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Slender-jet equations are a set of nonlinear evolution equations that arise in the analysis
of pinch-off singularities and govern the shape of and the axial velocity at leading order
within a thinning liquid thread. Moreover, because they are a set of relatively simple
transient partial differential equations that depend only on one spatial variable, they are
also widely employed in simulating dripping and jetting from nozzles, dynamics of liquid
bridges, and contraction of liquid filaments as their use results in drastic reduction in
computational effort compared to solving the full set of equations governing such free
surface flows. Here, a physically based derivation of the slender-jet equations is presented
for situations in which the jet’s surface is covered with surfactant and surface rheological
(viscous) effects are important and, moreover, both the bulk fluid and the interface can be
non-Newtonian. It is worth noting that a derivation of the general slender-jet equations gov-
erning the dynamics of jets consisting of arbitrary bulk and surface phases has heretofore
been lacking in the literature and this deficiency is hence remedied in this paper. These gen-
eral equations are then reduced to ones governing the dynamics of what is referred to as a
Newtonian jet, i.e., a jet where the bulk liquid is an incompressible Newtonian fluid and its
interface is a two-dimensional Newtonian fluid whose rheology is described by the widely
used Boussinesq-Scriven constitutive equation. The one-dimensional (1D) slender-jet
equations have recently been used to analyze the stability and breakup of primarily Newto-
nian jets but also of jets of non-Newtonian fluids with a Newtonian surface phase. However,
most of the aforementioned studies have been carried out without benchmarking the results
obtained from solving the 1D slender-jet equations against full free surface flow simula-
tions or experiments. Therefore, we also present here a comparison of theoretical predic-
tions obtained from slender-jet theory with computational results obtained from the use of a
fully three-dimensional, axisymmetric (3DA) algorithm for a breaking surfactant-covered
Newtonian jet first when the jet is undergoing Stokes flow and then also when inertia cannot
be neglected. For Newtonian jets, analytical results obtained from slender-jet theory are
shown to be in excellent accord with predictions obtained from the 3DA simulations.

DOI: 10.1103/PhysRevFluids.9.113602

I. INTRODUCTION

Breakup of liquid jets, drops, and bridges has been studied continuously for nearly two centuries
given the importance of the subject in industrial applications and natural phenomena as diverse
as ink jet printing, microarraying, crop spraying, atomization coating, measuring physical properties
including surface tension as well as shear and extensional viscosity, and fountains and waterfalls
[1-9]. The thinning and breakup of fluid threads undergoing incompressible flow are governed
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by the fully three-dimensional (3D) or, for axisymmetric flow, the 3D but axisymmetric (3DA)
free boundary problem (or free surface flow) that is comprised of the Cauchy momentum and
continuity equations in the bulk and traction and kinematic boundary conditions at the interface
[10-13]. In the last three decades, it has been discovered that as the hydrodynamic space-time
pinch-off singularity is approached, i.e., in the vicinity of the location where a fluid thread will
break, these equations reduce to a set of one-dimensional (1D), lubrication-type equations referred
to as the slender-jet equations [14]. Slender-jet equations have been derived and used for both
Newtonian and complex fluids for several decades (see below). However, more recently, there has
been growing interest in using the slender-jet equations to analyze the dynamics of thread breakup
in situations when the interface separating a fluid thread from its surroundings is covered with
surfactants and surface rheological or viscous effects are important [15-20]. The goal of this paper
is twofold. The first goal is to present a physically based derivation of the slender-jet equations for
situations in which the jet’s surface is not only covered with surfactant but surface rheological
(viscous) effects are of paramount importance and, moreover, both the bulk fluid and the interface
are non-Newtonian. As further discussed below, it is worth noting that a derivation of the general
slender-jet equations governing the dynamics of jets consisting of arbitrary bulk and surface phases
has heretofore been lacking in the literature and this deficiency is hence remedied in this paper.
The second goal is to provide a much needed but also heretofore often lacking direct comparison
between predictions obtained from slender-jet theory with computational results obtained from the
solution of the full set of equations governing the free surface flow problem of thread pinch-off.
Such a comparison is provided here in the most common and hence most often studied situation in
which both the bulk and the surface phases are Newtonian.

As numerically solving a set of 1D equations is both less arduous and orders of magnitude
faster than solving a set of 3D or 3DA equations, the slender-jet equations have also often been
used to simulate the flow in the entire domain and where the slenderness assumption may not
hold everywhere. For example, the slender-jet equations have been used to model drop formation
by dripping at low flow rates and jetting at higher ones in analyzing the nonlinear dynamics of
dripping or leaky faucets [21-27], dynamics of liquid bridges [28—30], and the contraction dynamics
of filaments—elongated drops—which are often precursors of undesirable satellite droplets in
applications [31-36].

Although lubrication-type equations taking advantage of the slenderness of jets have been around
in one form or another for many years [37,38], their use has taken off after the publication of
papers by Eggers [14] and Eggers and Dupont [21] on Newtonian pinch-off. Since then, slender-jet
equations have been used to analyze the pinch-off of non-Newtonian power-law fluids [30,39-42],
viscoelastic fluids [7,43-53], jets subjected to electric fields [54-58], surfactant-covered jets in the
absence [59-61] and presence [16,18,19,62] of surface rheological effects, and many other physical
problems.

Eggers [14], in his landmark paper on the pinch-off singularity in jet breakup, and Eggers and
Dupont [21] (see also [63]) expanded all the dependent variables in a Taylor series in the radial
coordinate r taking advantage of the fact that the extent of the radial coordinate is much smaller
than that of the axial coordinate z. Since then, in addition to expanding the dependent variables
in a Taylor series in r [15,59,64], researchers have derived the slender-jet equations by using
Taylor-series expansions in the slenderness ratio [65] and more recently by averaging the governing
equations across the cross section of the jet [18,66].

