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long internal wave mode in a copropagating wave system. Convergent series solutions
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interactions comprise multiple surface wave modes and a single internal wave mode. As
the upper layer thickness increases, energy from the interface is transported to the free
surface, and energy in the whole wave system shifts from shorter to longer resonant triads
and quartets. Our results indicate that steady-state interfacial waves with class-III exact and
near-resonance interactions among surface and internal wave modes could occur in cases
representative of the real ocean.
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I. INTRODUCTION

Over the past 60 years, research into wave resonance has extended from free surface grav-
ity waves [1] to interfacial gravity waves [2], acoustic-gravity waves [3], Faraday waves [4,5],
harbor resonance induced by free surface waves [6,7], etc. Steady-state resonant waves with
time-independent amplitude spectra are a special case of the more general unsteady-state resonant
waves with time-dependent amplitude spectra. Steady-state resonant wave fields consist of one
exact resonant set plus a few nearly resonant components, with the amplitude of each sinusoidal
component independent of time.

Phillips [1] proposed that an exactly resonant quartet must be present for unsteady-state res-
onance to occur in periodic free surface waves, and pointed out that the wave amplitude of the
resonant component is proportional to time. Benney [8], Longuet-Higgins [9], and Bretherton
[10] further investigated the amplitude equations of a resonant quartet in free surface waves and
suggested that an energy-sharing mechanism drove energy transfer with time among the different
wave components participating in resonance. Studies of wave resonance were then extended from
surface waves to interfacial waves. Two different linear dispersion relationships, corresponding to
surface and internal wave modes, exist in the physical idealisation of a two-layer fluid with a free
surface. Ball [2] found that a large amount of energy is transferred from the two opposite surface
wave modes to an internal wave mode during one-dimensional (1D) class-I triad resonance. Wen
[11] used a multiscale perturbation method to investigate the amplitude evolution equations of two
opposite internal wave modes and a surface wave mode under 1D class-II triad resonance, and
found that the amplitudes of the internal modes grow on a timescale much longer than the period
of the surface mode. Alam [12] discovered a new triad resonance (1D class-III) emerged from two
copropagating surface wave modes and an internal wave mode, and observed that energy gradually
shifts from the primary resonant triad into several nearly resonant components of higher and lower
order with time. Choi et al. [13] proposed that a 1D class-IV triad resonance condition could occur
among two copropagating internal wave modes and a surface wave mode when the density ratio
between lower and upper fluid layers exceeds 3. In addition, Choi et al. [13] extended the foregoing
four types of triad resonance to two-dimensional (2D) waves, and found that the amplitudes of the
wave components undergoing resonance interactions all vary periodically with time.

In tackling the problem of steady-state resonance, Liao [14] successfully avoided the singularity
caused by an exactly resonant component and obtained steady-state free surface wave solutions
in deep water using the homotopy analysis method (HAM) [15,16]. Since then, a large number
of theoretical (HAM), numerical, and experimental studies have been conducted on steady-state
resonant free surface waves [17–23]. Compared to free surface waves, much less research attention
has focused on steady-state resonant interfacial waves for which an exact harmonic resonance
condition is satisfied when a surface wave mode and an internal wave mode share the same phase
speed and possess an integer ratio of wave lengths. Using a numerical model, Parau and Dias
[24] obtained steady-state solutions with near-harmonic resonances, and noted that it is hard to
obtain a wave system with exact harmonic resonance. However, Li et al. [25] obtained steady-state
interfacial wave groups with exact and near-harmonic resonances using HAM, and indicated that
energy is transferred from resonant components to primary components as the thickness of the
upper fluid layer increases. Besides, Li et al. [26] investigated multiple near resonance interactions
of steady-state interfacial waves with a rigid-lid upper boundary using a combination of HAM and
Galerkin methods, and found that the energy shifts progressively to the sideband of the amplitude
spectrum with increasing wave steepness, which effectively broadens the frequency band.

No energy exchange occurs with time among wave components in a steady-state wave system.
Steady-state resonance essentially reflects a particular wave energy equilibrium and corresponds to
the most basic case of conventional unsteady-state resonance with energy exchange among different
wave components over time. For example, let the wave amplitude of an unsteady-state resonant
component be A(t ), a periodic function of time t . Then, the corresponding wave amplitude of steady-
state resonance A = const represents a special case of A(t ). Hence, studies of steady-state resonant
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wave systems can provide a way to investigate the characteristics of wave resonance. In the present
paper, we define “surface waves” as the free surface, and “interface waves” as the internal interface
of the interfacial wave system. Alam [12] reported that interface waves are much longer than surface
waves in class-III triad resonance in a copropagating wave system, where the ratio of wave lengths
and the direction of propagation both oppose class-I and class-II triad resonances. Hence, class-III
resonance is more likely to appear in the real ocean. To the best of our knowledge, steady-state
periodic interfacial waves with class-III triad resonance have not been considered to date. Research
is therefore needed to reveal the influence of steady-state class-III resonance on the evolution of
ocean internal wave spectra. Besides, our approach also provides a different type of free surface
and internal waves for wave load estimation and structural design of marine engineering structures,
such as ships, submarines, and deep-sea vehicles.

This paper utilizes a HAM-based analytic method to obtain steady-state periodic interfacial
gravity waves with 1D class-III triad resonance in a two-layer liquid with a free surface. A parameter
study examines the influences of nonlinearity (wave steepness) and upper layer thickness (vertical
distance from sea surface to density transition layer) on the amplitudes of wave components, wave
spatial profiles, and energy distributions of interfacial waves with multiple resonances. HAM has
previously been used to analyze steady-state resonance in free surface waves, interfacial waves,
and acoustic-gravity waves [27]. Based on the great freedom in choice of auxiliary linear operators
and initial guesses, any singularities and small divisors associated with exact and near resonances
are avoided by introducing a piecewise parameter in HAM, enabling convergent series solutions of
steady-state interfacial waves to be obtained successfully. The paper makes two main contributions.
Convergent series solutions of steady-state periodic interfacial gravity waves with 1D class-III
exact and near resonances are obtained via HAM. Resonant interactions are analyzed between
multiple surface wave modes and an internal wave mode. Then effects are considered of several
environmental parameters on the energy distribution in steady-state resonant interfacial waves.

The paper is structured as follows. Section II describes the mathematical derivation and presents
a class-III triad resonance criterion. Section III analyzes the resonance curves and interprets results
for multiple exact and near resonances. Section IV lists the main conclusions.

FIG. 1. Sketch showing idealized two-fluid system with related notation.

