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This paper sets out to explore the modulational (or Benjamin-Feir) instability of a
monochromatic wave propagating in the presence of damping such as that induced by
sea ice on the ocean surface. The fundamental wave motion is modelled using the spatial
Zakharov equation, to which either uniform or nonuniform (frequency-dependent) damp-
ing is added. By means of mode truncation the spatial analog of the classical Benjamin-Feir
instability can be studied analytically using dynamical systems techniques. The formu-
lation readily yields the free surface and its envelope, giving insight into the physical
implications of damping on the modulational instability. The evolution of an initially
unstable mode is also studied numerically by integrating the damped, spatial Zakharov
equation, in order to complement the analytical theory. This sheds light on the effects of
damping on spectral broadening arising from this instability.
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I. INTRODUCTION

Water waves on the open sea are typically characterized by their permanence. This remark-
able fact can be attested by any surfer on Hawai’i’s North Shore waiting for the swell from an
Alaskan storm. Attenuation due to viscous effects is sufficiently minor that the starting point of
the vast majority of studies on water waves are the inviscid, incompressible Euler equations. These
equations give rise to a variety of PDE model equations, many of them possessing extraordinary
mathematical structure [1], much of which has been elucidated only in recent decades.

The history of the water wave problem goes back more than two centuries, and the first
approaches to the problem assumed small wave amplitudes and an essentially linearized system
of equations. These equations can be seen to have solutions in the form of monochromatic waves,
which consist of a single Fourier mode. Throughout the course of the 19th and early 20th centuries
periodic, traveling waves of permanent form (sometimes called Stokes waves) were shown to exist
mathematically, not just within the linear problem, but also for a series of ever more general
formulations of the governing equations (see [2] and references therein).

Despite these mathematical existence proofs, which go back to work by Levi-Civita [3], it
is remarkably difficult to generate monochromatic waves experimentally, or to observe them in
nature. One of the principle reasons for this difficulty was established by Benjamin and Feir [4]:
monochromatic waves are unstable to small disturbances for a rather large range of relevant
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parameters. Once generated in a wave flume, one Fourier mode transfers energy to its neigh-
bors in a so-called degenerate quartet interaction, provided the modes satisfy (at least up to
small disturbances) a resonance condition. This so-called modulational instability is ubiquitous
in many natural contexts [5], and in water waves is commonly referred to as the Benjamin-Feir
instability.

This raises an obvious question: if water waves are susceptible to instabilities, how do surfers
catch the swell from storms that occurred thousands of kilometres away, and how do oceanographers
track such swell across entire ocean basins [6]? In a series of papers Segur, Henderson, and
collaborators [7,8] studied this phenomenon and showed that even small amounts of damping can
stabilize the Benjamin-Feir instability. Thus, while it seems that damping has a small effect on the
propagation of waves per se, it can play a subtle yet critical role in governing wave instabilities on
the open sea. In other physically important settings damping plays a more immediately visible role;
such is the case when waves propagate into sea ice, which case provides the impetus for the present
study. A noteworthy feature of damping due to sea ice is its nonuniform (frequency-dependent)
nature; see [9].

Segur and collaborators considered the Benjamin-Feir instability from the perspective of a
nonlinear Schrödinger equation (NLS) with uniform damping. Such dissipative NLS equations go
back to early work of Lake et al. [10] (see also the more recent derivation by Dias et al. [11]). As the
NLS has restrictions on spectral bandwidth, attempts have been made to extend this formulation by
considering a uniformly damped Dysthe (or higher-order NLS) equation. Due to the mathematical
similarities between damping and forcing, studies of either phenomenon are generally complemen-
tary. Thus we find early work on the initial growth as well as long-time evolution of narrowbanded
surface waves under wind forcing by Hara and Mei [12], who derived a Dysthe equation with
forcing. Subsequent studies by Carter and Govan [13] and Armaroli et al. [14] likewise focused on
forced and damped Dysthe equations.

In the present work we shall use the Zakharov equation as our point of departure. This has the
advantage that NLS, Dysthe, and modified Dysthe equations can be derived directly from it [15], so
that it generalizes previous work. In addition, we shall use a spatial formulation of this equation due
to Shemer and co-workers [16], which will allow us to naturally consider the propagation of waves
into sea ice (or any other medium that can be modeled as nonuniform dissipation) which occupies a
defined spatial domain.

The role of realistic, nonuniform dissipation on the modulational instability has only re-
cently been explored by Alberello et al. [17,18] who employed numerical solutions of the
NLS, and subsequently focused on the modulational instability with sidebands exhibiting the
largest linear growth rate. We aim to explore the entire modulational instability domain from
the perspective of the spatial Zakharov equation, and investigate the role of carrier steepness,
mode separation, as well as damping strength in a significant generalization of prior results. We
will show how frequency-dependent damping leads to a qualitatively and quantitatively differ-
ent free surface than the simpler, uniformly damped scenario, and explore the ramifications for
spectral broadening with many modes. Using conserved quantities we are able to reduce the
problem to a simple dynamical system which readily yields new insights both analytically and
numerically.

In Sec. II we provide some background for the temporal Zakharov equation, and introduce the
allied spatial equation with damping. We demonstrate how this can be used to derive the damped,
spatial nonlinear Schrödinger equation. Subsequently we restrict our attention to the three modes
involved in modulational instability, and in Sec. III analyze the simpler case of uniform damping
from a dynamical systems perspective. The more realistic case of frequency-dependent damping,
where the symmetry between the side bands is broken, is explored in Sec. IV. We apply the
foregoing theory to some examples in Sec. V, and also go beyond the classical modulational
instability to explore the effect of damping on spectral broadening. Finally we provide some
concluding remarks and perspectives for future work in Sec. VI.