In this paper, we adopt a more physically based approach that uses a momentum balance over a
macroscopic control volume to derive the slender-jet equations for surfactant-covered jets when sur-
face rheological effects are important. Moreover, we first derive a set of slender-jet equations without
assuming that the bulk fluid and the interface are Newtonian; i.e., we do not assume at the outset
that in the bulk fluid, the stress tensor and the rate of strain tensor are related by the Newtonian
constitutive equation [13], and that at the interface, the constitutive equation that governs the surface
viscous stress tensor is the Boussinesq-Scriven constitutive equation [67,68], as has been the case
in all of the publications referred to earlier in the paper. We note that although for many years
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FIG. 1. (a) Control volume (CV) for carrying out a macroscopic force balance on a section of the jet. Here,
only surface forces that act on the CV over circular contours of perimeters 2k are shown in the figure. (b) A
portion of the interface of differential arclength ~d0 lying in the 0 plane. Once again, only surface forces that
act on the two ends of the differential element are shown.

after Sternling and Scriven’s pioneering studies on the effects of surface tension gradients in free
surface flows [69—71] and ensuing work by many others on the effects of surface tension gradients
in flows involving thin films, liquid drops, and bubbles (see, e.g., [72-75], as examples of recent
works on the subject), it is only much more recently that it has become of widespread interest to
study the effects of surface rheological or viscous stresses in such free surface flows. Therefore,
given this explosion of recent interest [76] and that a derivation of the slender-jet equations for
arbitrary bulk and surface phases has heretofore been lacking in the literature, the publication of
a paper such as the present one is both desirable and timely. Following the general derivation, we
then simplify these equations when the bulk and surface phases are Newtonian. By doing so, we
are also able to explain in a simple manner the origin of certain numerical coefficients that appear
in these equations. The slender-jet equations have recently been used to analyze the stability and
breakup of primarily Newtonian jets [16,18,19,77] but also of jets of non-Newtonian fluids with
a Newtonian surface phase [78]. However, most of the aforementioned studies have been carried
out without benchmarking the results obtained from solving the 1D slender-jet equations against
full free surface flow simulations or experiments. Therefore, we also present here a comparison of
theoretical predictions obtained from slender-jet theory with computational results obtained from
the use of a fully 3DA algorithm for a breaking surfactant-covered Newtonian jet first when the jet
is undergoing Stokes flow and then also when inertia cannot be neglected.

The paper is organized as follows. Section II presents the mathematical statement of the problem.
We then derive a general set of equations that take advantage of the slenderness of jets (Sec. III).
We next specialize these equations in Sec. IV to Newtonian bulk fluids and where the rheology of
the interface is described by the Boussinesq-Scriven model. Section V presents equations of state
relating surface tension and surface viscosities to surfactant concentration. In Sec. VI, we provide a
brief overview of predictions made with the 1D equations for the pinch-off singularity in the Stokes
limit and compare them to ones made with fully 3DA simulations. In the following section (Sec.
VII), we allow for the possibility that inertia is important and provide a similar comparison between
1D and fully 3DA predictions. The paper ends in Sec. VIII with some concluding remarks.

II. MATHEMATICAL FORMULATION

Here, the system is isothermal and consists of a long liquid column (L) (also referred to as a liquid
jet or thread) of an incompressible fluid of constant density p that is surrounded by a dynamically
passive ambient gas (G) that exerts a constant pressure—which is taken to be the pressure datum—
on the column, as shown in Fig. 1(a). The thread’s surface is covered with a monolayer of insoluble
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surfactant and the surface tension of the L-G interface is denoted by o. The dynamics is taken to be
axisymmetric about the centerline of the initially cylindrical column of constant radius R. The jet is
vertical and its axis lies parallel to the gravitational acceleration g. In what follows, it is convenient
to use a cylindrical coordinate system (r, 8, z) with its origin located along the centerline of the
initially cylindrical column and where 7 is the axial coordinate measured along the column’s axis in
the direction opposite to gravity, r is the radial coordinate measured from that axis, and 6 is the usual
angle measured around the symmetry axis r = 0. We also represent the shape of the L-G interface
by either using arclength (s) parametrization so that » = r(s, t) and z = z(s, t) where ¢ is time or by
denoting the interface profile by r = h(z, t), where & is the shape function or the local thread radius.
With these two representations, the unit normal and tangent vectors to the jet’s surface are given by

e —he, he, +e,

n=ze, —re, = \/ﬁ and t = rs€, —+ Z5€; = \/ﬁ

Here, subscripts s denote partial differentiation with respect to arclength s, primes denote partial
differentiation with respect to z, i.e., ' = dh/dz, and e, and e, are the unit vectors in the r and z
directions. We note that 2 4+ z2 = 1, i/ = r,/z,, and ¥/1 + b2 = 1/z,.

The dynamics of the jet is governed by the continuity and Cauchy momentum equations [11,79].
The former is given by

)

V.v=0, )

where v = ue, + ve, is the fluid velocity and u = v - e, and v = v - e, stand for the radial and axial
components of the fluid velocity. Here, we use the integral version of the latter and apply it over the
macroscopic control volume V' of height Az that just cuts the free surface of the jet as shown in Fig.
1(a) and whose lateral or side surface lies in the gas phase just outside the L-G interface:

D
—fpvdV=/N.TdS+/pgdv+FS. 3)
Dt \% S \4

Here, D/Dt is the material derivative, S is the surface that encloses V with outward pointing unit
normal N, T is the total bulk stress tensor, and F* are forces due to surface tension and surface
rheological (viscous) stresses that act on V because the control volume cuts the L-G interface (see
[11] and below). A slightly different derivation in which the control volume V' does not cut the L-G
interface and lies entirely inside the liquid jet is presented in Appendix A.

Equation (3) can be rewrriten as

9
/p(—V+V-VV)dV:/n~TGdS+/ nT-TLdS+/ ng - TLdS
1% ot Ss St Sp

+/pgdv+7§ t~Tsdc+7§ —t- T de. @)
\4 Cr Cp

In arriving at Eq. (4), the left-hand side (LHS) of Eq. (3) has been rewritten using a form of the
Reynolds transport theorem [13]. The various terms that appear in this equation are discussed in the
following few paragraphs.

On the first line of the right-hand side (RHS) of Eq. (4), the surface integral over the surface S on
the RHS of Eq. (3) has been rewritten to explicitly account for the three contributions to it. The first
of these is evaluated over area S on the gas side just outside the interface. Here, T is the bulk stress
tensor evaluated on the gas side of the interface and n is the unit normal to the L-G interface. We
note that T® = 0 as the exterior fluid is a passive gas and the pressure in the gas phase p is taken
to be the datum level of pressure, i.e., pG = 0. In the second and third of these surface integrals,
T is the total bulk stress tensor in the liquid, and these two integrals are evaluated over the two
circular areas S7, located at z + Az, and Sp, located at z, with the outward pointing unit normals to
each surface being denoted by ny = e, and ny = —e,. We henceforward drop the superscript “L”
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and write the total bulk stress in the liquid as T = —pI + 7, where p is the pressure, I is the identity
tensor, and T is the bulk viscous stress tensor.

The integral involving the body force, which accounts for the force due to gravity, has been left
unchanged in going from Eq. (3) to Eq. (4).

The force F’ in Eq. (3) has been rewritten in Eq. (4) to explicitly show the two contributions to
it. In the two line integrals in Eq. (4), Cr and Cp are the circular contours bounding S and Sg, dc is
the differential arclength along these contours, t is the unit tangent to the free surface, and T* is the
surface stress tensor given by T* = oI° + 7°. Here, I' = I — nn is the surface identity tensor and 7°
is the surface viscous stress tensor which accounts for surface rheologial effects due to surfactants
over and beyond their influence on surface tension. For axisymmetric flow, ¥ = 7} tt + 7, €gep,
where ey is the unit vector in the 6 direction. Then, t - T = ot +t - ¥ and

2
—/ (o +71,)thdd
0

2w
FS:¢ t-Tsdc—i—% —t~TSdc=/ (o +71,,)thdd
Cr Cs 0 7+Az

z

=2rhz(o + 1)) e; —2hz(o + 1)) e .