094801-3



LI, LIU, BORTHWICK, CUI, AND LIAO

II. MATHEMATICAL MODEL

A. Governing equations

Consider two inviscid, incompressible, immiscible fluid layers each of constant density that lie
one above the other under the influence of gravity. The upper layer, of thickness h1, has a free
surface. The lower layer thickness is h2. The flow is assumed irrotational inside each fluid layer.
Figure 1 displays the two-layer fluid system where the density of the upper layer is less than that of
the lower layer, ρ1 < ρ2. Horizontal planes at z = 0 and z = −h1 in the Cartesian coordinate system
(x, y, z) represent the stationary free surface and the interface between the two fluid layers. The
horizontal bed is located at z = −h1 − h2. Here z is measured vertically upwards. The governing
equations for each layer, kinematic boundary condition at the bed, and boundary conditions at the
free surface and interface may be written

∇2φ1 = 0, −h1 + ζ2 < z < ζ1, (1)

∇2φ2 = 0, −h1 − h2 < z < −h1 + ζ2, (2)

∂φ2

∂z
= 0, z = −h1 − h2, (3)

∂2φ1

∂t2
+ g

∂φ1

∂z
+ ∂ (|∇φ1|2)

∂t
+ ∇φ1 · ∇

(
1

2
|∇φ1|2

)
= 0, at z = ζ1, (4)

ζ1 + 1

g

(
∂φ1

∂t
+ 1

2
|∇φ1|2

)
= 0, at z = ζ1, (5)

∂2φ2

∂t2
+ g(1 − �)

∂φ2

∂z
− �

∂2φ1

∂t2
+ ∂ (|∇φ2|2)

∂t
− �

∂
(

1
2 |∇φ1|2

)
∂t

+ ∇φ2 · ∇
(

1

2
|∇φ2|2

)
−�∇φ2 · ∇

(
∂φ1

∂t
+ 1

2
|∇φ1|2

)
= 0, at z = −h1 + ζ2, (6)

g(1 − �)
∂ (φ2 − φ1)

∂z
+ ∂

(
1
2 |∇φ2|2

)
∂t

+ ∇φ2 · ∇
(

1

2
|∇φ2|2

)
− ∇φ1 · ∇

(
∂φ2

∂t
+ 1

2
|∇φ2|2

)
+�

[
∂
(

1
2 |∇φ1|2

)
∂t

+ ∇φ1 · ∇
(

1

2
|∇φ1|2

)
−∇φ2 · ∇

(
∂φ1

∂t
+1

2
|∇φ1|2

)]
= 0, at z = −h1+ζ2,

(7)

ζ2 − 1

g(1 − �)

[
�

(
∂φ1

∂t
+ 1

2
|∇φ1|2

)
−

(
∂φ2

∂t
+ 1

2
|∇φ2|2

)]
= 0, at z = −h1 + ζ2, (8)

where φ1(x, y, z, t ) and φ2(x, y, z, t ) are the velocity potentials of the upper and lower fluid layers,
z = ζ1(x, y, t ) is the free surface elevation above the mean surface level, z = −h1 + ζ2(x, y, t ) is
the elevation of the interface between the two layers, g is acceleration due to gravity, t is time,
� = ρ1/ρ2 denotes the density ratio between the upper and lower layers, and ∇ = ex

∂
∂x + ey

∂
∂y +

ez
∂
∂z represents the gradient operator. A detailed derivation of the interface deformation conditions

(6)–(8) can be found in Appendix of Li et al. [25].
Consider a steady-state interfacial wave system with two primary periodic progressive wave

components. Let ki denote the wave vector and σi the actual angular frequency of the ith primary
component. Given that the amplitudes of all components in this steady-state system are time-
independent, the following transformation is introduced to eliminate the time variable t :

ξi = ki · r − σit, i = 1, 2, (9)
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where r = exx + eyy. The phase of any component in the steady-state wave systems is neglected.
We then define

ϕi(ξ1, ξ2, z) = φi(x, y, z, t ), ηi(ξ1, ξ2) = ζi(x, y, t ), i = 1, 2, (10)

in the new coordinate system (ξ1, ξ2, z). The initial/boundary-value problem (1)–(8) in the original
coordinate system (x, y, z, t ) is transformed into a boundary-value problem in the coordinate system
(ξ1, ξ2, z). Steady-state solutions can be more easily obtained from the boundary-value problem in
this new coordinate system without t . Then the governing equations inside the two fluid layers in
coordinate system (ξ1, ξ2, z) read

∇̂2ϕ1 = 0, −h1 + η2 < z < η1, (11)

∇̂2ϕ2 = 0, −h1 − h2 < z < −h1 + η2, (12)

subject to one kinematic condition and one dynamic boundary condition at the unknown free surface
z = η1:

N1[ϕ1] =
2∑

i=1

2∑
j=1

σiσ j
∂2ϕ1

∂ξi∂ξ j
+ g

∂ϕ1

∂z
− 2

2∑
i=1

σi
∂ f1

∂ξi
+ ∇̂ϕ1 · ∇̂ f1 = 0, (13)

N2[ϕ1, η1] = η1 − 1

g

(
2∑

i=1

σi
∂ϕ1

∂ξi
− f1

)
= 0, (14)

three boundary conditions at the unknown interface z = −h1 + η2:

N3[ϕ1, ϕ2] =
2∑

i=1

2∑
j=1

σiσ j
∂2ϕ2

∂ξi∂ξ j
+ g(1 − �)

∂ϕ2

∂z
− �

2∑
i=1

2∑
j=1

σiσ j
∂2ϕ1

∂ξi∂ξ j
+ ∇̂ϕ2 · ∇̂ f2

− 2
2∑

i=1

σi
∂ f2

∂ξi
+ �

(
2∑

i=1

σi
∂ f1

∂ξi
− h21 − ∇̂ϕ2 · ∇̂ f1

)
= 0, (15)

N4[ϕ1, ϕ2] = g(1 − �)
∂ (ϕ2 − ϕ1)

∂z
+ ∇̂(ϕ2 − ϕ1) · ∇̂ f2 − h12 −

2∑
i=1

σi
∂ f2

∂ξi

−�

[
2∑

i=1

σi
∂ f1

∂ξi
+ h21 + ∇̂(ϕ2 − ϕ1) · ∇̂ f1

]
= 0, (16)

N5[ϕ1, ϕ2, η2] = η2 − 1

g(1 − �)

[
2∑

i=1

σi
∂ϕ2

∂ξi
− f2 − �

(
2∑

i=1

σi
∂ϕ1

∂ξi
− f1

)]
= 0, (17)

and a kinematic boundary condition at the bed

∂ϕ2

∂z
= 0, z = −h1 − h2, (18)

where Ni with i = 1, 2, . . . , 5 denote nonlinear differential operators, and

∇̂ = k1
∂

∂ξ1
+ k2

∂

∂ξ2
+ ez

∂

∂z
, fi = 1

2
|∇̂ϕi|2, i = 1, 2, (19)

hi j = −σ1∇̂ϕi · ∇̂
(

∂ϕ j

∂ξ1

)
− σ2∇̂ϕi · ∇̂

(
∂ϕ j

∂ξ2

)
, i, j = 1, 2. (20)

The disturbed free surface and interface elevations, η1 and η2, and the velocity potentials in the
upper and lower fluid layers, ϕ1 and ϕ2, of the steady-state interfacial wave system can be expressed
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as the following series:

η1(ξ1, ξ2) =
+∞∑

i=−∞

+∞∑
j=−∞

Cη1
i, j cos(iξ1 + jξ2), (21)

η2(ξ1, ξ2) =
+∞∑

i=−∞

+∞∑
j=−∞

Cη2
i, j cos(iξ1 + jξ2), (22)

ϕ1(ξ1, ξ2, z) =
+∞∑

i=−∞

+∞∑
j=−∞

(
Cϕ1a

i, j ψ1a
i, j + Cϕ1b

i, j ψ1b
i, j

)
, (23)

ϕ2(ξ1, ξ2, z) =
+∞∑

i=−∞

+∞∑
j=−∞

Cϕ2
i, jψ

2
i, j, (24)

where

ψ1a
i, j (ξ1, ξ2, z) = cosh[ki, j (z + h1)] sin(iξ1 + jξ2), (25)

ψ1b
i, j (ξ1, ξ2, z) = sinh[ki, j (z + h1)] sin(iξ1 + jξ2), (26)

ψ2
i, j (ξ1, ξ2, z) = cosh[ki, j (z + h1 + h2)] sin(iξ1 + jξ2), (27)

ki, j = |ik1 + jk2|. (28)

Values of ki, σi, and hi with i = 1, 2 are required in each case to obtain the unknown constants
Cη1

i, j , Cη2
i, j , Cϕ1a

i, j , Cϕ1b
i, j , and Cϕ2

i, j . Equations (11)–(12) and (18) are automatically satisfied by the series
form of ηi, ϕi shown in (21)–(24), and therefore the unknown constants are determined by solving
the free surface boundary conditions (13)–(14) at z = η1 and the interface boundary conditions
(15)–(17) at z = −h1 + η2.