094802-2



MODULATIONAL INSTABILITY OF NONUNIFORMLY …

II. BACKGROUND

A. The temporal Zakharov equation

In the inviscid, incompressible water wave problem, the reduced Hamiltonian formulation due
to Zakharov [19] and Krasitskii [20] captures resonant and near-resonant interactions which occur
with cubic nonlinearity in deep water. This Hamiltonian is [20, Eq. (2.22)]

H =
∫

ω0b∗
0b0 dk0 + 1

2

∫
T0123b∗

0b∗
1b2b3δ0+1−2−3 dk0 dk1 dk2 dk3,

where bi = b(ki, t ) are canonical variables related to the Fourier transforms of the free surface and
potential at the free surface, ω0 is the linear frequency, T0123 = T (k0, k1, k2, k3) is the interaction
kernel, and δ the Dirac delta distribution. Subscripts are used to denote wave number, so that, for
example, ω0 = ω(k0) and δ0+1−2−3 = δ(k0 + k1 − k2 − k3). The complex conjugate is denoted by
an asterisk superscript.

The corresponding equation of motion, called the Zakharov equation after [19] is

i
∂b0

∂t
= δH

δb∗
0

= ω0b0 +
∫

T0123b∗
1b2b3δ0+1−2−3 dk1 dk2 dk3. (1)

The version of the Zakharov equation shown here is restricted to third order in nonlinearity, and
is derived by suitable elimination of nonresonant terms. It gives rise to a number of useful model
equations, chief among them the nonlinear Schrödinger (NLS) family of equations, which we shall
explore in greater depth below. In fact, the form of Eq. (1) is generic in any dispersive medium
where four-wave—but not three-wave—interactions are allowed [21]. The physics of the water wave
problem are encoded entirely in the kernel function T . More details and further references to the
Zakharov equation in the context of water waves can be found in the recent review [22].

B. The spatial Zakharov equation and inclusion of damping

While the Zakharov equation is an integro-differential equation for the time evolution of the
complex amplitudes, in many situations of practical interest it is necessary to consider the converse
situation. Spatial evolution of waves is the situation encountered in flume experiments and is also
the appropriate viewpoint for waves propagating into a confined region with significant dissipation,
e.g., an area of sea ice. In such cases the temporal Zakharov equation (1) must be replaced by a
corresponding spatial evolution equation first derived by Shemer and co-workers [16]. It is written

icg
∂B(x, ω)

∂x
=

∫∫∫
T (k, k1, k2, k3)B∗(x, ω1)B(x, ω2)B(x, ω3)

× exp[−i(k + k1 − k2 − k3)x]δ(ω + ω1 − ω2 − ω3) dω1 dω2 dω3 (2)

in one spatial dimension. The main difference between the spatial and temporal cases is the
appearance of a group velocity coefficient cg in the former as well as the (near) resonance condition
now being expressed as ω + ω1 − ω2 − ω3 = 0.

While the temporal form of the Zakharov equation can be obtained by an expansion and
truncation of the Hamiltonian formulation of the water wave problem (more background can be
found in the recent review [22] and references therein), the spatial equation is obtained directly from
the temporal equation. The spatial Zakharov equation contains the spatial NLS and spatial Dysthe
equations, both of which can be derived from it in the limit of narrow bandwidth [23]. In a series
of experiments spanning several years and different facilities, Shemer and coworkers have verified
the spatial equation for broad, Gaussian spectra [16], wave groups [24], and bimodal spectra [25],
underscoring its utility in modeling the evolution of experimentally generated waves in a flume.
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This equation can be transformed into autonomous form by writing Bi = bi exp(−ikix):

cg, j

(
i
db j (x)

dx
+ k jb j

)
=

∫∫∫
Tjlmnb∗

l bmbnδ(ω j + ωl − ωm − ωn) dωl dωm dωn. (3)

It is important to recall that subscripts in (3) now denote frequency rather than wave number,
although the kernel Tjlmn remains T (k(ω j ), k(ωl ), k(ωm), k(ωn)).

Adding a spatial damping term can be accomplished by writing (k j + iγ j ) in place of k j in the
second term on the left-hand side. This modification of wave number is analogous to the inclusion of
damping by modifying the frequency in the temporal Zakharov equation (1); see Shrira et al. [26].
In our study, we shall consider both the simpler case of uniform damping, as well as the more
general case of frequency-dependent damping, which typically occurs when waves propagate in sea
ice [17,18].

The particular frequency dependence of the damping depends strongly on characteristics of the
medium itself, and analytical as well as experimental work [9,27] suggests a sea-ice damping of the
form

γ = s × ωn, (4)

which is the form of damping parameter we will employ in what follows. Uniform damping can
be achieved by using the parameter γ corresponding to the carrier mode for all other modes.
Alternatively, each mode ωi may have a distinct damping coefficient γi for a given value of s.
The majority of cases we discuss will employ a moderate damping γ = O(10−4) [m−1], which by
taking n = 3 will give s = O(10−6) [s3 m−1], as described in [18]. The dissipation length scale for
the carrier is expressed by the ratio k/γ and is approximately 2300 wavelengths in this case. In the
absence of energy transfer, this corresponds to approximately a loss of 1% of the carrier amplitude
over four wavelengths.

C. Derivation of the damped spatial NLS

The Zakharov equation is a powerful yet underutilized tool for studying the evolution of water
waves, particularly the present damped, spatial formulation. In order to put it into the context of a
larger literature focused on the damped spatial nonlinear Schrödinger equation (see [17,18,28]) we
demonstrate how the latter can be derived.