Z

(&)

7+Az

Here, in the first line of Eq. (5), o't are the usual surface tension forces (per unit length) that act
tangential to the interface and perpendicular to the two circular contours each of circumference 2 h,
and £t t are the corresponding forces due the surface viscous stresses. In arriving at the second
line of Eq. (5), use has been made of the facts that in an axisymmetric flow, o, 7}, h, r,, and z; do
not vary with 0 and that de, /06 = —e, so that
2w 2w 2w 9 e 2w
/ tdo = (rse, + z,€,)d60 = VS/ ——d6+zsezf do=0+2mze,,
0 0 0 a0 0
which shows as expected on physical grounds that the component of the surface forces in the radial
or horizontal direction drop out of the force balance in Eq. (5) on account of axisymmetry after
integration over the angle 8 or over the two contours Cy and Cp [see Fig. 1(a)].
We next take the dot product of the macroscopic momentum balance (4) with e, to obtain the z
component of the momentum equation:
- / pgdVv
= Jv

0
/p(—v+V~Vv>dV:/ T,.dS
v ot 5
2mh

—/ T,.dS

+Az Sp

n 2h ( n S) (
/1+h/2 u 7+Az /1+h/2

Additionally, we impose the traction and kinematic boundary conditions at the L-G interface.
The former condition is given by

n-T=V, T=2Hon+V,o+V,- 7, (7)

(6)

o+ tft)

Z

where V;, =V —n(n- V) is the surface gradient operator, which, when the interface profile is
axisymmetric, can be written as Vy =tad/ds + (ey/r)d/00. Here, the first of three terms on the
RHS of Eq. (7) accounts for the capillary pressure —2H o where 2H is twice the mean curvature,
at 1 n’ 1
=V N S T gy e e )
where ki, and ky stand for the in-plane and the out-of-plane curvatures. In Eq. (7), the second term
Vo is the surface tension gradient or Marangoni stress, and the last term, which is given by

(ttst - Tese)
r

0
Vor=[(m) + ro e+ [ kin + i o], )
represents the effect of surface viscous forces at the interface.
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The second condition at the interface, viz., the kinematic boundary condition, is given by
n - (v—vy) =0, where v, is the velocity of points on the interface, and which can be rewritten
as

D hem=0 = Py (10)
Dtr Z, = 8[ u Uaz— .

We next divide Eq. (6) by Az and let Az — 0 to obtain

/ <3”+ v )dS 9 /T ds + 8[ k(o4 5)} / as, (1
— +v-Vuy =—|T —| == +7)) | - )
Sp ar oz Js 2z | ST 12 1t S:Og

where S is the cross-section area of the jet at any axial coordinate z.

To complete the mathematical formulation of the problem, one also needs constitutive equa-
tions for the bulk as well as the surface stress tensors (see below). Surface tension and surface
rheological stresses depend on the surfactant concentration I" at the interface. The latter is governed
by a convection-diffusion equation [80]:

oI’ 2

m + V,-(I'v) =D,V,T, (12)
where Dy is the surface diffusivity of surfactant. In addition to surface tension, material properties
such as surface viscosities that arise in constitutive equations for surface rheological stresses are
functions of surfactant concentration I'. Therefore, equations of state are needed to relate these
physical properties to surfactant concentration to complete the mathematical statement of the
problem.

III. SLENDER-JET ANALYSIS

In what follows, we assume that once the column deforms, the axial length scale L over which
significant changes to the thread shape and the flow field occur is much larger than R so that
the slenderness ratio € = R/L < 1 or that dh/dz = O(e). We next take it that the axial velocity,
the pressure, and the bulk normal stresses to leading order do not vary across the cross section of
the jet. First, it follows from the continuity equation that the radial velocity to leading order is given
by u = —(r/2) dv/dz. Physically speaking, that the axial velocity v is asymptotically independent
of the radial coordinate r, i.e., to leading order v = v(z, t), is only valid when the tangential stress
T, is a factor of € smaller than the normal stress 7, (and 7,,). Along the line of axisymmetry, viz.,
r =0, T;, = 0. The necessary condition for 7,, to remain O(¢|T};|) throughout the thickness of the
liquid thread can be deduced from the tangential component of the traction boundary condition (7)
or the tangential stress boundary condition

t-m-T)=t- (Vo + V-7, (13)
where
— ! ! _ _ 2
t-n-T)= m[h (T; = T,) + (A — )T (14)

Thus, the left-hand side of Eq. (13) is of O(|T;|) = O(€|T|) in the slender-jet limit. Therefore, the
right-hand side of Eq. (13) or the tangential surface excess stress at the interface t - (Vo + V- %)
must be O(€|T,|). For a more formal discussion, we refer the reader to a number of recent
publications [81,82]. Moreover, an a posteriori justification of the smallness of the tangential
stresses at the interface is also provided below for a Newtonian jet.

The z component of the momentum balance given in Eq. (11) is next simplified by taking
advantage of the slenderness ansatz that has just been introduced:

) @Jrva_v nh2=i(nhzr,)Jr3[2nh(a+rf)]—nh2pg (15)
ot 9z 9z “7 704z @ ’
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where use has been made of the fact that ), = e, - 7° - ¢, = 7, + O(€?). Here, as in earlier momen-
tum balances which involved t;} instead of 1, before the slenderness assumption was invoked, it is
worth noting the value of the numerlcal coefﬁ01ent of 2 multiplying the axial surface stress t;,. The
factor of 2 arises because this force acts over a circle of circumference 2 h.

We next write the axial normal stress T, as T,, = —p + t,,. The pressure that appears here can be
eliminated by taking the dot product of the traction boundary condition (7) with n, i.e., evaluating the
normal stress boundary condition, noting that in the slender limit, ds ~ dz,n ~ ¢, — l'e;, e, - V; ~
W d/dz, and

3 (t3. —139) R 7
Vs‘ = _ s 22 00 o _ ﬁ . 16
T [az(rzz)+—h az}ez e (16)
Therefore, sincen-(n-T) =n:-(2Hon+ Vo + V- %), in the slender limit
P
—pg, =TT, (17)

Equation (17), which, in the slender limit, is a radial force balance, can be readily appreciated
and also be derived in an alternate manner that requires no knowledge of differential geometry
by performing a simple force balance in the r6 plane over a portion of the interface spanning an
angle dO or a curve of differential arclength hd6 [Fig. 1(b)]. In the slender-jet limit where n & e, to
leading order,

(=p+t)hdoe, = (o + tge)eg‘HdG — (o + tge)eg‘e = —(0 +15)e.db,

where, in arriving at the final result, use has been made of the facts that in an axisymmetric flow, o
and 7, cannot vary with 6 and that de,/d6 = —e,. This balance shows that surface hoop stress 7,
gives rise to a resultant in the negative radial direction just like surface tension. We further note that
the value of the numerical coefficient that multiplies the surface hoop stress 7, is unity in contrast
to the coefficient of 2 that multiplied the surface axial stress 7, (see above).