B. Class-III triad resonance condition

Two different linear dispersion relationships (modes) exist in the model (11)–(18). For the surface
wave mode, the linear angular frequency is given by

ωS (k) =
√

gk
CT1 + CT2 +

√
(CT1 + CT2)2 − 4(1 − �)(� + CT1CT2)

2(� + CT1CT2)
, (29)

in which CTi = coth(khi ) with i = 1, 2. The linear angular frequency of the internal wave mode is

ωI (k) =
√

gk
CT1 + CT2 −

√
(CT1 + CT2)2 − 4(1 − �)(� + CT1CT2)

2(� + CT1CT2)
. (30)

To provide a convenient description of the resonance condition, the linear dispersion relationships
(29)–(30) are transformed into the following dimensionless forms:

2
S (K ) = K

CT1 + CT2 +
√

(CT1 + CT2)2 − 4(1 − �)(� + CT1CT2)

2(� + CT1CT2)
, (31)

2
I (K ) = K

CT1 + CT2 −
√

(CT1 + CT2)2 − 4(1 − �)(� + CT1CT2)

2(� + CT1CT2)
, (32)

where h = h1/h2, K = kh1, S = ωS
√

h1/g, and I = ωI
√

h1/g. Let ki = |ki| with i = 1, 2 denote
the wave numbers of the two primary components, and k3 denote the wave number of the exactly
resonant component. So-called 1D class-III exact resonance occurs [12,13] when two surface wave
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modes [k1, ωS (k1)] and [k3, ωS (k3)], and one internal wave mode [k2, ωI (k2)] all propagate in the
same direction, and satisfy the following triad resonance condition:

K3 = K1 − K2, S (K3) = S (K1) − I (K2), (33)

in which Ki = kih1 with i = 1, 2, 3. According to Alam [12], the wave length of the internal wave
mode is much larger than those of the surface wave modes when exact resonance (33) occurs,
causing K1 � K2 and S (K1) � I (K2), such that related near resonances may occur when

K1,n = K1 + nK2, S (K1,n) + d1,n = S (K1) + nI (K2), (34)

where K1,n = k1,nh1, d1,n is a small real number which represents the angular frequency mismatch
(n = ±1,±2, . . .). The near-resonance criteria (34) incorporate resonance interactions between
multiple surface wave modes and an internal wave mode, which we call generalized class-III
resonances. When d = 0, the near-resonance condition (34) degenerates into exact resonance
satisfying (33) when n = −1.

The two primary components considered in this paper comprise a surface wave mode
[K1,S (K1)] and an internal wave mode [K2,I (K2)]. After resonant interaction, one exactly or
nearly resonant wave component [K1,−1,S (K1,−1)] appears and several nearly resonant wave
components [K1,n,S (K1,n)] may exist. The foregoing components along with other nonresonant
components constitute the whole interfacial wave system.

C. Approach based on HAM

The homotopy analysis method (HAM) is an analytic approximation method for nonlinear
partial differential equations, which has been widely applied to problems of free surface gravity
wave resonance [14,17–23], acoustic-gravity wave resonance [27], and interfacial gravity wave
resonance [25,26]. The general idea behind HAM is to construct a series of continuous deformations
between initial guess functions and solutions of nonlinear differential equations. Comprehensive
introductions to HAM are given by Liao [15,16]. The basic concept and key details of HAM are
described below.

Given that the expressions already obtained for ϕ1 (23) and ϕ2 (24) automatically satisfy the pair
of Laplace equations (11)–(12) and the bottom boundary condition (18), it is sufficient simply to
solve the free surface and internal interface conditions (13)–(17). Here we define q ∈ [0, 1] as an
embedding homotopy parameter, c0 �= 0 as a convergence-control parameter, Li with i = 1, 3, 4 as
the auxiliary linear operators, η0,1 = η0,2 = 0 as initial guesses for the free surface elevation η1, and
disturbed interface elevation η2, and ϕ0,1 and ϕ0,2 as initial guesses for the potential functions ϕ1

and ϕ2. Then, on the basis of free surface and interface conditions (13)–(17), a parameterized family
of equations (called the zeroth-order deformation equations) is constructed as follows:

(1 − q)L1[ϕ̌1 − ϕ0,1] = qc0N1[ϕ̌1], at z = η̌1, (35)

(1 − q)η̌1 = qc0N2[ϕ̌1, η̌1], at z = η̌1, (36)

(1 − q)L3[ϕ̌1 − ϕ0,1, ϕ̌2 − ϕ0,2] = qc0N3[ϕ̌1, ϕ̌2], at z = −h1 + η̌2, (37)

(1 − q)L4[ϕ̌1 − ϕ0,1, ϕ̌2 − ϕ0,2] = qc0N4[ϕ̌1, ϕ̌2], at z = −h1 + η̌2, (38)

(1 − q)η̌2 = qc0N5[ϕ̌1, ϕ̌2, η̌2], at z = −h1 + η̌2, (39)

where

ϕ̌i(ξ1, ξ2, z; q) =
+∞∑
n=0

ϕn,iq
n, ϕn,i(ξ1, ξ2, z) = 1

n!

∂nϕ̌i

∂qn

∣∣∣∣
q=0

, (40)

η̌i(ξ1, ξ2; q) =
+∞∑
n=1

ηn,iq
n, ηn,i(ξ1, ξ2) = 1

n!

∂nη̌i

∂qn

∣∣∣∣
q=0

, i = 1, 2. (41)
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Choosing the auxiliary linear operators Li with the property L1[0] = L3[0, 0] = L4[0, 0] = 0,
the following relationships at q = 0 are obtained:

ϕ̌i(ξ1, ξ2, z; 0) = ϕ0,i, η̌i(ξ1, ξ2; 0) = 0, i = 1, 2. (42)

When q = 1, Eqs. (35)–(39) are the same as the original Eqs. (13)–(17). Hence,

ϕ̌i(ξ1, ξ2, z; 1) = ϕi, η̌i(ξ1, ξ2; 1) = ηi, i = 1, 2. (43)

In short, the zeroth-order deformation equations (35)–(39) define four homotopies

ϕ̌i := ϕ0,i ∼ ϕi, η̌i := 0 ∼ ηi, when q := 0 ∼ 1, i = 1, 2. (44)

Setting q = 1, the homotopy-series solutions for the free surface elevation η1, disturbed interface
elevation η2, and the velocity potentials in the upper and lower fluid layers ϕ1 and ϕ2 are expressed
(and approximated) by

ϕi =
+∞∑
n=0

ϕn,i ≈
m∑

n=0

ϕn,i, ηi =
+∞∑
n=1

ηn,i ≈
m∑

n=1

ηn,i, i = 1, 2, (45)

where the latter terms in the expressions are called mth-order homotopy approximations. The sum
indexes of η1 and η2 commence from n = 1 due to the zero values of initial guesses (i.e., η0,1 =
η0,2 = 0).

