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We generalize kinetic theory of inelastic spheres to uniaxial, nonspherical grains by
including the orientational tensor as a state variable. The theory has three phenomenolog-
ical parameters, with one parameter to account for the dependency of the stresses on the
orientation, which is exactly one for frictionless cylinders, and the other two parameters to
predict the orientational tensor. We model the competition between the alignment induced
by shearing and the misalignment due to collisions in the evolution law for the orientational
tensor. The theory can predict a significant reduction in the viscosity in response to
alignment measured in discrete simulations of homogeneous shear flows of prolate and
oblate frictionless cylinders.
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Kinetic theory of granular gases [1,2] provides an effective continuum approach to study granular
systems over a wide range of densities, loading, and geometries, specifically under inhomogeneous
flow conditions, where the boundaries play an important role [3,4]. While this approach proved
to be advantageous and accurate, it was developed by considering binary collisions of spheres,
avoiding the additional complexity associated with the mutual orientation of nonspherical particles.
Recent discrete numerical simulations suggest that the orientation of axisymmetric grains, which is
governed by their shape, is crucial in determining their rheological response [5–8]. In particular, at
least in the case of cylinders, while alignment does not significantly affect the isotropic component
of the stress tensor, the particle pressure, it can yield up to one order-of-magnitude reduction in the
shear stress.

In this Letter we generalize the kinetic theory of granular gases to uniaxial grains by including
the orientational order, described though a tensor, as an additional state variable in the constitutive
law of the stress tensor. Alignment and its coupling to the stresses have been a subject of intense
research activity on molecular liquid crystals—random assemblies of nonspherical molecules that
can show preferential orientation in response to change in temperature, concentration, and/or when
subjected to external fields [9–13]. Granular, nonspherical particles, for which Brownian motion is
irrelevant, tend to align in response to shearing, while interparticle, inelastic collisions are expected
to randomize the particle alignment. Hence, the intensity of the particle agitation should be explicitly
included in the evolution law of the orientation.

Uniaxial, convex particles, such as cylinders, spherocylinders, or ellipsoids, can be at a minimum
characterized by their length l along the axis of symmetry and by their maximum extension d in the
plane perpendicular to the axis of symmetry. Here we define them through the equivalent diameter
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FIG. 1. (a) Examples of prolate and oblate cylinders. (b) Homogeneous shear flow configuration, with the
associated frame of reference and the uniform shear rate γ̇ . Also shown are the director u and its angle θ with
respect to the flow direction.

dv , i.e., the diameter of a sphere of equivalent volume, and their aspect ratio rg = (l − d )/(l + d ),
which gives rg = 0 for l = d , 0 < rg < 1 for l > d (prolate grains), and −1 < rg < 0 for l < d
(oblate grains), see Fig. 1(a). The orientation of a uniaxial grain is defined by the dyad (k ⊗ k),
where k is the direction of the particle symmetry axis. For assembly of particles, the averaged
orientational tensor takes the form

A = 1

N

N∑

i=1

(ki ⊗ ki ), (1)

where N is number of particles, and (ki ⊗ ki ) is the orientation of the ith grain. The orientational
tensor is symmetric, positive semidefinite, has unit trace, tr A = 1, and two nonlinear invariants. It
is convenient to define the deviation from isotropic orientation as A′ = A − I/3. Here we define
a scalar measure of the orientation, 0 � S � 1, as the largest eigenvalue of the tensor 3/2A′, and
the director, u, the average direction of the particle axis of symmetry in the case of preferential
alignment, as the associate eigenvector [14]. The measure S vanishes in the absence of alignment
(A′ = 0) and equals 1 for perfectly aligned grains (A′ = u ⊗ u − I/3).

For granular materials composed of identical, hard spheres of mass density ρp and diameter dv ,
the hydrodynamic fields of a linear kinetic theory (in which the stresses are at first order in the spatial
gradients [15]) are the solid volume fraction ν, the mean velocity v, and the granular temperature
T , one-third of the mean square of the particle velocity fluctuations. The latter represents the
measure of the particle agitation. The kinematics is determined by the quantity L = ∇v, the velocity
gradient, which is decomposed into its skew-symmetric part, the vorticity W = (L − LT )/2, and its
symmetric part, the rate of deformation D = (L + LT )/2. D′ = D − (tr D/3)I is the deviatoric part
of the rate of deformation. The solution to the Enskog model for inelastic, hard spheres at first order
in the spatial gradients (Navier-Stokes approximation) provides the following expression for the
stress tensor [1]:

σ = (p − λ tr D)I − 2ηD′, (2)

where p is the hydrostatic pressure, and λ and η are the volumetric and the shear viscosities,
respectively. The expression for the shear viscosity is

η = 8Jν2g0

5π1/2
ρpdvT 1/2, (3)

where J is a known function [16] of the coefficient of normal restitution, en (the negative of the ratio
of postcollisional to precollisional, normal relative velocity between colliding grains, here taken to
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be a constant), and the solid volume fraction [17], and g0 is the radial distribution function at contact
[18], which is also a known function [19] of the solid volume fraction ν and is singular at the critical
value ν = νc, at which the average interparticle distance, at least along the direction of principal
compression, vanishes [20]. The critical volume fraction decreases with increasing coefficient of
sliding friction, μ, and corresponds to the minimum volume fraction at which rate-independent
components of the stresses develop in the case of soft spheres [21,22]. Expressions for the pressure
and the volumetric viscosity can also be found in [1].

For granular materials composed of identical, hard, uniaxial, nonspherical grains, we generalize
Eq. (2) to include a linear dependency on the orientational tensor into the deviatoric part of the stress
tensor [23],

σ = (p − λ tr D)I − 2η[D′ − 3α(D′A′ + A′D′ − 2/3(D′ : A′)I)], (4)

where α is a phenomenological parameter embedding the dependency of the shear viscosity on the
orientation. This formulation gives rise to directional dependency of the shear viscosity. Indeed,
Eq. (4) in index notation reads

σi j = [p − λDkk]δi j − 2Hi jkl D
′
kl , (5)

where we have introduced the fourth-order shear viscosity tensor as

Hi jkl = η[δikδ jl − 3α(δikA′
l j + A′

ikδ jl − 2/3A′
klδi j )]. (6)

Scalar shear viscosity emerges only for A′ = 0, that is, in the absence of alignment.
The parameter α cannot take any value, given that dissipation considerations [23] require that

σ : D � 0 ⇒ α � 1. (7)

To further understand the role of the phenomenological parameter α, consider unidirectional,
homogeneous shear flows [Fig. 1(b)] in which convex grains are completely aligned with the
streamlines, which is physically admissible only for grains of extreme aspect ratios, |rg| → 1. In
this configuration, the shear stress τ takes the simple form

τ = ηγ̇ (1 − α), (8)

where γ̇ is the shear rate. If perfectly aligned in the flow direction, the convex particles can only
slide over each other, so that the macroscopic friction, that is the ratio of the shear stress to the
pressure, must equal the coefficient of sliding friction, μ, of the single grain:

τ/p = ηγ̇ /p(1 − α) = μ. (9)

Equation (9) suggests that α must depend on the friction coefficient μ and be α = 1 for frictionless,
convex grains. For more complicated, nonconvex shapes, such as polymers composed of (partially
overlapped) spheres [24], α should depend also on other surface features.

Given that the orientational tensor is an additional state variable, we need to phrase a balance
law for A that must depend on the other hydrodynamic fields and the particle properties. The
balance proposed in [25] explicitly included a term that induces particle alignment in the flow
direction and a relaxation term towards an isotropic, randomly oriented state. The authors took
the inverse shear rate as the timescale associated with the relaxation process. If the relaxation is due
to the randomizing effect of collisions, in the context of kinetic theory, a more physically grounded
timescale for the relaxation term should be, instead, the inverse of the collision frequency, T 1/2d−1

v ,
so that the evolution law for the orientational tensor reads

Å = φ[AD + DA − 2(A : D)A] − ψT 1/2d−1
v A′, (10)

where Å = Ȧ − WA + AW is the objective Jaumann derivative, and Ȧ is the material time derivative
of the orientational tensor, respectively. The two dimensionless model parameters are φ, which
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represents the tendency to align with the flow, and ψ , which is the compliance to relaxation towards
misalignment due to collisions.

For Eq. (10) to be a meaningful representation of the physics, the phenomenological parameters
should be independent of the quantities {L, T } that explicitly appear in the equation. Moreover, φ

should be a function of the aspect ratio φ(rg) and independent of the solid volume fraction, since it
accounts for interaction with the flow. We emphasize that for prolate grains, rg > 0, the orientation
(k ⊗ k) is defined along their larger dimension, while for oblate grains rg < 0 it is defined along
their smaller dimension. The parameter φ, therefore, should take positive and negative values for
prolate and oblate grains, respectively, reflecting the tendency of the grain largest dimension to
align with the flow. We then expect φ(rg) to be approximately a monotonic and odd function, with
φ(0) ≈ 0, and the limits φ → ±1 for rg → ±1, respectively, for perfect convection with the flow.

