant justifications to give renewed
importance to the proposed length-scale ratios over the existing alternatives.

V. CONCLUSIONS

To summarize, in this work, we considered the inertial response of a sphere subjected to contact
pressure Pp and a linear drag force, and derived a particle-response micro-time scale tμ = t (l = d )
and equivalent micro-length scale lμ = l (t = 1/γ̇ ), i.e., the time for a particle to travel by d and the
distance for a particle to travel in time 1/γ̇ , respectively, in response to this forcing. From these, we
derived a time-scale ratio and a length-scale ratio: � = tμ/(1/γ̇ ) and G = d/lμ. When considering
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these in the context of previously published data, we found that the length-scale ratio (rather than
a time-scale ratio) is intrinsically related to the φ/φc and requires no additional fitting parameters
in comparison with existing alternatives. The apparent frictional coefficient μ is influenced by three
key components: particle-particle friction μp, solid structure, and the fluid-structure interaction.
Previous research [21] has shown that μc is influenced by μp, and our study demonstrates that
the solid structure is accurately characterized by the proposed G. Additionally, the effect of the
fluid-structure interaction is universally captured by a function of I/J .

Based on these results along with recent work connecting particle properties with rheology
parameters [21], we propose general constitutive relationships suitable for a wide range of dense,
sheared granular flows across the viscous-inertial transition expressed using dimensionless scales
G and I/J where the effects of viscous drag and inertia change under different confining pressures,
fluid viscosities, and macroscopic deformations. These results provide insight toward expanding
our understanding of the influence of different lengthscales in dense particle-fluid flows, providing
a greater promise for formulating constitutive models for larger-scale physics-based flow than the
ones we explored herein.

In our current study, the derivation of the length-scale ratio relies on the assumption of Stokes’
law. However, in cases where Stokes’ law may not be applicable, a more precise expression for
hydrodynamic effects or an additional force field is necessary to derive the length scale accurately.
Nevertheless, we have presented a physically grounded conceptual model that can be extended to
comprehend the dynamics of complex dense granular systems.
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APPENDIX A: DERIVATION DETAILS FOR MICROSCOPIC TIME tμ

As defined by Cassar et al. [9], the microscopic characteristic time scale tμ is the time it takes for
a particle to travel for a distance of d . From Eq. (8b),

d = v f tμ − v f t0(1 − e−tμ/t0 ), (A1)

where v f = Ppd/(12η f ), t0 = (ρsd2)/18η f . With some algebra we can obtain

1

t0

(
tμ − t0 − d

v f

)
exp

[
1

t0

(
tμ − t0 − d

v f

)]
= −exp

[
−

(
1 − d

t0v f

)]
. (A2)

Equation (A2) has the form of the Lambert W-function, and X can be calculated using the Lambert
W-function W as X = W (Y ) [24]. Hence, the solution for tμ is expressed as

tμ = d

vf
+ t0 + t0W

(
− e−d/(t0v f )−1

)
(A3)

= 12η f

Pp
+ ρsd2

18η f

[
1 + W

(
− e−216η2

f /(ρsd2Pp)−1
)]

(A4)

= 12η f

Pp
+ ρsd2

18η f

[
1 + W

(
− e−216J2/I2−1

)]
. (A5)
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APPENDIX B: DERIVATION DETAILS FOR CHARACTERISTIC VELOCITY v∗
n

We can calculate the characteristic velocity v∗
N = v∗

τ / tan θv = v(tμ) in vertical direction with
Eq. (8a),

v∗
N = Ppd

12η f

(
1 − e

−tμ
18η f
ρsd2

)
= Ppd

12η f

[
1 − e−216η2

f /(ρsPpd2 )−1−W (−e−216J2/I2−1 )
]

(B1)

= Ppd

12η f

[
1 − e−216J2/I2−1−W (−e−216J2/I2−1 )

]
(B2)

= Ppd

12η f
[1 − h(I/J )], (B3)

where

h(I/J ) = e−216J2/I2−1−W (−e−216J2/I2−1 ). (B4)

Hence, Eq. (5) is given by

μ = 12η f v
∗
τ

Ppd
+

(
1 − 12η f v

∗
N

Ppd

)
(tan θ + μp)

1 − μp tan θ
(B5)

= tan θv[1 − h(I/J )] + h(I/J )(tan θ + μp)

1 − μp tan θ
. (B6)

Due to tan θ is a function of d/δ,

μ = g(μp, d/δ, I/J, tan θv ). (B7)

APPENDIX C: CRITICAL VALUES

The critical solid fraction, apparent friction, and the best fit parameter a and b in Eqs. (22a) and
(22b) in different works are listed in Table II.
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