1. Solution procedure

Values for ϕm,i and ηm,i are obtained by solving the high-order deformation equations step by
step:

L1[ϕm,1] = c0�
ϕ
m−1,1 + χm(Sm−1,1 − Sm,1), m � 1, (46)

Li+1[ϕm,1, ϕm,2] = c0�
ϕ
m−1,i + χm(Sm−1,i − Sm,i ), i = 2, 3, m � 1, (47)

ηm,i = c0�
η

m−1,i + χmηm−1,i, i = 1, 2, m � 1, (48)

where the auxiliary linear operators L1 = L1|z=0, L3 = L3|z=−h1 and L4 = L4|z=−h1 , and define
χ1 = 0 and χm = 1 for m � 2 . Up to the mth-order approximation, all terms �

ϕ
m−1,i, Sm,i, Sm−1,i,

�
η

m−1,i and ηm−1,i on the right-hand side of the mth-order deformation equations (46)–(48) are
predetermined by ϕn,i and ηn,i, with n = 0, 1, 2, . . . , m − 1. Detailed expressions for the high-order
deformation equations (46)–(48) are listed in Appendix and in the following section. Values of
ηm,1 and ηm,2 are obtained directly from (48), respectively, and ϕm,1 and ϕm,2 are determined by
simultaneously solving Eqs. (46)–(47).

If resonance satisfying (34) occurs, we can choose appropriate auxiliary linear operators Li and
initial guesses in the framework of HAM to avoid encountering the singularity or small denominator
caused by each exactly or nearly resonant component so that we obtain convergent series solutions
for the steady-state wave system. Similar solution procedures have been applied to cases of multiple
near resonances of surface waves [21] and special harmonic resonances between interface and
surface waves [25].

2. Choice of auxiliary linear operators

We now consider periodic interfacial waves with class-III resonances (34). First, the follow-
ing auxiliary linear operators are used to remove all small divisors caused by nearly resonant
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components

L1[ϕ1] = ω2
1
∂2ϕ1

∂ξ 2
1

+ μω1ω2
∂2ϕ1

∂ξ1∂ξ2
+ ω2

2
∂2ϕ1

∂ξ 2
2

+ g
∂ϕ1

∂z
, (49)

L3[ϕ1, ϕ2] = ω2
1
∂2ϕ2

∂ξ 2
1

+ μω1ω2
∂2ϕ2

∂ξ1∂ξ2
+ ω2

2
∂2ϕ2

∂ξ 2
2

+ g(1 − �)
∂ϕ2

∂z

−�

(
ω2

1
∂2ϕ1

∂ξ 2
1

+ μω1ω2
∂2ϕ1

∂ξ1∂ξ2
+ ω2

2
∂2ϕ1

∂ξ 2
2

)
, (50)

L4[ϕ1, ϕ2] = g(1 − �)

(
∂ϕ2

∂z
− ∂ϕ1

∂z

)
, (51)

where ω1 = ωS (k1) and ω2 = ωI (k2) denote the linear angular frequencies of two primary com-
ponents, and μ = μ(i, j) is a piecewise parameter depending on (i, j) and associated with the
component ki, j (28) and defined as

μ(i, j) =
⎧⎨⎩ω2

S (ki, j )−
(

i2ω2
1+ j2ω2

2

)
i jω1ω2

, (i, j) = (1, n)

2, else
(52)

in which the values of (1, n) correspond to the resonant components described by (34). This
piecewise parameter transforms each small denominator into a singularity which is one of the
keys to obtaining steady-state solutions. Choice of the auxiliary linear operators (49)–(51) is based
on the linear parts of the boundary conditions (13) and (15)–(16). According to the series form
(23)– (24), ϕm,1 and ϕm,2 are defined in general form as

ϕm,1 =
∑
i, j

(
Cϕ1a,m

i, j ψ1a
i, j + Cϕ1b,m

i, j ψ1b
i, j

)
, ϕm,2 =

∑
i, j

Cϕ2,m
i, j ψ2

i, j . (53)

Given that the auxiliary linear operators Li, Sm,i and Sm,i are now known, both sides of the mth-order
deformation equations (46)–(47) can be simplified to give

L1

⎡⎣∑
i, j

(
Cϕ1a,m

i, j ψ1a
i, j + Cϕ1b,m

i, j ψ1b
i, j

)⎤⎦ =
∑
i, j

R1,m
i, j sin(iξ1 + jξ2), (54)

L3

⎡⎣∑
i, j

(
Cϕ1a,m

i, j ψ1a
i, j + Cϕ1b,m

i, j ψ1b
i, j

)
,
∑
i, j

Cϕ2,m
i, j ψ2

i, j

⎤⎦ =
∑
i, j

R3,m
i, j sin(iξ1 + jξ2), (55)

L4

⎡⎣∑
i, j

(
Cϕ1a,m

i, j ψ1a
i, j + Cϕ1b,m

i, j ψ1b
i, j

)
,
∑
i, j

Cϕ2,m
i, j ψ2

i, j

⎤⎦ =
∑
i, j

R4,m
i, j sin(iξ1 + jξ2), (56)

where Cϕ1a,m
i, j , Cϕ1b,m

i, j and Cϕ2,m
i, j are unknown constants to be determined for known R1,m

i, j , R3,m
i, j and

R4,m
i, j . Balancing both sides of (54)–(56), we obtain three linear algebraic equations:

gki, j
[
Cϕ1b,m

i, j cosh(ki, jh1) + Cϕ1a,m
i, j sinh(ki, jh1)

]
− Mi, j

[
Cϕ1a,m

i, j cosh(ki, jh1) + Cϕ1b,m
i, j sinh(ki, jh1)

] = R1,m
i, j , (57)

Cϕ2,m
i, j [gki, j (1 − �) sinh(ki, jh2) − Mi, j cosh(ki, jh2)] + Cϕ1a,m

i, j �Mi, j = R3,m
i, j , (58)

gki, j (1 − �)
[
Cϕ2,m

i, j sinh(ki, jh2) − Cϕ1b,m
i, j

] = R4,m
i, j , (59)
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where

Mi, j = i2ω2
1 + μi jω1ω2 + j2ω2

2. (60)

The solutions for Cϕ1a,m
i, j , Cϕ1b,m

i, j , and Cϕ2,m
i, j are

Cϕ1a,m
i, j = R3,m

i, j + [Mi, j cosh(ki, jh2) − gki, j (1 − �) sinh(ki, jh2)]Cϕ2,m
i, j

�Mi, j
, (61)

Cϕ1b,m
i, j = Cϕ2,m

i, j sinh(ki, jh2) − R4,m
i, j

gki, j (1 − �)
, (62)

Cϕ2,m
i, j = Di, j

R1,m
i, j + Ai, jR

3,m
i, j + Bi, jR

4,m
i, j

[� + coth(ki, jh1) coth(ki, jh2)]λS
i, jλ

I
i, j

, (63)

where

Ai, j = 1

�

[
cosh(ki, jh1) − gki, j sinh(ki, jh1)

Mi, j

]
, (64)

Bi, j = 1

1 − �

[
cosh(ki, jh1) − Mi, j sinh(ki, jh1)

gki, j

]
, (65)

Di, j = − �Mi, j

sinh(ki, jh1) sinh(ki, jh2)
, (66)

λS
i, j = Mi, j − ω2

S (ki, j ), (67)

λI
i, j = Mi, j − ω2

I (ki, j ). (68)

For any nonresonant component cos(iξ1 + jξ2)[(i, j) �= (1, 0), (0, 1)], μ = 2, and λS
i, j = (iω1 +

jω2)2 − ω2
S (ki, j ) and λI

i, j = (iω1 + jω2)2 − ω2
I (ki, j ) are nontrivial real numbers. Cϕ2,m

i, j is obtained
directly from (63) after which Cϕ1a,m

i, j and Cϕ1b,m
i, j can be calculated from (61)–(62). For any exactly or

nearly resonant component cos(ξ1 + nξ2), the value of μ is determined by (52) resulting in λS
1,n = 0.