The central assumption needed to derive the NLS is that all interacting waves are clustered about
a single wave number, say, k0, an assumption usually referred to as “narrow-bandwidth.” Such an
assumption can be imposed when deriving the equation via perturbation theory [29], as well as when
starting from the Zakharov formulation. In the latter case, the Zakharov kernel is replaced by the
kernel T (k0, k0, k0, k0), and the frequency ω(k) is expanded in a Taylor series about ω(k0). These
two steps allow the inverse Fourier transform to be carried out and lead to the NLS in much the
same way that Zakharov [19, Eq. (2.7) ff.] first outlined. Our derivation below closely follows Kit
and Shemer’s [23] derivation of the Dysthe equation, but includes a damping term.

Because the NLS is an equation for the free surface envelope, we first relate the complex
amplitudes B of the Zakharov formulation to the free surface ζ at lowest order (i.e., without bound
modes) by

ζ (x, t ) = 1

2π

∫ ∞

−∞

(
ω

2g

) 1
2

[B(ω, x) exp{i[k(ω)x − ωt]} + c.c.] dω, (5)

where c.c. denotes the complex conjugate of the preceding expression, and we write k(ω) for clarity,
invoking the linear dispersion relation.

As a first step we write all frequencies ωi in terms of a central (carrier) frequency ω0 and a small
perturbation ω′

i with ω′
i � ω0, i.e., ωi = ω0 + ω′

i. Introducing a new variable A,

A(ω′, x) = B(ω, x) exp{i[k(ω0 + ω′) − k0]x},
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and substituting into (3) yields

i
∂A

∂x
+ [k(ω0 + ω′) − k0]A + iγ A = k3

0

2gπ2
(ω0 + ω′)

∫
R3

A∗(ω′
1, x)A(ω′

2, x)A(ω′
3, x)δ2,3

0,1 dω′,

where T = T (ω0 + ω′, ω0 + ω′
1, ω0 + ω′

2, ω0 + ω′
3) ∼ k3

0/4π2, dω′ = dω′
1 dω′

2 dω′
3, and δ2,3

0,1 =
δ(ω′ + ω′

1 − ω′
2 − ω′

3). The group velocity cg can be expanded in terms of the small perturbation as

k(ω0 + ω′) − k0 = 2k0

ω0
ω′ + k0

ω2
0

ω′2 + O(ε4),

and using the deep water dispersion relation c−1
g = 2

√
gk/g yields

i
∂A

∂x
+ [k(ω0 + ω′) − k0]A + iγ A = k3

0

gπ2
(ω0 + ω′)

∫
R3

A∗
1A2A3δ

2,3
0,1 dω′, (6)

where Aj = A(ω′
j, x). Now, the free surface ζ (x, t ) can be related to an envelope amplitude a(x, t )

through

ζ (x, t ) = a(x, t ) exp[i(k0x − ω0t )],

and the relation between A and the complex amplitude a is given as

a(x, t ) = 1

2π

(
2ω0

g

) 1
2
∫ ∞

−∞

[(
1 + ω′

2ω0

)
A(ω′, x) exp(−iω′t )

]
dω′,

where the factor 1 + ω′/2ω0 comes from expansion of
√

ω/(2g).
Multiplying (6) by a factor of

√
2ω0/g(1 + ω′/2ω0) and taking the inverse Fourier transform

yields the left-hand side

i

(
ax + 2k0

ω0
at

)
− k0

ω2
0

att + iγ a.

The right-hand side is handled using the substitution(
1 + ω′

2 + ω′
3 − ω′

1

2ω0

)
≈

(
1 + ω′

2

2ω0

)(
1 + ω′

3

2ω0

)(
1 − ω′

1

2ω0

)
,

which gives the term k3
0a|a|2.

The equation can be rewritten in dimensionless form and in a moving coordinate frame by
introducing new variables

a = a0ψ, εω0

(
2k0

ω0
x − t

)
= τ, ε2k0x = ξ, γ = ε2k0�,

where ε = a0k0 is the wave steepness for a wave of amplitude a0 and wave number k0 as

ψξ + iψττ + i|ψ |2ψ = −�ψ. (7)

This is the form of the NLS used in numerous studies of damped and forced water waves. The
classical theory of modulational instability can then be approached by inserting a monochromatic
wave into (7) and performing a linear stability analysis by perturbing this wave with two small
“sidebands.”

D. Discretization and the damped spatial Zakharov equation

Our aim is primarily an analytical study of the damped, spatial Benjamin-Feir instability without
the restrictions made in the preceding section, which lead to the NLS. To study this instability,
which arises from the interaction of three frequencies, we first discretize the autonomous, spatial

094802-5



RAPHAEL STUHLMEIER et al.

Zakharov equation (3) with damping by substituting b = ∑
i biδ(ω − ωi ), where δ is a Dirac delta

distribution, and integrating over frequency, to yield

i
db j (x)

dx
+ (k j + iγ j )b j = 1

cg, j

∑
l,m,n

Tjlmnb∗
l bmbnδ(ω j + ωl − ωm − ωn). (8)

The resonant set of waves which seeds the modulational instability is one which satisfies the
degenerate resonance condition 2ωa = ωb + ωc, where we interpret ωa as the frequency of the
carrier and ωb, ωc as the two side bands. This restriction results in a system of coupled differential
equations for the three complex amplitudes:

i
dba

dx
+ ba(ka + iγa) = 1

cg,a

⎛
⎝Ta|ba|2ba + 2

∑
j 	=a

Ta j |b j |2ba + 2Taabcb∗
abbbc

⎞
⎠,

i
dbb

dx
+ bb(kb + iγb) = 1

cg,b

⎛
⎝Tb|bb|2bb + 2

∑
j 	=b

Tb j |b j |2bb + Taabcb∗
cbaba

⎞
⎠,

i
dbc

dx
+ bc(kc + iγc) = 1

cg,c

⎛
⎝Tc|bc|2bc + 2

∑
j 	=c

Tc j |b j |2bc + Taabcb∗
bbaba

⎞
⎠.