The relaxation parameter ψ , associated with the response to collision, may in general depend
on the aspect ratio, the solid volume fraction, and the coefficients of normal restitution and sliding
friction ψ (rg, ν, en, μ). On physical grounds we expect ψ � 0 and to monotonically decrease with
|rg|, with the limit ψ → 0 for |rg| → 1. We also expect ψ to be a monotonically decreasing function
of the solid volume fraction, reflecting the increase in resistance to misalignment when the grains
are densely packed.

The three phenomenological parameters {α, φ,ψ} are determined by comparison with discrete
element simulations. The expectations discussed above on their functional forms are based on their
roles in the proposed equations for the stress tensor, Eq. (4), and the orientation, Eq. (10), and serves
as validation (or invalidation) of their ability to accurately predict the rheological response. We
employ literature [5,6] measurements of stresses, granular temperature, and alignment performed on
discrete element simulations of steady, homogeneous, shearing flows of true, frictionless cylinders
covering a large range of aspect ratios, rg = {−0.8 to +0.8}, volume fractions, ν = {0.2 to 0.6}, and
coefficients of normal restitution, en = {0.7, 0.95}. The flow configuration is reported in Fig. 1(b),
with the associated frame of reference, where x, y, and z represent the flow, shear, and vorticity
directions, respectively. Figure 1(b) also shows the director u (the vector associated with preferential
alignment) and the angle θ that it forms with respect to the flow x direction. Given that our evolution
law for the orientational tensor Eq. (10) is independent of the stress tensor, the parameters φ and ψ

can be determined independently of α.
The two parameters {φ,ψ} are uniquely determined by requiring that the largest eigenvalue (the

alignment measure S) and the associated eigenvector (in particular, its angle θ with respect to the
flow direction) of the orientational tensor obtained by solving Eq. (10) at steady state, Ȧ = 0, give
exactly the two measured properties {S, θ} reported in [5]. In the balance we employ the granular
temperature measured in the discrete simulations. We repeat the procedure for all available values
of aspect ratio, volume fraction, and coefficient of restitution. Figure 2 depicts the values of the
orientational parameters φ and ψ as functions of the solid volume fraction for various aspect ratios.
Figure 2(a) indicates that for rg = 0, the tendency to align with the flow vanishes, as φ ≈ 0, and
the only steady-state solution of Eq. (10) is no alignment, A′ = 0, independently of the value of
ψ . Additionally, the figure confirms that φ(rg) is approximately an odd function of rg, roughly
independent of the solid volume fraction. The latter statement is especially true if we disregard
the results for ν � 0.3, where there is no significant alignment and the obtained values of the
model parameters are less reliable. Figure 2(b) shows that ψ is a monotonically decreasing function
of ν and |rg|, as expected. We have checked that φ and ψ do not depend on the coefficient of
restitution. Tentative simple interpolating formulas for the orientational parameters φ and ψ are
reported in the caption of Fig. 2. The dependency on the aspect ratio obtained here is similar to
[25], where polymers formed by conglomerates of spheres rather than cylinders were considered.
However, here we have additional dependency on the solid volume fraction. When we use these
simple interpolating functions to solve for Eq. (10), we obtain the behavior of S and θ with the
solid volume fraction and the aspect ratio depicted in Fig 2(c). The agreement is relatively good,
and, potentially, it could be improved with better interpolation functions that perhaps distinguish
between prolate and oblate grains, especially in the determination of ψ . Nevertheless, we find
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FIG. 2. Fitted values (symbols) of the orientational parameters (a) φ as a function of rg (all solid
volume fractions) and (b) ψ as a function of the solid volume fraction for different aspect ratios of fric-
tionless cylinders (only values for en = 0.95 are shown). The lines represent the interpolating functions
φ(rg) = 2/[1 + exp(−a rg)] − 1 and ψ (ν, rg) = b1ν

b2 (1 − |rg|)b3 , where a = 5 and {bi} = {0.2,−3.5, 2.55}.
Corresponding values of (c) the alignment measure S and (inset) the angle θ between the director and the
flow as functions of the solid volume fraction measured in the discrete simulations (symbols) and obtained by
solving the balance Eq. (10) (lines) with the interpolating functions in the case of prolate cylinders.

these approximations to be satisfactory for our purpose, considering that they are compared with
measured data from discrete simulations which inevitably contain errors. As already noticed [5],
nonspherical granular particles exhibit a transition from isotropic (random orientation) to nematic
(preferential orientation) phase in response to change in solid volume fraction, as demonstrated
by the increase in the alignment measure S with ν. However, in homogeneous shearing flows, the
granular temperature is not independent of the solid volume fraction [26]: it would be interesting to
investigate other configurations in which T and ν can vary independently of each other to check if
the phase transition can also be induced by suppressing the particle agitation.