Each resonant component corresponds to a singularity in the mathematical formulas, and so Cϕ2,m
1,n

cannot be obtained from (63). To remove the singularity, the numerator on the right-hand side of
(63) is set to zero, such that

R1,m
1,n + A1,nR3,m

1,n + B1,nR4,m
1,n = 0, (69)

from which the value of Cϕ2,m−1
1,n can be determined. In the same way, Cϕ2,m

1,n is determined by solving
the (m + 1)th-order Eq. (69). Once the value of Cϕ2,m

1,n has been obtained, Cϕ1a,m
1,n and Cϕ1b,m

1,n are
determined directly from (61)-(62). The foregoing treatment whereby the singularity is removed
is key to obtaining convergent series solutions by HAM for steady-state resonant wave groups.
It should be emphasized that λS

1,0 = λI
0,1 = 0 for the two primary components cos(ξ1) and cos(ξ2).

Therefore, the coefficients Cϕ1a,m
i, j , Cϕ1b,m

i, j and Cϕ2,m
i, j [(i, j) = (1, 0), (0, 1)] are determined in a similar

way as if these two primary components are resonant.
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3. Choice of initial velocity potentials

On the basis of the linearized solutions of Eqs. (11)–(18), the following initial guesses for
velocity potentials are selected:

ϕ0,1 = 1

�

[
cosh(k1h2) − gk1(1 − �)

ω2
1

sinh(k1h2)

]
Cϕ2,0

1,0 ψ1a
1,0 + Cϕ2,0

1,0 sinh(k1h2)ψ1b
1,0

+ 1

�

[
cosh(k2h2) − gk2(1 − �)

ω2
2

sinh(k2h2)

]
Cϕ2,0

0,1 ψ1a
0,1 + Cϕ2,0

0,1 sinh(k2h2)ψ1b
0,1

+
L∑

l=1

{
1

�

[
cosh(k1,il h2)−gk1,il (1− �)

ω2
S (k1,il )

sinh(k1,il h2)

]
Cϕ2,0

1,il
ψ1a

1,il + Cϕ2,0
1,il

sinh(k1,il h2)ψ1b
1,il

}
,

(70)

ϕ0,2 = Cϕ2,0
1,0 ψ2

1,0 + Cϕ2,0
0,1 ψ2

0,1 +
L∑

l=1

Cϕ2,0
1,il

ψ2
1,il , (71)

where L denotes the number of resonant wave components subject to the condition (34), and (1, il )
corresponds to the resonant component cos(ξ1 + ilξ2). Initial guesses for the vertical disturbances
of the free surface and interface are η0,1 = η0,2 = 0. Values of Cϕ2,0

1,0 , Cϕ2,0
0,1 and Cϕ2,0

1,il
are determined

from the nonlinear algebraic equations (69) for m = 1. When m > 1, unique solutions of Cϕ2,m−1
1,0 ,

Cϕ2,m−1
0,1 , and Cϕ2,m−1

1,il
are obtained from the linear algebraic equations (69).

Here all singularities and small denominators resulting from exact and near resonances have
been avoided by proper choices of auxiliary linear operators and initial guesses. For different
wave parameters and environmental conditions, we determine the value of the convergence-control
parameter c0 by minimizing the averaged residual squares with fifth-order approximation [28,29].
Convergent series solutions of the steady-state periodic interfacial waves are therefore achieved
when implementing HAM.

III. RESULTS AND DISCUSSION

Until now, studies of class-III triad resonance have all focused on unsteady-state interfacial
waves. Alam [12] was was the first to discover the class-III resonance condition and obtained
copropagating surface and interface waves for a case widely considered in two-layer liquid ex-
periments. Recently, Choi et al. [13] extended class-III resonance from 1D to 2D waves. In the
present paper, we choose physical parameters similar to those applied previously in unsteady-state
wave experiments to obtain 1D steady-state wave solutions.

A. Resonance analysis

We first analyze class-III triad resonance conditions (34). Referring to Alam [12], the wave length
of the surface wave mode (31) is much smaller than that of the internal wave mode (32) when exact
resonance (33) of the [K1,−1,S (K1,−1)] component occurs, which is why K2 
 K1 and I (K2) 

S (K1). Hence, the [K1,n,S (K1,n)] (n = 1,±2,±3, . . .) components might be involved in the near
resonances (34).

Figure 2 presents exact resonance curves for the cos(ξ1 + nξ2) (n = ±1,±2,±3) components
that relate the dimensionless wave numbers of primary components K2 to K1. Density ratio � and
depth ratio h values are partly selected from experimental data for unsteady-state interfacial waves
[30,31]. The resonance curves remain closer to each other for primary components with smaller
wave numbers. This implies that the longer the wave lengths of primary components, the greater the
number of wave components are likely to be involved in resonance. Two groups of exact resonances
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(a) (b)

FIG. 2. Each color curve represents the relationship between the dimensionless wave numbers of primary
components K1 and K2 that satisfy the exact resonance condition (34) (d1,il = 0) for the [K1,il , S (K1,il )]
component: (a) � = 0.86 and h = 0.25 and (b) � = 0.95 and h = 0.5. Square symbols indicate exactly
resonant cases for the [K1,−1, S (K1,−1)] component at K2 = 2.

for the [K1,−1,S (K1,−1)] component marked by square symbols in Fig. 2 are chosen as standard
cases here:

� = 0.86, h = 0.25, K2 = k2h1 = 2, K1 = k1h1 = 7.81302, (72)

� = 0.95, h = 0.5, K2 = k2h1 = 2, K1 = k1h1 = 20.8924, (73)

where the larger density and depth ratios cause the wave number ratio K1/K2 to increase for fixed
K2 = 2. The relative angular frequency mismatch is defined as

ν(1, il ) = |d1,il |
S (K1)

. (74)

Taking the exact and several possible nearly resonant components as an example, Table I and
Table II list the six resonant components with smallest relative angular frequency mismatches
log10 ν(1, il ) for the parameters in (72) and (73). The relative angular frequency mismatch increases
with the value of |il |, which indicates that the component cos(ξ1 + ilξ2) has smaller resonance
probability at larger |il |. Comparing Table I with Table II, case (73) may contain more nearly
resonant components than case (72). For different physical parameters (such as wave steepness,
fluid layer depth, and density ratio), these nearly resonant components with small relative angular
frequency mismatches might serve as candidates for inclusion in the initial velocity potentials
(70)–(71).

TABLE I. Six resonant components
[K1,il , S (K1,il )] with smallest relative angular
frequency mismatches log10 ν(1, il ) in case (72)
for |il | � 20.

il log10 ν(1, il ) il log10 ν(1, il )

−1 −∞ 2 −1.34
1 −1.78 3 −1.08

−2 −1.58 −3 −0.97

094801-12



STEADY-STATE INTERFACIAL GRAVITY WAVES WITH …

TABLE II. Six resonant components
[K1,il , S (K1,il )] with smallest relative angular
frequency mismatches log10 ν(1, il ) in case (73)
for |il | � 20.

il log10 ν(1, il ) il log10 ν(1, il )

−1 −∞ 2 −2.18
1 −2.64 −3 −2.07
−2 −2.57 3 −1.90

B. Multiply resonant waves with various nonlinearities

We now consider interfacial waves with an exactly resonant component cos(ξ1 − ξ2) and sev-
eral nearly resonant components of different nonlinearity. We define the dimensionless angular
frequency as the ratio of actual to linear angular frequency ε = σ1/ω1 = σ2/ω2. In general, larger
ε > 1 corresponds to greater nonlinearity (i.e., wave steepness) for an interfacial wave system filled
with copropagating components (see, e.g., [25]). We define the wave steepness of the free surface
Hs1 and internal interface Hs2 as

Hsi = k1
max[ηi(ξ1, ξ2)] − min[ηi(ξ1, ξ2)]

2
, ξ1, ξ2 ∈ [0, 2π ], i = 1, 2. (75)

Note that only one group of solutions for |Cϕ2,0
1,0 |, |Cϕ2,0

0,1 | and |Cϕ2,0
1,il

| in (70)-(71) converges among
all solutions of the nonlinear algebraic equations (69) for m = 1 in both cases (72) and (73).