Here we have used the abbreviation Ti for the self-interaction kernel Tiiii, and the abbreviation Ti j

for the two-wave interaction kernel Ti ji j, noting that due to symmetry Ti j = Tji [20].
It is convenient to separate the real and imaginary parts of the above system by writing bi =√

Ii exp(iφi ) where Ii := |bi|2 :

cg,a
dIa

dx
= −2cg,aγaIa − 4TaabcIa

√
Ib

√
Ic sin(θ), (9a)

cg,b
dIb

dx
= −2cg,bγbIb + 2TaabcIa

√
Ib

√
Ic sin(θ), (9b)

cg,c
dIc

dx
= −2cg,cγcIc + 2TaabcIa

√
Ib

√
Ic sin(θ), (9c)

2
dφa

dx
= 2ka − 2

cg,a
TaIa − 4

cg,a
TabIb − 4

cg,a
TacIc − 4

cg,a
Taabc

√
Ib

√
Ic cos(θ), (9d)

−dφb

dx
= −kb + 1

cg,b
TbIb + 2

cg,b
TabIa + 2

cg,b
TbcIc + 1

cg,b
Taabc

Ia
√

Ic√
Ib

cos(θ), (9e)

−dφc

dx
= −kc + 1

cg,c
TcIc + 2

cg,c
TacIa + 2

cg,c
TbcIb + 1

cg,c
Taabc

Ia
√

Ib√
Ic

cos(θ). (9f)

Here we have defined θ := 2φa − φb − φc. While the presence of the damping term means that
we lack conservation of energy (see Krasitskii [20] or Andrade and Stuhlmeier [30]), there are
nevertheless simplifications to be made which provide insight into the behavior of this system. Chief
among these is the identification of the dynamic phase θ as the sole phase variable of interest in the
problem. In the next section we shall find the simplest three-dimensional dynamical system which
encapsulates the dynamics of the spatial Benjamin-Feir instability in the case of uniform damping.

III. A DYNAMICAL SYSTEM FOR UNIFORM DAMPING

In analogy with the temporal evolution of conservative systems of three and four waves,
as studied by Capellini and Trillo [31] or Andrade and Stuhlmeier [30,32], and following the
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conservative treatment in [33], we now aim to introduce new variables to reduce the dimension
of the system (9a)–(9f).

We define the following two quantities:

A = cg,aIa + cg,bIb + cg,cIc, (10)

α = cg,bIb

A
− cg,cIc

A
. (11)

A is akin to a measure of total energy, while α is the sideband energy fraction. Under the assumption
of uniform damping γa = γb = γc = γ , we easily find

dA

dx
= −2γ A, (12)

dα

dx
= 0. (13)

Thus A (which we think of as a measure of the energy of the three-wave system) decreases
monotonically, while the sideband energy fraction α remains constant.

The substitution of

Ia = A

cg,a
η, (14)

Ib = A

2cg,b
(1 − η), (15)

Ic = A

2cg,c
(1 − η), (16)

into (9a)–(9f), in which η is the energy exchange parameter, results in the pair of evolution equations

dη

dx
= −A�2η(1 − η) sin(θ ), (17)

dθ

dx
= � + A�0 + A�1η − A�2(1 − 2η) cos(θ ), (18)

in the dynamic phase θ and energy exchange parameter η, where

�0 = 1

2
(T̄c + T̄b) + 2(T̄bc − T̄ab − T̄ac),

�1 = 4(T̄ab + T̄ac) − 2

(
T̄a + T̄bc + 1

4
(T̄b + T̄c)

)
,

�2 = 2Taabc

cg,a
√

cg,bcg,c
,

and we denote T̄i j = Ti j/cg,icg, j and � = 2ka − kb − kc for brevity. Note that when η = 0 only
modes ωb and ωc are present, while when η = 1 we have the monochromatic wave ωa only. For this
reason we conceive of η as measuring the extent of energy exchange between the monochromatic
and bichromatic sea states. It is useful to note that monochromatic and bichromatic seas are both
explicit solutions to the spatial Zakharov equation (see [33,34]); the monochromatic sea coincides
with the Stokes’ wave solution of the NLS, but the bichromatic sea has no counterpart in the
NLS. Together, this gives a rather simple dynamical system for the interaction of three waves with
uniform damping consisting of Eqs. (12), (17), and (18), defined in the three-dimensional phase
space {(A, θ, η) | A ∈ R�0, θ ∈ [−π, π ], η ∈ [0, 1]}.
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FIG. 1. Three indicative phase portraits for a configuration with a carrier fa = 1 Hz, εa = 0.1, and sideband
separation p = 0.184. The path lines in (A, η, θ ) space are shown as solid curves, with different initial
conditions η(0), θ (0). The undamped phase portraits in the (η, θ ) plane are shown in the (η, θ ) plane, along
with the projections of the damped path curves (s = 9×10−6, γ = 0.002), which are depicted as dashed curves.

A. Phase plane analysis

The undamped system (17)–(18) with γ = 0 is Hamiltonian, therefore the only fixed points are
saddles and centers. This setting has been recently explored by Heffernan et al. [33] and is formally
similar to the temporal evolution scenario described by Andrade and Stuhlmeier [32]. Together with
the simple, cylindrical phase space, this makes the dynamics rather straightforward to describe and
classify.

The addition of uniform damping changes these dynamics, and the system (12), (17), and (18) no
longer has fixed points. Rather trajectories tend towards A = 0, which means that all three modes
Ia, Ib, and Ic decay in amplitude. One consequence of this is that separatrices connecting fixed points
of the conservative system can be traversed: solutions otherwise confined to a restricted portion of
phase space may take on other values of η and θ, and periodic orbits around center points of the
conservative system generally lose their periodicity.