Therefore, after using Eq. (17), the momentum equation can be recast as

av av a o+1 a P
(ar + v3_1> Th? = B—Z{nhz (e = 7o) - T%]} +gol2mh (o +2)] — 7k o (18)

Following division by the cross-section area /1%, Eq. (18) can be rearranged as

av av 1 s
,0<¥ + Ua—z) ﬁ { _[h2 (Tvz Trr)] + _(Uh) + = [h(ZT ‘[00)]} —PE (19)

In the final form of the 1D momentum equation, the contributions due to surface viscous effects, i.e.,
the last of the three terms in curly braces on the RHS of Eq. (19), have been highlighted in bold. It is
worth commenting on both the bulk and surface viscous stress terms in this equation before moving
forward. Consider a portion of the jet that is nearly cylindrical in shape. Bulk axial extensional
stresses T, stretch the element in the axial direction. However, to conserve mass (volume), the
nearly cylindrical element of volume must then be compressed in the radial direction. These
observations help rationalize why the bulk viscous stresses enter the momentum balance as the
difference between the two primary normal stresses, viz., as the axial bulk viscous stress t,;,
which is extensional when dv/dz > 0, minus the radial bulk viscous stress, 7,,, which in that
case is compressional. The term involving the surface viscous stresses can also be rationalized
in an analogous manner. First, as with the components of the bulk viscous stress tensor, the two
components of the surface stress tensor enter the momentum balance as the difference between the
contribution coming from the surface viscous axial stress ;, and that due to the surface viscous hoop
stress 7,5,. However, whereas the former is multiplied by 2 ‘the latter is multiplied by 1. The detailed
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derivation provided above makes plain why there is a factor of 2 multiplying ;.. In the macroscopic
force balance, 7, enters the balance through a line tension type of contribution where it acts over a
circular contour of perimeter 27t & whereas 1, enters the balance when the pressure, which acts over
the cross section of the jet of area wh?, is eliminated by replacing it with the sum of contributions
due to the surface viscous hoop stress, surface tension, and bulk viscous radial stress after making
use of the normal component of the traction boundary condition. However, 7, can be positive or
negative even if the flow is extensional as surface area, unlike volume, does not have to remain
constant as the jet deforms. Lastly, it is also worth commenting on why the surface tension term has
a numerical coefficient of unity associated with it as opposed to the coefficient of 2 that multiplies
the surface viscous axial stress. We note that, in going from Eq. (18) to Eq. (19), the factor of 2 that
arose in the surface tension term after accounting for the line tension type of contributions along the
two contours Cr and Cg, a term with the opposite sign but which is multiplied by unity also came
into the picture when the pressure in the jet was eliminated in favor of the sum of the surface tension
pressure and the surface viscous hoop stress [see the radial force balance (17)]. We also note that the
terms involving the contributions from the various surface forces to the 1D momentum balance (19)
can be combined and be written as %{h[o + Q21 — 1)l = (%{hz[% + m%l;w]}, two alternate
but equivalent forms that are helpful in enhancing the intuitive understanding of the various forces
at play.

To determine the fluid velocity and the interface shape in the slender-jet limit, the 1D momentum
equation must be solved along with the 1D mass balance and the convection-diffusion equation for
surfactant transport along the interface. The former follows from combining the kinematic boundary
condition with the expression for the radial velocity in a slender jet:

oh n oh N hov 0 (20)
— +v— 4+ -——=0.
ot 0z 20z

The latter for slender flow is given, albeit without any details, in [19]:

or 9T T v D58(3F>_0

o Ve T2 has
A detailed derivation of Eq. (21) is provided in Appendix B.

3z 1)

IV. SLENDER-JET EQUATIONS FOR A NEWTONIAN BULK FLUID
AND BOUSSINESQ-SCRIVEN SURFACE FLUID

In this section, the aforementioned equations will be cast into a form when the liquid thread is
an incompressible Newtonian fluid so that T = u[Vv + (Vv)7], where u is the bulk viscosity and
the surface rheology can be described by the Boussinesq-Scriven constitutive equation [13,67,68]:

T = (g — 1) (Vs - VI + w [ Vv - L+ I - (Vv)T, (22)

where 11, and u, are surface dilatational and shear viscosities.
For axisymmetric flow, it is readily shown that the nonzero components of the surface stress
tensor are given by

Py ey, B 4 v
Ty = (a — u)(ﬁ + Z) + 2u<ﬁ> (23)
‘du g By u u
5 = (1ta — m)(ﬁ + E) +2u5 (24)

A few additional simplifications result because of the slenderness of the jet. Since for a Newtonian
fluid t,, = 2 (dv/9z) and 1, = 2 (du/dr), when the jet is slender 7,, = —u (dv/9dz). Therefore,
T, — T = 31 (0v/0z): the numerical coefficient of 3 is now well known and 3u is the celebrated
Trouton viscosity [37]. Moreover, for a slender jet of a Newtonian fluid, the surface rheological
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stresses take on particularly simple forms given by
3 0 —3us\ 0
“ 2 0z 2 0z

With the expressions given in Egs. (25), the momentum equation in the slender-jet limit also takes
on a particularly simple form and is given by

ov ov 3ud [ ,0v 1[0 J I, v J Ma OV
AL IR TR A3 DR PRSI ALl B ST | Y
”(at”az) 2 az< az>+h2[az(g )+8z( 2 az)+az( 2 3z>:| rs

(26)

where the contributions due to the surface viscous stresses, i.e., the last two of the three terms in
square brackets on the RHS of Eq. (26), have been highlighted in bold. The numerical coefficients
multiplying the two surface viscosities differ and the coefficient in the term involving the shear
viscosity is larger than that involving the dilatational viscosity because the surface viscous stresses
enter the 1D momentum equation as 27}, — 7;,. Recalling Eq. (13), we note from Eq. (26) that
the tangential surface excess stress at the interface due to surface tension gradients or Marangoni
stresses t - Vo and surface rheological stresses t - (V- %) are of O(do/dz) and 0(3%(%,[1%—2))
where s 4 stands for the larger of u; or pg, respectively, in the limit of small €. The bulk viscous
stress terms in Eq. (26) are of 0(%3—??) = 0(%7}1). Balancing the bulk viscous stresses and the
surface excess stress in Eq. (26), it is evident that the tangential surface excess stresses are indeed
of O(¢|T.;|), which confirms a posteriori the assumption made in Sec. III regarding the smallness
of tangential stress throughout the thickness of a liquid thread when the thread is slender.