Figure 3 displays the relationship between wave steepness (Hs1 and Hs2) and dimensionless
angular frequency ε for cases (72) and (73). Hs1 invariably increases with ε whereas Hs2 first
increases and then flattens. This occurs because additional surface wave modes appear in the
spectrum with rising nonlinearity. Higher dimensionless angular frequency corresponds to greater
nonlinearity of the whole wave system, with the majority of nonlinearity concentrated in the surface
waves.

Figure 4 shows the variation in dimensionless amplitudes of the six largest wave components
|k1C

η1
1,0|, |k1C

η2
0,1|, |k1C

η1
1,−1|, |k1C

η1
1,1|, |k1C

η1
1,−2|, and |k1C

η1
1,2| with ε for the two cases (72) and (73).

When ε is small, only three wave components exist in the wave system, which is composed of
one primary component, |k1C

η1
1,0|, and one resonant component, |k1C

η1
1,−1|, at the free surface, and

one primary component, |k1C
η2
0,1|, at the internal interface. As ε increases, the amplitudes of all

FIG. 3. Variations in free surface wave steepness Hs1 and internal interface wave steepness Hs2 for exactly
resonant interfacial waves with dimensionless angular frequency ε, obtained using parameters in (a) case (72)
and (b) case (73).
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FIG. 4. Variations in wave amplitudes of primary and resonant components |k1C
ηp
i, j | with dimensionless

angular frequency ε, obtained using the parameters in (a) case (72) and (b) case (73).

six components increase gradually as several components begin to join the resonance interactions,
notably the |k1C

η1
1,1| component. Note that for large ε, all other components in the interface waves

can be neglected except |k1C
η2
0,1|, which remains almost constant (decreasing very slightly) with

ε and is larger than any free surface wave component. The decrease in wave amplitude |k1C
η2
0,1|

explains the decrease in wave steepness of the internal interface displayed in Fig. 3. In case (72),
the K1 + nK2 (n = 0,±1,±2) components are all smaller than those in case (73), and so the wave
lengths of surface wave components in Fig. 4(a) are larger than those in Fig. 4(b). Therefore, the
amplitude of each surface wave component in Fig. 4(a) is generally larger than its counterpart in
Fig. 4(b) for fixed ε. Moreover, the amplitudes of the two primary components |k1C

η1
1,0| and |k1C

η2
0,1|

and one exactly resonant component |k1C
η1
1,−1| are all invariably larger than those of the nearly

resonant components (|k1C
η1
1,1|, |k1C

η1
1,−2| and |k1C

η1
1,2|) at any given ε. The exactly resonant triad (33)

dominates the resonance interactions compared with other near resonances.
According to the series form of the free surface elevation (21) and using the variable

transformation (9), the contribution of each surface wave component to the free surface elevation
ζ1 is defined as

ζi, j = Cη1
i, j cos[i(k1 · r − σ1t ) + j(k2 · r − σ2t )], (76)

in which

ζ1 =
+∞∑

i=−∞

+∞∑
j=−∞

ζi, j . (77)

Figures 5(a) and 5(b) present spatial profiles of the free surface z = ζ1 for different values of
dimensionless angular frequency ε in cases (72) and (73). As ε increases, the free surface crests
and troughs both steepen and the free surface wave profiles indicate the presence of wave groups.
Figures 5(c) and 5(d) provide spatial profiles of the surface wave components ζi, j for cases (72) (ε =
1.018) and (73) (ε = 1.005). In both cases, all wave components propagate in the same direction and
K1 � K2, causing similar wave components cos(ξ1 + nξ2) to appear at the free surface. In addition,
the value of K1/K2 in case (72) is smaller than that in case (73), and so the wave groups in Fig. 5(b)
possess more crests and troughs than the wave groups in Fig. 5(a) between adjacent wave nodes.
The spatial profile of the interface waves is sinusoidal because only one wave component cos(ξ2)
exists at the interface (see Fig. 4). Hence, the variation in interface wave shape with ε is directly
captured by |k1C

η2
0,1| in Fig. 4.

Based on linear wave theory and following Tanaka & Wakayama [32], the energy density Ei, j of
the cos(iξ1 + jξ2) component can be defined as

ES
i, j = 1

2ρ1g
(
Cη1

i, j

)2
, EI

i, j = 1
2 (ρ2 − ρ1)g

(
Cη2

i, j

)2
, Ei, j = ES

i, j + EI
i, j, (78)
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FIG. 5. Spatial profiles of free surface z = ζ1 at t = 0 s for different values of dimensionless angular
frequency ε obtained using the parameters in case (72) for (a) and case (73) for; and spatial profiles of surface
wave components ζi, j at t = 0 s using parameters in case (72) with ε = 1.018 for (c) and case (73) with
ε = 1.005 for (d).

where ES
i, j and EI

i, j are free surface and internal interface wave energy contributions. Then the total
energy densities of surface waves ES , interface waves EI , and the whole wave field E are obtained
as

ES =
+∞∑

i=−∞

+∞∑
j=−∞

ES
i, j, EI =

+∞∑
i=−∞

+∞∑
j=−∞

EI
i, j, E = ES + EI . (79)

Figure 6 displays the dependence on ε of proportional energy contributions by surface and
interface waves, and primary and resonant components over the whole wave field in cases (72)
and (73). For interface waves, the proportion of energy related to the unique wave component EI

0,1

(equivalent to the proportion of energy carried by the interface waves EI ) directly decreases with
ε. For surface waves, the proportions of energy carried by the primary component ES

1,0 and the
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(a) (b)

FIG. 6. Variations in proportion of energy carried by surface and interface waves and primary and resonant
components with dimensionless angular frequency ε, obtained using the parameters in case (72) for (a) and
case (73) for (b).

exactly resonant component ES
1,−1 both first increase, reach a shallow peak, and then decrease with

increasing ε, whereas the red proportions of energy carried by the nearly resonant components
(ES

1,1, ES
1,−2, and ES

1,2) all increase with ε. The exactly resonant triad (33) corresponds to unique
resonance interaction for small ε. When ε is sufficiently large, the exactly resonant triad (33) and
the nearly resonant triad (34) for n = 1 play important roles in the resonance interactions. In other
words, the wave energy spectrum consists of two primary components and one exactly resonant
component for small amplitude waves, and contains additional nearly resonant components for finite
amplitude waves. The surface waves as a whole carry far more energy than the interface waves. At
large ε > 1.015 in (72) or ε > 1.0045 in (73), the energy proportion of interface waves is less
than 9%.

Note that the wave height of the free surface is commonly smaller than that of the internal
interface for two-layer interfacial progressive waves with similar densities, as reported by Thorpe
[33]. However, as shown in Figs. 3 and 6, the wave height and energy of the free surface are much
larger than those of the internal interface for moderately nonlinear cases due to multiple resonance
interactions (34).