Some examples of trajectories in the three-dimensional phase space of (12), (17), and (18)
are shown in Fig. 1. An illustrative uniform damping parameter (see the discussion in Alberello
et al. [18]) is chosen, and the trajectories are plotted as solid lines starting at different initial
conditions (η0, θ0) but with an identical initial value of A (this value is fixed by a choice of the
carrier wave frequency fa and steepness εa, as well as the sideband separation p, see Sec. V).

The left panel [Fig. 1(a), blue curves] begins close to a bichromatic wave train ωb, ωc, with
η(0) = 0.02; the middle panel [Fig. 1(b), red curves] is a small perturbation of a monochromatic
wave train ωa, with η(0) = 0.95; the right panel [Fig. 1(c), green curves] is a trichromatic initial
condition η(0) = 0.5 where no mode is initially dominant. The projections of the trajectories onto
the planes (η, θ ), (A, θ ), and (A, η) are shown as dashed curves, and the phase portraits of the
corresponding conservative system (at x = 0) with constant A are shown in color on the (η, θ ) plane.
We can observe both periodic dynamics in phase θ and amplitude scale η, as in Fig. 1(b), as well as
the breaking of such periodic dynamics in Figs. 1(a) and 1(c).

B. Spatial Benjamin-Feir instability with uniform damping

The well-known Benjamin-Feir instability arises in the undamped system when a carrier wave
ωa is perturbed by two equally spaced sidebands ωa + p and ωa − p. In the current setting, we find
that the monochromatic carrier wave which makes up the nullcline η = 1 is unstable if there exists
a fixed point of the dynamical system (17)–(18) thereon.

This means solving

cos(θ ) = −� + A�0 + A�1

A�2
,
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FIG. 2. Region of (ε, p) parameter space showing the domain of instability for a carrier wave with
frequency fa = 1 Hz. Lighter colors denote a larger linear growth rate. The dashed line shows the comparable
instability threshold for the spatial NLS, given by p/ωa <

√
2ε.

which indicates that a necessary and sufficient condition for such a fixed point is that the right-hand
side is of magnitude less than or equal to one. The (linear) growth rate of disturbances is given by the
eigenvalues of the Jacobi matrix of the undamped Hamiltonian system, i.e. λ1,2 = ±

√
A2�2

2 sin2 θ,

evaluated at the fixed point, and is plotted in Fig. 2. This is the spatial version of the famed temporal
instability diagram for Stokes waves. The NLS instability threshold is shown as a dashed line, with
all waves to the left being unstable; as expected, this matches the Zakharov equation result for small
mode separation p.

In the relatively simple uniform damping scenario, the ODE for A is decoupled from the
equations governing the energy exchange η and dynamic phase θ. In particular, this means that

A = A0 exp(−2γ x)

for A0 = cg,aIa(0) + cg,bIb(0) + cg,cIc(0). Thus waves which are initially unstable will stabilize after
a certain propagation distance, depending on the concrete interplay between the damping γ , the
mode separation p, and the initial steepness. This can be observed in Fig. 3, which demonstrates
how the stability of waves with given ε, p changes with propagation distance in the damped case.
It can be observed that for a given mode separation progressively steeper waves remain unstable as
the waves propagate into the damped region. Conversely, the diminution of wave steepness apparent
in the propagation of damped waves means that disturbances far from the carrier in Fourier space
stabilize with propagation distance; for example, all disturbances p > 0.3ωa have stabilized after
100 carrier wavelengths λ. Those disturbances with the largest linear growth rates are among the
first to stabilize. The consequences of these effects will be particularly notable in our discussion of
spectral broadening in Sec. V B.

IV. A DYNAMICAL SYSTEM FOR NONUNIFORM DAMPING

Nonuniform damping complicates the situation somewhat, and ensures that we must retain an
equation for the sideband energy fraction α. Introducing the change of variables from Ii to A, η, α

as in Sec. III, we find that our equation for the evolution of the total energy becomes

dA

dx
= −2(cg,aγaIa + cg,bγbIb + cg,cγcIc).
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FIG. 3. Stability domain for a monochromatic wave with f = 1 Hz in terms of (initial) steepness ε and
mode separation p (black region, see also Fig. 2). The stability region after a propagation distance 100λ (blue
region) and 200λ (red region) is shown for uniform damping s = 7×10−6 s3 m−1, γ = 1.7×10−3 m−1.

Without the assumption of equal sideband energy fraction we must write

dα

dx
= −2(cg,bγbIb − cg,cγcIc).

The reformulation in terms of an energy-exchange parameter η must likewise be altered to

Ia = A

cg,a
η, (19)

Ib = A

2cg,b
(1 − η + α), (20)

Ic = A

2cg,c
(1 − η − α). (21)

Then
dα

dx
= α2(γb − γc) + αη(2γa − γb − γc) + (η − 1)(γb − γc) (22)

and

dA

dx
= −2Aη

(
γa − 1

2
(γb + γc)

)
− A(γb(1 + α) + γc(1 − α)). (23)

In terms of this we write the evolution of η(x) as

dη

dx
=2η2

[
γa − 1

2
(γb + γc)

]
+ η[γb(1 + α) + γc(1 − α)] − 2γaη − A�2η

√
(1 − η)2− α2 sin(θ ).

(24)
The evolution of the dynamic phase can be written

dθ

dx
= � + A�0 + A�1η − A�2

[
(1 − η)(1 − 2η) − α2√

(1 − η)2 − α2
cos(θ )

]
, (25)

where the generalized expressions for �0, �1 are

�0 = 2
{

1
4 [T̄c(1 − α) + T̄b(1 + α)] + T̄bc − [T̄ac(1 − α) + T̄ab(1 + α)]

}
,

�1 = 4(T̄ab + T̄ac) − 2T̄bc − [
2T̄a + 1

2 (T̄b + T̄c)
]
.
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Note that these reduce to the corresponding expressions in Sec. III for α = 0, and that �2 is
unchanged.