We emphasize that the orientational parameters represent the interaction of the grains with the
surrounding, and as such they should be sensitive to the shape of the grains, not only to their aspect
ratio. We therefore expect slight, quantitative, but not qualitative differences in the dependence of
φ and ψ on the aspect ratio and the solid volume fraction if, e.g., spherocylinders [7] or polymers
[25] are considered rather than true cylinders. The dependence of the orientational parameters on
the coefficient of sliding friction remains to be determined.

Once the orientational parameters φ and ψ are known, Eq. (10) can be solved to determine all
elements of the orientational tensor A and then, via Eq. (4), the stress tensor. In the homogeneous
shearing flow configuration of Fig. 1(b), where the only nonzero elements of the rate of deformation,
D, are Dxy = Dyx = γ̇ /2, the shear stress, τ = −σxy, reads

τ = η[1 − 3α(A′
xx + A′

yy)]γ̇ . (11)

In the case of frictionless cylinders, α = 1, as already mentioned. In Eq. (11), η is evaluated with
Eq. (3) using the same coefficient of restitution, en, of the simulations and the critical volume
fraction, νc = 0.67, as appropriated for frictionless cylinders [26] (we neglect any small dependence
of the critical volume fraction on the aspect ratio).

Figure 3 depicts the comparison between the dimensionless particle viscosity, τ/(ρpdvT 1/2γ̇ ),
predicted by our model [Eq. (11)] and that measured in the discrete simulations of homogeneous,
shearing flows of frictionless cylinders at en = 0.95 [5]. The significant reduction in the shear
viscosity associated with the preferential orientation of the grains, signature of a phase transition
from an isotropic to a nematic phase, is indeed well captured by simply including a linear de-
pendency on the orientational tensor in the constitutive equation for the stress tensor [Eq. (4)]. A
similar satisfactory agreement, not shown here for brevity, is obtained also for en = 0.7. While the
viscosity in prolate cylinders is very well captured, even at the largest values of the solid volume

L012301-5



VESCOVI, NADLER, AND BERZI

FIG. 3. Predicted (lines) and measured in discrete simulations (symbols) dimensionless particle viscosity
as a function of the solid volume fraction at different values of the aspect ratio of (a) oblate and (b) prolate
frictionless cylinders (en = 0.95). Same legend as in Fig. 2.

fraction [Fig. 3(b)], the agreement is less impressive for oblate cylinders [Fig. 3(a)]. Once again, we
could have improved our findings by introducing asymmetries in the dependence of φ and ψ on the
aspect ratio, and, perhaps, being fastidious on the variation of νc with rg. However, these would be
second-order refinements, while we claim that our model captures the essential physics.

In summary, we have proposed a generalized granular kinetic theory for uniaxial, nonspherical
grains that includes a linear dependency on the orientational tensor into the constitutive equation for
the stresses, and a balance law for the orientational tensor itself, in which a key role is played by the
randomizing effect of collisions. The generalized model has only three additional phenomenological
parameters that have clear physical meaning and can therefore be uniquely determined from simple
experiments or discrete numerical simulations. One of them must be equal to 1 in the case of
frictionless, convex grains; its value and the values of the other parameters for frictional grains
remain an open question. We emphasize that while the parameters have been determined in steady,
homogeneous shearing flows, the model is general and can be potentially applied to other flow
configurations, e.g., inhomogeneous boundary-value problems in which boundary conditions for
the orientational tensor must be provided [27]. In this work we have not addressed how the pref-
erential alignment of nonspherical grains affects the balance of fluctuation energy for the particles,
which determines the granular temperature. Existing works on the subject have either focused on
nonspherical particles in the absence of alignment [28,29] or have included only the role of the
alignment measure S [6]. Including the full orientational tensor in the fluctuation energy balance is
a task for the future. Finally, linear kinetic theories, such as the one that we have generalized here,
are unable to capture the normal stress differences typical of granular flows [15]. Hence it would be
tantalizing to include a linear dependency on the orientational tensor in a nonlinear kinetic theory
[30,31] to assess the coupled role of alignment and anisotropic fluctuations on the normal stresses.
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