If the two surface viscosities were equal, Egs. (25) and (26) take on yet even simpler forms given

by

s v s v
T, = 2 P and Ty, = —ls 2 (27)
v ov 3w d [ ,0v 1[0 J v
p<8t+vaz> 7 8z< az>+h2[az(0 )+az(us 8z>] I (28)

where once again the contributions due to the surface viscous stresses, i.e., the last of the two

terms in square brackets on the RHS of Eq. (28), have been highlighted in bold. In this last

form, the coefficient of 5 in the term involving surface viscosity (cf. [16,18,19]) arises because

the contributions of surface viscous stresses to the momentum balance involve 27}, — 7, and that
s

), = —271;4, the latter relation having the same form as t,; = —21,, relating the two bulk viscous

stresses.

V. COMPLETION OF THE PROBLEM STATEMENT

The system of equations governing the dynamics when the jet is slender is given by Egs. (26),
(20), and (21). Completion of the problem statement requires equations of state (EOS) for surface
tension and the two surface viscosities.

Surface tension as well as the surface shear and the surface dilatational viscosities are all func-
tions of surfactant concentration I', viz., 0 = o(I"), uy = us(I'), and g = (). Here, surface
tension o is related to surfactant concentration I" via the Szyskowsky equation of state [59,83,84]:

r r
Gzap—i—l"ngTln(l—F—)=0p|:1+,31n<1—1_,—>:|, (29)

where o), is the surface tension of the L-G interface when it is free of surfactant, I',, is the
maximum packing density of surfactant, R, is the gas constant, T is the absolute temperature, and
B = 'R, T /o, is the surfactant strength parameter. Furthermore, it is common to adopt a model for
surface viscosities such that they vanish when I' = 0. The simplest but physically realistic model
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FIG. 2. Computed dynamics of jet thinning obtained from 3DA simulations. (a) Computed variation of
dimensionless minimum jet radius Fimin = hmin/R with dimensionless time 7 = to,/uR when Pe = 0.9 (open
black squares), which leads to exponential thinning, and Pe = 5 (open green circles), which leads to self-similar
dynamics with power-law dependence on time remaining to pinch-off. Shape insets show profiles of jets as
Jtmin — 0. (b) Computed variation of rate of thinning with minimum jet radius when Pe =5 (open green
circles). Here, dfz:‘nm /df = —®(dhyin/d7). The black solid line is the rate of thinning predicted from theory
(—dﬁ;ﬂn/df = 0.0709). Here, B,y = 0.1, 8 = 0.3, 'y /T",, = 0.5, and kR = 0.7 (dimensionless wavenumber of
the initial sinusoidal perturbation imposed on the jet).

for surface viscosity is that it is a linear function of I'. Therefore, following recent works in the
literature [16,18,19,82,85] the surface viscosities are taken to vary linearly with I" with respect to a
reference state as

s = ol /To,  ta = paol /T, (30

where g and g are the values of the reference surface viscosities at the reference surfactant
concentration I'y.

VI. BREAKUP OF STOKES JETS AT LOW AND HIGH PECLET NUMBERS

In this section, a short discussion is presented on the breakup of Stokes jets when g = 0 and
a0 = s and a comparison is made between predictions obtained from fully 3DA simulations and
slender-jet theory. With Eq. (30), Eq. (28) becomes

d

50V ' oJv
3uh— +oh+5ugpg—h— | =0. (31)
0z Z Iy

ad 9z
Two limits are of considerable interest: Péclet number Pe = Ro,/uD; — 0 (Pe: relative importance
of surfactant convection to diffusion) and Pe — oo.

When Pe — 0, it has been shown in [16,19] that as the jet thins and & — 0, I' — const.
Therefore, all variables such as ¢ and p; become constants. Since bulk viscous stress varies as h?
but surface viscous stress varies as A, the former is asymptotically negligible compared to the latter.
Therefore, surface tension and surface viscous forces are in balance as # — 0 and it is found that
av/dz ~ o /(Susl'/Tp) = const. Substitution of this result into Eq. (20) shows that the minimum
radius of the jet, iy, tends to zero exponentially in time and the singularity is an infinite-time one
[1,9,17,20]. Figure 2(a) shows results from 3DA computations that have been carried out using the
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algorithm of [18] that confirm that the thinning is indeed exponential in time as predicted from the
theory based on the slender-jet equations [16,19].

When Pe — o0, it has been shown [16,18,19] that the 1D mass balance and the convection-
diffusion equation, Egs. (20) and (21), become identical in form. Therefore, I' o h or I'/T",,, =
coh/R where ¢ is a constant [18]. Thus, as breakup nears and 7 — 0, I' — 0 as well. Hence, from
a dominant balance argument, the surface tension term in Eq. (31) becomes o,h as I' — 0 and the
1D momentum equation can be rewritten as

0 ov
—|3u—n’® h|=0, 32
8z|: Maz +Gp:| G2
where
5 Co Fm 5 1—‘Im
q) = l — U0 —— — 1 —BS — 33
+3MMORF0 +3 ocoFO (33)

and Byo = 150/ R is the Boussinesq-Scriven number. For clean interfaces [65], @ = 1. In this limit,
Wee et al. [19] have shown that the dynamics in the vicinity of breakup is self-similar and the
radial and axial scales, / and z, surfactant concentration I', and axial velocity v all have power-law
dependencies on time t = #, — t remaining until pinch-off (#,: breakup or pinch-off time). From
Eq. (20) or a kinematic balance, it follows that v ~ z/t. From Eq. (31), bulk and surface viscous
forces must balance surface tension force, h28v/ 0z ~ h, so that h ~ 7. Therefore, h ~ " ~ 1.
Furthermore, it follows from Eq. (32) that d4/d7 ~ 0,/6u®P. A more exact analysis in [16,19]
has shown that

hanin = 0.0709(1/®)(0,/11)7. (34)

Figures 2(a) and 2(b) show results from 3DA computations that have been carried out using the
algorithm of [18] that demonstrates that the dynamics indeed exhibits power-law thinning [Fig. 2(a)]
and, furthermore, the value of the prefactor obtained from simulations equals 0.0709 in agreement
with the theoretical scaling law relating Ay, and t [Fig. 2(b)].