C. Effect of upper layer thickness on finite amplitude waves

This section examines the influence of the upper liquid layer thickness on finite amplitude
interfacial waves with exact and near resonances. The following invariant parameters are selected
from the K1,−1 exact resonance cases (72) and (73) with fixed values of dimensionless angular
frequency ε,

� = 0.86, k1h2 = 31.25, k2h2 = 8, ε = 1.012, (80)

� = 0.95, k1h2 = 41.78, k2h2 = 4, ε = 1.0035, (81)

for different values of upper liquid layer thickness h1.
Figure 7 presents dimensionless amplitudes of the six largest wave components |k1C

η1
1,0|, |k1C

η2
0,1|,

|k1C
η1
1,−1|, |k1C

η1
1,1|, |k1C

η1
1,−2|, and |k1C

η1
1,2| with increased dimensionless upper layer depth k2h1 for

cases (80) and (81). When k2h1 is small, |k1C
η1
1,1|, |k1C

η1
1,0|, and |k1C

η1
1,2| are dominant components

of the surface waves. As k2h1 increases, the wave amplitudes of the three components |k1C
η1
1,0|,

|k1C
η1
1,−1|, and |k1C

η1
1,−2| increase, the component |k1C

η1
1,2| decreases, and the component |k1C

η1
1,1|

first increases a little and then decreases gradually. For large k2h1, |k1C
η1
1,0|, |k1C

η1
1,−1| and |k1C

η1
1,1|

dominate the free surface motion. For interface waves, the sole component |k1C
η2
0,1| increases,
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(a) (b)

FIG. 7. Variations in wave amplitudes of primary and resonant components |k1C
ηp
i, j | with dimensionless

upper layer thickness k2h1, obtained using the parameters in case (80) for (a) and case (81) for (b). Black
dotted lines k2h1 = 2 represent exact resonances for the [K1,−1, S (K1,−1)] component.

reaches a peak, and then decreases with increasing k2h1; the peak occurs at k2h1 = 1.25 for case (80)
and k2h1 = 1.5 for case (81). The resonant triad (34) with n = 1 is the most important resonance
interaction in a shallow upper liquid layer. For a deep upper fluid layer, the dominant resonant triad
(34) corresponds to n = −1. This implies that the dominant resonant component might change with
upper layer thickness. The wave lengths of surface wave components in Fig. 7(a) are larger than
those in Fig. 7(b), and so the amplitudes of the surface wave components in Fig. 7(a) are larger than
their counterparts in Fig. 7(b) for fixed k2h1.

Figure 8 displays spatial profiles of the free surface elevation z = ζ1 with different values of
dimensionless upper layer thickness k2h1 for cases (80) and (81). Crests and troughs of the surface
waves steepen with k2h1, whereas those of the interface waves first steepen and then flatten with

FIG. 8. Spatial profiles of free surface z = ζ1 at t = 0 s for different values of dimensionless upper layer
thickness k2h1 obtained using the parameters in case (80) for (a) and case (81) for (b).
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FIG. 9. Variations in proportion of energy carried by surface and interface waves and primary and resonant
components with dimensionless upper layer depth thickness k2h1, obtained using the parameters in case (80)
for case (a) and (81) for (b). Black dotted lines k2h1 = 2 represent exact resonances for the [K1,−1, S (K1,−1)]
component.

increasing k2h1 as shown in Fig. 7 for the |k1C
η2
0,1| component. A critical upper liquid layer exists for

which the maximum interface waves can occur.
Figure 9 shows the variations with increasing k2h1 of proportional energy contributions by

surface and interface waves and primary and resonant components for cases (80) and (81). For
interface waves, as k2h1 rises, the energy density of the sole wave component EI

0,1 (equivalent to
the proportion of the interface waves EI ) first increases a little, peaks, and then decreases rapidly
for case (80) [see Fig. 9(a)] and decreases continuously in case (81) [see Fig. 9(b)]. For the surface
waves, the proportions of energy carried by ES

1,1 and ES
1,2 resonant components both decrease, those

by ES
1,−1 and ES

1,−2 both increase, and that by the primary component ES
1,0 first increases rapidly and

then saturates with increasing k2h1. The wave energy has four main components ES
1,0, EI

0,1, ES
1,1, and

ES
1,2, corresponding to the resonant triad (34) for n = 1 and the resonant quartet (34) for n = 2 when

the upper layer thickness is small. For a deep upper layer, the resonant triad (34) for n = −1 is the
dominant resonant interaction. Moreover, the resonant quartet (34) for n = −2 cannot be neglected.
The wave numbers of all primary and resonant components in the surface waves satisfy

K1 − 2K2 < K1 − K2 < K1 < K1 + K2 < K1 + 2K2. (82)

This indicates that the majority of wave energy is carried by the surface waves, especially when
the upper layer is deep. As the thickness of the upper fluid layer increases, energy is transferred
from the interface waves to the surface waves. Within the surface waves, energy is transferred from
the shorter resonant components K1,1 and K1,2 to the longer primary and resonant components K1,0,
K1,−1, and K1,−2.

IV. CONCLUDING REMARKS

This paper has investigated steady-state periodic interfacial waves with 1D class-III triad exact
and near resonances. The interfacial waves propagate in a two-layer fluid with a free surface, where
the density ratios are the same as those used in previous experimental studies of unsteady-state
interfacial waves [30,31]. The HAM, an analytic approximation method, has been applied to avoid
singularities and small denominators that would otherwise be caused by exact and near resonances.
Convergent series solutions have been achieved, and the influences of different physical parameters
on steady-state resonant interfacial waves have been interpreted.

For interfacial waves with class-III exact and near resonances, wave groups obviously exist
at the free surface. As nonlinearity increases, the original exactly resonant triad condition (33)
controls resonance interactions, even though several components gradually join the near-resonance
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interactions. Unlike conventional progressive interfacial waves with small amplitude free surface
and large amplitude internal interface [33], when nonlinearity is moderate, the wave steepness and
energy of the free surface are much larger than those of the internal interface; this occurs because
the resonance interactions contain multiple surface wave modes and only one internal wave mode.

For finite amplitude interfacial waves with multiple resonances, as the upper layer depth in-
creases, the core resonance interaction changes from resonant triad (34) for n = 1 to resonant triad
(34) for n = −1. This implies that the upper layer thickness exerts great influence on resonance
interactions. Wave energy flows from the interface to the free surface with increased upper layer
thickness. For any upper layer thickness, the free surface carries most of the energy in the whole
interfacial wave system. For wave components at the free surface, energy transport for varying upper
layer depth is likely to be related to the wave lengths of all components involved in resonance. As the
upper layer thickness increases, wave energy at the free surface is primarily transferred from shorter
wave components in the resonant triad K1,1 and quartet K1,2 to longer components in the resonant
triad K1,−1 and quartet K1,−2. In addition, increased thickness of the upper fluid layer corresponds
to steeper free surface crests and troughs. Meanwhile, the interface first steepens, peaks, and then
flattens with increasing upper layer thickness.