The phase space of Eqs. (22)–(25) is now four-dimensional and occupies

{(A, α, η, θ ) | A ∈ R�0, α ∈ R, 0 � η � min(1 − α, 1 + α), θ ∈ [−π, π ]}.
In particular, while η = 0 corresponds to the presence of modes ωb and ωc only (i.e., a bichromatic
sea), for nonzero α there is no monochromatic sea consisting of only wave ωa (since 1 − η + α and
1 − η − α are not simultaneously zero for any value of η). It is still possible to study the Benjamin-
Feir instability with an initial sideband imbalance s.t. α 	= 0, but we note that the energy transfer
from carrier to sidebands captured by (19)–(21) remains symmetric. The more interesting scenario,
which we explore below, is how nonuniform damping generates sideband imbalances, and how it
differs from the simpler, uniformly damped dynamics.

V. MODELING OF DAMPED WAVES WITH APPLICATIONS TO SEA ICE

To understand the evolution of surface gravity waves damped due to the presence of sea ice
we must relate the complex amplitudes and the conserved quantity A to physical properties of the
waves. For a single wave, the free surface elevation (5) can be written as

ζ (x, t ) = 1

π

√
ωa

2g
|Ba| cos(ξa + φa),

where ξa = kax − ωat and φa is the phase of mode ka. The relation A = cg,a|Ba|2 allows us to rewrite

A = a2
aπ

2g

ka
= ε2

aπ
2g

k3
a

,

where aa is the physical amplitude of the wave, and εa = aaka is the wave steepness. Therefore the
specification of the carrier wave number ka and steepness εa is sufficient to determine the initial
energy value A.

For the three-mode system describing Benjamin-Feir instability, we can write the following
amplitude function:

A(x, t ) = 1

π

(√
ωa

2g
Baei(kax−ωat ) +

√
ωb

2g
Bbei(kbx−ωbt ) +

√
ωc

2g
Bcei(kcx−ωct )

)
.

Then the free surface elevation ζ (x, t ) is obtained from ζ (x, t ) = Re[A(x, t )], while the free-surface
envelope is |A(x, t )|.

It is instructive to explore some cases through the lens of the three equivalent formulations, using
the reduced variables introduced in (22)–(25) and ultimately obtaining therefrom the free surface
envelope. The point of departure is the choice of an initially unstable carrier wave, which we take
to be f = 1 Hz and have a steepness of ε = 0.15. [In principle an initial, stable carrier could be
chosen as shown in Fig. 2, either with large steepness above the restabilization threshold [35] or
very low steepness such that instability is confined to very small sideband separation and growth
rates are low. In both cases the waves are nearly linear except for a dispersion correction [36], and
their behavior is dominated by the decay in energy (12), making these cases less interesting.]

Having chosen a carrier, we select sidebands which form the small initial disturbance. To provide
contrast, one pair of sidebands is taken well within the unstable region, with mode separation
p = 0.4; the second pair, with lower linear growth rate is selected at p = 1 (for reference the
instability domain in Fig. 2 at ε = 0.15 extends to p ≈ 1.2). An equidistribution of sideband energy
is originally imposed by setting η(0) = 0.98 and α(0) = 0, and the initial value of the dynamic
phase is set equal to θ (0) = π/2. These choices together determine the initial trajectory. An illus-
trative moderate damping parameter of s = 7×10−6 s3 m−1 is employed, and frequency-dependent
damping implemented as described in (4).
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FIG. 4. Phase portraits for two cases with intermediate, nonuniform damping. In both cases the carrier
is initiated at f = 1 Hz, damping coefficient s = 7×10−6, ε = 0.15 and the initial conditions are η(0) =
0.98, θ (0) = π/2. Panel (a) shows the evolution over x = 400 m (256 λa) of the initially unstable carrier
to perturbations with p = 0.4, while panel (b) shows the evolution when the perturbations are located at p = 1.

The evolution in three-dimensional phase space (A, η, θ ) of these two configurations is shown
in Fig. 4. The initial condition is the same in each case, yet the interaction between the modes is
strongly dependent on the sideband separation, and governed initially by the Hamiltonian of the
conservative system whose phase portrait is shown projected onto the (η, θ ) plane. Note that the
phase portraits of the conservative system depend on A as well as p, and are therefore not identical
in right and left panels.

After nearly 256 carrier wavelengths (corresponding to 400 m of propagation distance), the
total energy A(x) has decreased to one third of its initial value in both cases. The more unstable
case shown on the left (with p = 0.4) shows the initial dominance of nonlinear interaction, as
the trajectory winds around the center located at θ = 0. By contrast, the less unstable case in the
right panel (with p = 1) is dominated by dissipation. The trajectory traverses the separatrix of the
conservative system almost immediately, and thereafter only small oscillations indicating energy
exchange among the modes are visible.

The consequences of this dissipative interaction are visualized for the complex magnitudes |Bi|
individually in Fig. 5. The solid curves depict the stronger interaction (p = 0.4) while the dashed
curves depict the weaker interaction (p = 1). The interplay between the carrier |Ba| in blue and the

0 32 64 96 128 160 192 224 256

x/
a

0

0.05

0.1

0.15

0.2

0.25

|B
i|

FIG. 5. Evolution of the complex amplitudes shown in Fig. 4. Solid curves correspond to p = 0.4, while
dashed curves correspond to p = 1. The carrier at f = 1 Hz is shown in blue, the two sidebands in red and
yellow.
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FIG. 6. Free surface envelope for the case p = 0.4 shown in Figs. 4 and 5.

two sidebands |Bb|, |Bc| in yellow and red is also traced out in the projection onto the (A, η) plane
in Fig. 4, where η = 1 indicates only the carrier is present (monochromatic sea), and η = 0 means
only the sidebands are (bichromatic sea).