VIL. BREAKUP OF JETS IN THE PRESENCE OF INERTIA AT HIGH PECLET NUMBERS

In most situations of interest in practice, typical values of Pe for jets of aqueous surfactant
systems lie in the range 10°-10° [83]. Therefore, it is of both practical and fundamental importance
to consider jet breakup when inertia cannot be neglected in the limit of large Pe. In this limit, with
Eq. (30), Eq. (28) becomes (cf. Eq. (32) in Stokes flow)

a 5 9 55 0 v ,
p|:8t(h U)+Bz(hv )]— 8Z|:3,uazh <I>+aph:|. 35)
Here, the LHS of Eq. (35) is also written in conservation form, similar to its RHS, which can
be obtained by multiplying the LHS of Eq. (28) by 4? and using Eq. (20). The RHS of Eq. (35)
remains unchanged from the 1D momentum equation (32) in Stokes flow as the behavior of the
local surfactant concentration near breakup is unaltered in the presence of inertia. It has been shown
in [18] that the dynamics in the vicinity of breakup in this limit is also self-similar and that 4 ~ t,
I'~z,v~1""2 and z ~ t'/2. That h ~ T ~ T can be easily proved by following the analysis
in Sec. VI using the kinematic balance and by balancing the two terms on the RHS of Eq. (35).
Balancing inertia with surface tension force, viz., h?v> ~ h, yields v ~ 7~1/2 and hence z ~ /2.
Wee et al. [18] have also shown that the variation of the minimum jet radius with time remaining to
pinch-off in this case is given by

hmin = 0.0304(1/®)(0,/ ). (36)

Figures 3(a) and 3(b) show results obtained from 3DA computations in the presence of inertia. It
is noteworthy that in contrast to the pinch-off of a thread undergoing Stokes flow, breakup when
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FIG. 3. Computed dynamics of jet thinning obtained from 3DA simulations in the presence of inertia.
(a) Computed profile of the jet as Ay, — O provides a stark contrast with jet profiles at the incipience
of breakup in Stokes flow. (b) Computed variation of rate of thinning with minimum jet radius (open red
squares). Here, dfz’r‘nin /di = —@(dﬁmm /df). The black solid line is the rate of thinning predicted from theory

(—dh*. /df = 0.0304). Here, Pe = 1000, By, = 0.0143, 8 = 0.3,T/T,, = 0.55, kR = 0.785, and Oh = 0.07,

‘min

where Oh = 1/,/pRo, (note that in Stokes flow, 1/0Oh = 0).

inertia is present occurs asymmetrically [Fig. 3(a)]. Figure 3(b) makes plain that according to the
results of the 3DA computations, the dynamics again exhibits power-law behavior in agreement
with slender-jet theory. The value of the prefactor obtained from simulations when inertia is present
equals 0.0304, which also accords with theory [Fig. 3(b)]. In contrast to pinch-off of a Stokes jet,
the approach to the similarity solution in this case exhibits decaying oscillations on account of the
dominant complex eigenvalue that dictates the stability of the similarity solution (see the discussion
in [86] and [87] for breakup of jets with clean interfaces).

The asymmetric nature of pinch-off when inertia is present as opposed to the symmetric nature of
the dynamics in Stokes flow warrants further discussion. That pinch-off occurs asymmetrically in the
presence of inertia has now been recognized for more than three decades owing to countless theoreti-
cal, computational, and experimental studies [1,4,9,14,18,48,72,83,88-92]. Indeed, the formation of
satellite droplets during breakup of liquid columns and filaments but also during dripping and jetting
of liquids from nozzles is directly attributable to the asymmetry of pinch-off due to inertia. When
inertia is non-negligible, it has been shown in both surfactant-free and surfactant-laden systems
that the shape of the interface in the vicinity of the space-time pinch-off singularity is not only
self-similar but resembles a thin thread that joins a drop [14,18,72], which is sometimes referred to
as the thread-drop solution. It is further known that while the asymmetric similarity solution is valid
for a substantial extent of the axial coordinate on the thread side of the axial location where thread
radius is minimum, the slope of the interface becomes of order 1 within a much shorter distance
on the drop side of the axial location where thread radius is minimum (see, for example, Fig. 5
in [93], Figs. 17 and 18 in [1], and Figs. 1 and 2 in [92], among others). As the slope becomes
of order 1 on the drop side, the similarity solution no longer applies, a fact that has already been
clearly articulated in the first of Eggers’s seminal review articles on the nonlinear dynamics of free
surface flows [1]. However, because asymptotically & ~ %, where 2 = h/R and # = 70,/ R, and
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7 ~ #1/2 where 7 = z/R, in the pinching zone regardless of whether the interface is clean or covered
with surfactant, the thread becomes more and more slender as T — 0 and its aspect ratio grows
as z/h ~ ©~1/2 > 1 or its slenderness ratio falls as #/Z ~ #!/2 « 1. For example, at T = 10~*
dimensionless time units remaining until pinch-off, the dimensionless thread radius would equal
to 10~* but the dimensionless axial extent of the pinching zone would equal 1072, In other words,
at that instant, the thread’s aspect ratio would equal 100 or its slenderness ratio would equal 0.01.
Hence, that the thread remains slender as T — 0 justifies the use of the slender-jet equations in
investigating the dynamics of pinch-off in the presence of inertia shown in Fig. 3.

VIII. CONCLUSIONS

The physically based derivation of the slender-jet equations governing the dynamics of liquid jets
that are covered with surfactant and when surface rheological (viscous) effects are important that is
provided in this paper is timely as there is currently an explosive growth of interest in the scientific
community in free surface flows in applications ranging from jet breakup to coalescence in which
surface rheological effects play an important role [15-19,61,62,82,85,94-97]. While the derivation
provided in this paper has been carried out for arbitrary bulk and surface phases, the general
equations were subsequently specialized to situations in which the bulk fluid is Newtonian and the
rheology of the surface phase is described by the Boussinesq-Scriven constitutive equation [67,68].
The general equations presented in this paper can be readily applied in other situations. For example,
Li and Manikantan [77] have used the 1D slender-jet equations to investigate the role of surfactant
solubility on the linear stability of Newtonian liquid jets when the effects of surface rheology
are modeled by the Boussinesq-Scriven equations (Newtonian interface). In certain applications,
the bulk fluid may contain polymer additives so that the jet liquid is a viscoelastic fluid. This
situation has recently been considered in a paper by Li and He [78] who used 1D slender-jet
equations to primarily study the linearized dynamics of non-Newtonian liquid jets whose bulk
rheological responses are governed by either the Oldroyd-B or the FENE-P constitutive models
and surface rheological response by the Boussinesq-Scriven model (Newtonian interface). While Li
and He [78] and also Li and Manikantan [77] did not do so, their analyses can be further generalized
by allowing the interface also to be non-Newtonian. In the Boussinesq-Scriven model considered
in Sec. IV, surface viscosities are assumed to be functions solely of surfactant concentration I'.
Such an assumption is applicable when interfaces are covered by relatively simple surfactants or
when surfactant concentration is low [76]. However, when the surface is covered by more complex
surfactants, e.g., when the interface is comprised of a condensed dipalmitoylphosphatidylcholine
(DPPC) monolayer film, surface viscosities can also be functions of strain rate [98]. By allowing
surface viscosities to depend on the invariants of the surface stress tensor, the Boussinesq-Scriven
model can be generalized to non-Newtonian interfaces, in a manner that is analogous to how the
Newtonian fluid model is generalized to power-law or Carreau fluid models that are used to describe
bulk rheological responses [99]. However, regardless of the constitutive models chosen to describe
the bulk and surface rheological responses, the slender-jet equations would henceforward need not
be derived from scratch but instead can be quickly obtained from the general equations provided in
Sec. III of this paper.