Finally, in Fig. 6 we can observe how the modulational instability combined with damping
influences the free surface envelope |A(x, t )| in space and time. For clarity only the case p = 0.4
is presented, and we can clearly distinguish the two cycles of energy exchange among the modes
seen in Fig. 5. It is helpful to recall that a monochromatic wave has constant envelope, so that
the absence of sideband energy observed at x = 0 and x = 128λa manifests in a flattening of the
envelope in Fig. 6. We also note that the waves are periodic in time; at a given spatial propagation
distance we find a surface envelope time series as given by one of the sections shown in the figure.

A. Uniform versus nonuniform damping

One advantage of the reformulation in terms of energy scale η and dynamic phase θ is that
it clearly demonstrates that the full, nonlinear energy exchange in the modulational instability is
naturally symmetric, a result that is also found for the NLS [31] and the Dysthe equation [37].
Rewriting the mode amplitudes in terms of energy scale η and sideband difference α as in (14)–(16)
or (19)–(21) makes clear that when the carrier loses energy, that energy is distributed equally among
the higher and lower sidebands.

However, frequency-dependent damping breaks this symmetry, even in the absence of additional
modes, and leads to spectral asymmetry. Indeed, when the damping is nonuniform, even initially
equal sidebands, such as those which initialize the classical Benjamin-Feir instability, eventually
develop an imbalance, as previously shown by Alberello et al. [18] using a dissipative NLS
framework. The most striking examples of how uniform and nonuniform damping differ can be
found in a synthetic situation in which the Fourier amplitudes of all three modes Ia, Ib, and Ic are
initially taken to be equal. If such a triad is unstable, energy exchange means that mode Ia will
transfer energy to modes Ib and Ic and vice versa, in a recurrent fashion dependent on the initial
value of the phase [33].

With uniform damping, modes Ib and Ic decay at the same rate, while nonuniform damping with
positive exponent (as in our case) induces the shorter wave to decay faster. This situation is depicted
in Fig. 7, where the top two panels show uniform damping in the amplitude spectrum [Fig. 7(a)]
and the free surface at a fixed spatial location [Fig. 7(b)], while the bottom panels depict the same
for nonuniform damping proportional to ω3

i . It is seen that nonuniform damping can dramatically
change which modes are dominant after a given propagation distance.

B. Spectral broadening, chaotisation and the damped Benjamin-Feir instability

The cases considered hitherto have been restricted to three modes, and are thus amenable to an
analytical description. The textbook modulational instability only considers the initial exponential
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FIG. 7. Case initialized with f = 1 Hz, ε = 0.3, p = 1.5, α ≈ 0.1622, and η(0) ≈ 0.3204, θ (0) = π,

where α and η are chosen so that initially Ia(0) = Ib(0) = Ic(0). (a), (b) Uniform damping with γ =
8×10−6ω3

a m−1. Panel (a) shows the modal amplitudes Ii with space; panel (b) shows the free surface at
x = 800 m (512 λa) as a function of time. (c), (d) Nonuniform damping with γi = 8×10−6ω3

i m−1. Panel
(c) shows the modal amplitudes Ii with space; panel (d) shows the free surface at 512 carrier wavelengths or
x = 800 m. This illustrates clearly that nonuniform damping can change the dominant wave and the character
of the wave field at a given spatial location.

growth arising from linear stability theory, while our description is able to capture both the instabil-
ity and the subsequent behavior in the presence of damping. However, experimental and theoretical
work points to the fact that the Benjamin-Feir instability—either with or without damping—may in
many cases entrain higher harmonics, which marks a departure from our description [35].

To this end it is instructive to consider the effect of including further modes, which makes it
possible to obtain some insight into the evolution of an initially unstable wave-train in more realistic
conditions. One such case is shown in Fig. 8, where the same initial configuration is evolved by
solving a spatial Zakharov equation with 41 modes with and without frequency-dependent damping.
The initial spectrum E (ω, x = 0) consists of the three Fourier modes Ia, Ib, and Ic in both cases.
In Fig. 8(a) we observe the evolution of the spectrum in space without damping, which shows a
characteristic broadening. Figure 8(b), in contrast, shows the effects of strong frequency-dependent
damping (with s = 5×10−5 s3 m−1), which inhibits the spectral broadening and leads to a distinct
downshift in the peak frequency.

This spectral downshift is illustrated more clearly in Fig. 9, which shows sections through Fig. 8
at two points in the evolution. The initial trimodal spectrum at x = 0 is shown as a solid blue curve,
and the undamped spectrum after 160 peak wavelengths of propagation distance is shown as a blue,
dashed curve. This clearly shows how energy has spread among neighboring Fourier modes. The
spectrum with nonuniform damping (as in Fig. 8, bottom panel) is shown at x = 160λa as a solid red
curve, and makes clear the inhibition of spectral broadening. For comparison the same spectrum is
propagated with uniform damping—using the frequency of the carrier ωa to determine the uniform
damping parameter γ —and shown as a red, dash-dotted curve.

In fact, the interplay between energy exchange (which itself can lead to spectral broadening and
a frequency downshift in the absence of damping [38]) and damping is complex, as demonstrated
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FIG. 8. Evolution of an initial unstable wave, with carrier frequency f = 1 Hz, p = 0.25, η = 0.9, θ = 0,

ε = 0.15. The initial triad is initialized among 41 equally spaced Fourier modes. Panel (a) depicts the evolution
obtained from numerical integration of the spatial Zakharov equation without damping. Panel (b) shows when
a frequency-dependent damping with s = 5×10−5 s3 m−1 is incorporated, this arrests the spectral broadening
completely and leads only to a spectral downshift.

in Fig. 4. While frequency-dependent damping will engender a narrower spectrum (as can be seen
by comparing the solid and dash-dotted red curves in Fig. 9) due to stronger damping at the higher
frequencies, the spectral evolution is also dependent on the initial phases and the carrier amplitude.
It is also important to emphasise that the spectra here considered are amplitude spectra rather than
energy spectra, i.e., no phase averaging has taken place.

VI. DISCUSSION

Recent years have seen a great deal of interest in wave interactions in the presence of damping,
particularly with applications to wave propagation in sea ice. Many previous studies have focused
on the use of partial differential equations such as the NLS or the Dysthe equation, which are
inherently restricted to narrow bandwidth as shown in the derivation of the damped spatial NLS
equation in Sec. II C. Our first methodological novelty thus consists in relaxing this assumption, and
employing the Zakharov equation derived directly from the cubic reduced Hamiltonian formulation,
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FIG. 9. Fourier amplitude spectra for the configuration studied in Fig. 8. The solid blue curve shows
the initial, three-mode spectrum at x = 0. The undamped spectrum (blue dashed curve; on left scale) shows
significant spectral broadening after a propagation distance of x = 160 carrier wavelengths. By contrast, the
damped spectra (solid curve: frequency-dependent damping, dash-dotted curve: uniform damping; both on
right scale) exhibit a downshift with nearly negligible broadening.
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without further restrictions on the spectral width. The cubic nonlinearity is sufficient to capture the
leading-order energy exchange which gives rise to the modulational instability, and thus provides
an ideal point of departure.

While the Zakharov formulation has been successfully exploited in water wave modeling for
theoretical and practical purposes for the past three decades, the propagation of waves into ice-
covered waters requires a reformulation of this problem. Physically we envision undamped, periodic
waves from the open sea encountering an area of sea ice (or any other nonuniformly dissipative
medium) of fixed spatial extent. As these waves propagate into the sea ice, the effects of damping
are felt with propagation distance rather than time. This means that a spatial Zakharov formulation
with damping is required, which is developed in Sec. II B. The spatial Zakharov formulation is
also appropriate for flume experiments, and several papers testing its applicability in the absence of
damping exist in that context [25,39].

Modulational instability is triggered when a wave train of given frequency ωa is perturbed by
the introduction of a pair of low-amplitude satellites having a higher and a lower frequency, ωb and
ωc, say. This is a type of near-resonant interaction where 2ωa = ωb + ωc, and where we denote the
separation between the carrier ωa and sideband harmonics (or Fourier modes) ωb, ωc by p. Whether
a given carrier is unstable depends on its steepness or energy, as well as the sideband separation p,
and the consequences of this instability have been extensively studied in the temporal evolution
scenario. In particular, comparisons with numerical simulations and experiments show that incor-
porating broader bandwidth effects beyond NLS is key to accurately capturing this instability [40].
Rather surprisingly, few studies of spatial evolution within the Zakharov equation context exist, with
experimental work by Shemer and Chernyshova [25] and theoretical work by Kachulin et al. [41]
and Dyachenko et al. [42] being notable exceptions.

In fact, it is possible to make an analytical study of modulational instability when only the
carrier and the two sidebands are considered. This was undertaken in the context of the NLS by
Capellini and Trillo [31], and more recently by Stuhlmeier et al. [30,32,33] and Leblanc [43] using
the Zakharov formulation. The key to this reformulation of the problem is the identification of
a single dynamic phase variable, which combines the individual modal phases according to the
resonance condition. The individual phases are largely irrelevant for the dynamics, and this simple
identification immediately reduces the dimension of the system by two. In the conservative case the
conservation laws can be used to reduce the modulational instability to a planar dynamical system
in terms of dynamic phase and energy exchange variables.

This reduction is still useful when the system is nonconservative due to the effects of damping;
indeed, the reformulated system gives insight into the energy exchange processes, while stripping
out physically irrelevant information. Thus, while the total energy of the system decreases steadily,
at each energy level the trajectories in the three-dimensional phase space are directed by the
associated conservative system, as shown in Sec. III. Damping means that separatrices of the
conservative system can be crossed, and fixed points disappear. A competition sets in between the
effects of damping and those of energy exchange, with the former dominating for small initial
growth rates, while the latter dominates when the modulational instability growth rate is high.

Damping may also have the effect of shifting the dominant wave, particularly when the damping
depends on the wave frequency, as is the case for propagation in sea ice. The consequences of
frequency-dependent damping can thus be observed in the modal amplitudes as well as in the
appearance of the free surface, which we demonstrate in Sec. V A. It is also possible to allow
many more modes to interact, and thus study how the modulational instability gives rise to spectral
broadening. While this case is no longer amenable to analytical insight, we can numerically integrate
the damped, spatial Zakharov equation starting with an initially unstable carrier and two small
sidebands. We readily observe that the effect of damping can induce a spectral downshift, as
observed experimentally for waves propagating in sea ice [44], as well as inhibit spectral broadening
which occurs in the undamped configuration. Indeed, after hundreds of wavelengths the damped
amplitude spectrum remains remarkably narrow and confined, a scenario which can be observed in
when waves propagate into sea ice.
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While we have sought to provide an elegant, analytical description of the damped modulational
instability in space, it may also be interesting to consider the statistics of damped waves and
the propagation of wave energy spectra (with random phases) in the presence of frequency-
dependent damping using the Zakharov formulation, thus extending previous work by Alberello and
Păraŭ [17]. Further avenues of study might also explore the combined effects of wind forcing and
damping on the Zakharov formulation, and compare this with recent work by Armaroli et al. [14]
using the Dysthe equation formulation. Extensions to other physical scenarios such as internal
waves [45] or capillary-gravity waves [20,46] could likewise present interesting avenues for future
work.
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