It should be noted, however, that care must be exercised if the 1D slender-jet equations are used
to investigate the linearized and slightly nonlinear dynamics of jets far from breakup. As pointed out
by Timmermans and Lister [60], in carrying out a linear stability analysis of a surfactant-covered
jet by subjecting an initially perfectly cylindrical column of liquid to small-amplitude disturbances
or perturbations, the characteristic equation obtained from the 1D slender-jet equations can fail to
capture important changes in the behavior of the growth rate of the perturbations that can occur as
the surfactant strength parameter increases. Unless this parameter is small, predictions made with
the 1D slender-jet equations can be misleading. In such situations, one must either use a set of 1D
slender-jet equations with higher-order corrections, i.e., a theory in which the radial variation of the
axial velocity and pressure in the jet are accounted for, or solve the full axisymmetric Navier-Stokes
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equations (if the bulk fluid is Newtonian) to investigate the stability of liquid jets. The latter approach
has been adopted in this work where the dynamics of jet thinning has been simulated by solving the
complete set of 3DA equations from the onset of capillary thinning following the imposition of
perturbations until the incipience of pinch-off. The 1D slender-jet equations are only used in this
work to provide an analytical description of the dynamics as pinch-off is approached. In summary,
the use of 1D slender-jet equations should be avoided when the goal is to analyze the dynamics of
capillary thinning and breakup of surfactant-covered liquid threads during the entire duration of the
dynamics spanning the period from the onset of thinning until the time when the thread pinches off.

The surface tension of an interface that is covered with surfactant is lower than that compared
to the situation when the interface is devoid of surfactant and is reduced by an amount that
depends on the local surfactant concentration. There now exist dozens of methods for accurately
measuring the surface tension of clean as well as surfactant-covered interfaces (see, e.g., [84,100—
103]). When surface rheological effects cannot be neglected, the standard approach, which has
also been adopted in the latter part of this paper, has consisted of describing the interface as a
compressible two-dimensional Newtonian fluid with surface shear and dilatational viscosities obey-
ing the Boussinesq-Scriven equations [67,68]. However, in contrast to the measurement of surface
tension, measurement of material properties of interfaces has proven to be much more challenging
[104]. Stevenson [105], for example, has succinctly summarized in a review article that researchers
have reported measured values of surface shear viscosity that differ by orders of magnitude. One
possible source of difficulty and hence a culprit for the discrepancies in measurements may be
that many experimental methods generate a mixed interfacial flow, with both shear and dilatational
components, and the surface shear and dilatational viscosities cannot be uniquely determined from
measurements of a single mixed-type flow [106]. Another culprit may be that the interfaces in
various flows induced in different laboratory experiments are often subjected to gradients in surface
tension which then makes it impossible for all practical purposes to separate the contributions of
Marangoni stresses from ones due to surface viscosities. As made evident from the 3DA simulation
results reported here that Marangoni stresses do indeed become negligible compared to surface
viscous stresses as liquid threads approach pinch-off, jet breakup is a convenient experimental
platform for inferring surface viscosities by using Eq. (34) or Eq. (36) that have both been obtained
from slender-jet theory under the a priori assumption that Marangoni stresses are negligible [107].

In a number of equations such as the 1D momentum equation (26), the two surface viscosities
appear in combination as (s + Sit4)/2. Therefore, it would be natural to refer to this combination
as the effective surface viscosity. However, this combination results solely because of the cylindrical
nature of the physical problem at hand. By way of contrast, in sheet rupture [82], the two surface
viscosities come into play as the sum of the surface viscosities, viz., as u; + g, and it would be
natural in that situation to refer to the sum of the two surface viscosities as the effetive surface
viscosity. Clearly, one can perform experiments involving both jet breakup and sheet rupture to
infer the individual values of the two surface viscosities.
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APPENDIX A: DERIVATION OF THE MOMENTUM EQUATION USING A CONTROL VOLUME
THAT LIES ENTIRELY WITHIN THE LIQUID JET

Here, we present a derivation of the momentum equation using a macroscopic control volume V
of height Az that, unlike the control volume of Fig. 1(a), does not cut the free surface of the jet and
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FIG. 4. Control volume (CV) for carrying out a macroscopic force balance on a section of the jet. Unlike
the control volume shown in Fig. 1(a), there are no surface forces in this case that act on the CV as it lies
entirely within liquid jet.

whose lateral or side surface S; lies in the liquid phase just inside the L-G interface (Fig. 4):

D
—/pvdV:/N~TdS+/,ong. (A1)
Dt 1% N 14

It should be noted that, unlike Eq. (3), Eq. (A1) does not contain a term F* accounting for line tension
type of forces because the control volume lies entirely in the liquid phase and does not intersect
the free surface. Following the analysis in Sec. II, the LHS of Eq. (A1) is next simplified using
the Reynolds transport theorem, and the surface integral term on the RHS is rewritten to express the
different contributions to it:

0
/p(—V+V~VV>dV=/n-TLdS+/ nT.TLdS+/ nB'TLdS—i—/,ong. (A2)
Vv 3t S. St Sp v

s

We next simplify Eq. (A2) by means of the traction boundary condition
n-Tr=n-T°+V,. T (A3)

and thereby obtain

av G L L
pl —4+v-Vv)dV = n-TdS + ny - T"dS + ng-T-dS
v\ 0t S Sy S
+[,0ng+/ Vv, TS dsS. (Ad)
v S,

The second surface integral over S5 can be simplified by means of the surface divergence theorem
(SDT) [11] which can be generalized to tensors €2 of any order:

(VS-SZ+2Hn~Sl)dS=/m-Sch, (A5)
Sy C

where C is (are) the contour(s) bounding the open surface S; and m is the unit vector that is tangent
to Sy and outwardly normal to C [11]. When Eq. (AS) is applied to the present problem where
Q =T, C consists of C; and Cg, m = t for C; but m = —t for Cg, and that n - T* = 0, it is found

113602-15



WEE, KUMAR, DHANWANI, AND BASARAN

that

fvs-Tst=¢ t-TSdC+¢ —t-T'dc. (A6)
Sy Cr Cp

When Eq. (A6) is used in Eq. (A4), the resulting equation is identical to Eq. (4).

APPENDIX B: DERIVATION OF THE SURFACTANT TRANSPORT EQUATION
IN THE SLENDER-JET LIMIT

In deriving the slender form of the convection-diffusion equation for surfactant transport, we
begin by noting the subtle nuances of the partial time derivative in Eq. (12) and the partial time
derivative that appears in the standard definition of the material derivative, viz., D/Dt = d/dt +
v - V. The latter is evaluated while holding fixed the spatial coordinate x. The former, however, is
evaluated while following the normal motion of the surface [13,108], the meaning of which will
be clarified shortly. The motion of an evolving surface in an axisymmetric flow can be formally
described by a mapping x; = X,(n, t), where X; is the position vector of a point on the surface and
n denotes a surface (technically, a curve for axisymmetric flow) coordinate. We immediately see
that with the aforementioned mapping, there exists an associated velocity field (0x,/9dt), which is
obtained by taking the partial time derivative of X, while 7 is held constant. When (9x,/0t ), only has
a normal component, viz., (dX,/dt), = Vyn where V; is the magnitude of (9x,/0¢), or the normal
speed of the surface, 7 is said to be a “fixed” surface coordinate in the surface [13]. It is this surface
coordinate that is held constant in the partial time derivative in Eq. (12).

Since we are concerned with the slender form of Eq. (12), it is convenient to parametrize the
surface as x; = X(z,1) = h(z, t)e, + ze,. The associated velocity field is then readily expressed
as (0x,/0t), = h,e,, where h, = (dh/0t),. This velocity field makes plain that z cannot be a
fixed surface coordinate n because e, # n. Therefore, one should first consider the transformation

%L7 — %|Z before invoking the slenderness approximation. To this end, we note that z = z(n, 7).
This relation has an inverse n = n(z, t), and hence I'(n, 1) = ['(n(z, t), t). To make further progress,
we use the chain rule of differentiation and obtain

(31 ) <31 > (31’]) (8[ ) (B1)
or /. an J,\ ot /., ot '7’
ot z on J,\ ot z ot n

Since t = 3317 /S, where S, = |%—’;;|, (9%,/01), = he,, & = Sj’an, and (9x,/dt), = Vn, it can be
easily shown that

or" ol ol” /oh
(5),, = (W)z B a(%)f’ o 3

We will next substitute Eq. (B3) into Eq. (12) but first rewrite that equation as

ar 2
= +v-V,I'+T'V,.v=D,Vil. (B4)
n

In proceeding forward, we replace the first term on the LHS of Eq. (B4) with the relation deduced
in Eq. (B3) and combine it with the second term on the LHS of Eq. (B4), i.e., v - VI, to obtain

MY tv.vr=(Z A L S (B5)
R V- J =1 — - —| — ro V-Vl
or ), ‘ or ). s \or ).
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Since h;, + vh' = u, v - V,I' = [u(e, - t) + v(e, - t)] and one can show that

\/W 3z
or +v.-V,I'= or + or (B6)
R V- = v—.
ot J, ar 0z
Had the partial time derivative in Eq. (12) or Eq. (B4) been misinterpreted as %| .» the convection

term v 9" /dz in Eq. (B6) would instead have turned out to be [(uh' + v)/(1 + )] daI'/dz, which
is incorrect [109].

In completing the derivation of the slender form of the convection-diffusion equation, we next
turn our attention to the last term on the LHS of Eq. (B4). Using the definition of the surface gradient
operator, we obtain

rvevert | (e + 2% )|+ Zep L2 e, + ve,) (B7)
V= s T s ) | TR Lae |V TV

Exploiting the axisymmetry in the problem, using Eq. (1) to replace the tangent vector with unit
vectors along the r and z directions, and taking the dot products indicated in Eq. (B7), we obtain

. DK ouw, T gv  Tu( de\ Tul de .
s V= J— P JE— . — J— . .
- JI+r20s  Jith2ds k" 96 h\’ 90

Here, it is important to note that [11]

% — O7 aer = €y, and aﬁ = —€,, (B9)
a0 00 a0
which is essential for correctly simplifying the last two terms on the right-hand side of Eq. (B8). We
will now invoke the slenderness approximation as has been done in the main text, i.e., i’ = O(¢)
and ds ~ dz, and thereby deduce that in the slender limit, the last term on the LHS of Eq. (B4)
reduces to

v Tu
Vg veTl— + —. (B10)
0z h
Furthermore, in the slender-jet approximation, the radial velocity u = — '% 3—2 can be used to simplify

Eq. (B10) as

dv T dv I' ov
rvy . veln— - ——= ——. (B11)
dz 20z 2 0z

Next, we will simplify the diffusion term from Eq. (B4):

ar 1 ar
) (B12)

D,VT =D,V,-(V,[') =D,V [t— + —eg—
sV sV - (VD) AA<as+h989
Due to the axisymmetric nature of the problem, the last term on the RHS of Eq. (B12) is zero.
Hence, we obtain

2 ar o [ ar e 0 [ oI
DV =DV, - (t— | =Ds|t- —|t— |+ — - —(t— ]| (B13)
as ds \ Os h 00\ 0s

The previous equation can be readily simplified by taking advantage of the fact that t is a unit
tangent vector, i.e., t - t = 1. Differentiation of the latter relation with respect to arclength allows
one to conclude that t - 9t/ds = 0. Combining this result with Eq. (B13), we obtain
eg JaI" ot )

(B14)

82
DVF Dy
hds 90

113602-17



WEE, KUMAR, DHANWANI, AND BASARAN

Following the steps in the analysis carried out previously for the convection terms, we simplify
Eq. (B14) using Eqgs. (1) and (B9), and thereby obtain

3°T n 1ar

sz hos J1+h?

Finally, invoking the slenderness approximation, the diffusion term at last simplifies to

3’ Hmar 19
D,V’T' ~ D D h— B16
( +h8z> th( az) (B16)

While it may have appeared to the casual reader that the second term that is typeset in bold in the
middle formula in Eq. (B16) is negligible in the slender limit, a simple but more careful scaling
argument shows that 3>I"/3z? and (k' /h) 3T /dz are in fact of the same order and justifies why both
terms have to be retained in the evaluation of the diffusion term:

9’ Ty Wor (R/L)Ty Ty

— ~— and ——~—— = —,

92 L? h 0z R L L2
where Iy is the reference surfactant concentration. Combining all the simplified terms, the surfactant
transport equation in the slender limit hence reduces to

or o Tov D, d [, or
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Correction: During the production of proofs, terms in Egs. (19), (26), (28), and (B16) were set

without the intended highlighting. Those terms have now been set in bold and the text following
those equations has been adjusted to reflect the change.
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