In this work, we have analyzed 1D class-III resonances of long-crested steady-state interfacial
waves. This has led to the discovery of a type of free surface and internal waves whose potential
existence is important for wave load analysis and the structural design of ships, submarines, and
deep-sea vehicles. In future work, we intend to investigate other types of steady-state resonance
that may arise among surface and internal wave modes. We also intend to carry out physical
experiments concerning the complicated interfacial waves identified in this paper when suitable
wave tank facilities become available. We will also consider the unsteady-state resonance between
interface and surface waves to further analyze, and hence predict, the energy transfer phenomenon.
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APPENDIX: HIGH-ORDER DEFORMATION EQUATIONS IN HAM

Substituting the series (40)–(41) into the zeroth-order deformation equations (35)–(39), and
then equating each like power of q, we obtain the following five linear partial differential equa-
tions (called high-order deformation equations):

L1[ϕm,1] = c0�
ϕ
m−1,1 + χm(Sm−1,1 − Sm,1), m � 1, (A1)

Li+1[ϕm,1, ϕm,2] = c0�
ϕ
m−1,i + χm(Sm−1,i − Sm,i ), i = 2, 3, m � 1, (A2)

ηm,i = c0�
η

m−1,i + χmηm−1,i, i = 1, 2, m � 1, (A3)

defining L1 = L1|z=0, L3 = L3|z=−h1 , L4 = L4|z=−h1 , χ1 = 0 and χm = 1 for m � 2, and where

�
ϕ
m,1 = σ 2

1 φ̄2,0,1,1
m + 2σ1σ2φ̄

1,1,1,1
m + σ 2

2 φ̄0,2,1,1
m + gφ̄0,0,1,1

z,m + �1,1,1
m,1 − 2

(
σ1�

1,1
m,1 + σ2�

1,1
m,2

)
, (A4)

�
ϕ
m,2 = σ 2

1 φ̄2,0,2,2
m + 2σ1σ2φ̄

1,1,2,2
m + σ 2

2 φ̄0,2,2,2
m + g(1 − �)φ̄0,0,2,2

z,m

−�
(
σ 2

1 φ̄2,0,1,2
m + 2σ1σ2φ̄

1,1,1,2
m + σ 2

2 φ̄0,2,1,2
m

) + �2,2,2
m,1

− 2
(
σ1�

2,2
m,1 + σ2�

2,2
m,2

) + �
(
σ1�

1,2
m,1 + σ2�

1,2
m,2 − �2,1,2

m,2 − �2,1,2
m,1

)
, (A5)
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�
ϕ
m,3 = g(1 − �)

(
φ̄0,0,2,2

z,m − φ̄0,0,1,2
z,m

) − σ1�
2,2
m,1 − σ2�

2,2
m,2 + �2,2,2

m,1 − �1,2,2
m,2 − �1,2,2

m,1

+�
(
�1,1,2

m,1 − �2,1,2
m,2 − �2,1,2

m,1 − σ1�
1,2
m,1 − σ2�

1,2
m,2

)
, (A6)

�
η

m,1 = ηm,1 − 1

g

(
σ1φ̄

1,0,1,1
m + σ2φ̄

0,1,1,1
m − �1,1

m,0

)
, (A7)

�
η

m,2 = ηm,2 + 1

g(1 − �)

[
�2,2

m,0 − σ1φ̄
1,0,2,2
m − σ2φ̄

0,1,2,2
m + �

(
σ1φ̄

1,0,1,2
m + σ2φ̄

0,1,1,2
m − �1,2

m,0

)]
,

(A8)

Sm,1 = ω2
1β

m,0
2,0,1,1 + μω1ω2β

m,0
1,1,1,1 + ω2

2β
m,0
0,2,1,1 + gγ m,0

0,0,1,1 + Sm,1, (A9)

Sm,1 =
m−1∑
n=1

(
ω2

1β
m−n,n
2,0,1,1 + μω1ω2β

m−n,n
1,1,1,1 + ω2

2β
m−n,n
0,2,1,1 + gγ m−n,n

0,0,1,1

)
, (A10)

Sm,2 = ω2
1β

m,0
2,0,2,2 + μω1ω2β

m,0
1,1,2,2 + ω2

2β
m,0
0,2,2,2 + g(1 − �)γ m,0

0,0,2,2

−�
(
ω2

1β
m,0
2,0,1,2 + μω1ω2β

m,0
1,1,1,2 + ω2

2β
m,0
0,2,1,2

) + Sm,2, (A11)

Sm,2 =
m−1∑
n=1

[
ω2

1β
m−n,n
2,0,2,2 + μω1ω2β

m−n,n
1,1,2,2 + ω2

2β
m−n,n
0,2,2,2 + g(1 − �)γ m−n,n

0,0,2,2

− �
(
ω2

1β
m−n,n
2,0,1,2 + μω1ω2β

m−n,n
1,1,1,2 + ω2

2β
m−n,n
0,2,1,2

)]
, (A12)

Sm,3 = g(1 − �)
(
γ m,0

0,0,2,2 − γ m,0
0,0,1,2

) + Sm,3, (A13)

Sm,3 =
m−1∑
n=1

[
g(1 − �)

(
γ m−n,n

0,0,2,2 − γ m−n,n
0,0,1,2

)]
, (A14)

in which

�
k,p
m,0 =

m∑
n=0

(
k2

1

2
φ̄1,0,k,p

n φ̄
1,0,k,p
m−n + k1 · k2φ̄

1,0,k,p
n φ̄

0,1,k,p
m−n

+ k2
2

2
φ̄0,1,k,p

n φ̄
0,1,k,p
m−n + 1

2
φ̄0,0,k,p

z,n φ̄
0,0,k,p
z,m−n

)
, k, p = 1, 2, (A15)

�
k,p
m,1 =

m∑
n=0

[
k2

1 φ̄
1,0,k,p
n φ̄

2,0,k,p
m−n + k1 · k2

(
φ̄1,0,k,p

n φ̄
1,1,k,p
m−n + φ̄2,0,k,p

n φ̄
0,1,k,p
m−n

)
+ k2

2 φ̄
0,1,k,p
n φ̄

1,1,k,p
m−n + φ̄0,0,k,p

z,n φ̄
1,0,k,p
z,m−n

]
, k, p = 1, 2, (A16)

�
k,p
m,2 =

m∑
n=0

[
k2

1 φ̄
1,0,k,p
n φ̄

1,1,k,p
m−n + k1 · k2

(
φ̄1,0,k,p

n φ̄
0,2,k,p
m−n + φ̄0,1,k,p

n φ̄
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)
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2 φ̄
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n φ̄
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]
, k, p = 1, 2, (A17)

�
k,p
m,3 =
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n=0

[
k2

1 φ̄
1,0,k,p
n φ̄

1,0,k,p
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]
, k, p = 1, 2, (A18)
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�
i, j,p
m,1 =

m∑
n=0

[
k2

1 φ̄
1,0,i,p
n �

j,p
m−n,1 + k1 · k2

(
φ̄1,0,i,p

n �
j,p
m−n,2 + φ̄0,1,i,p

n �
j,p
m−n,1

)
+ k2

2 φ̄
0,1,i,p
n �

j,p
m−n,2 + φ̄0,0,i,p

z,n �
j,p
m−n,3

]
, i, j, p = 1, 2, (A19)

�
i, j,p
m,2 = −σ1

m∑
n=0

[
k2

1 φ̄
1,0,i,p
n φ̄

2,0, j,p
m−n + k1 · k2
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n φ̄
1,1, j,p
m−n + φ̄0,1,i,p

n φ̄
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)
+ k2
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n φ̄
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] − σ2
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k2

1 φ̄
1,0,i,p
n φ̄

1,1, j,p
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2 φ̄
0,1,i,p
n φ̄

0,2, j,p
m−n
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n φ̄
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, i, j, p = 1, 2,

(A20)

μm,n,p =
{

ηn,p, m = 1, n � 1,∑n−1
i=m−1 μm−1,i,pηn−i,p, m � 2, n � m,

(A21)

ψn,m
i, j,k,1

= ∂ i+ j

∂ξ i
1∂ξ

j
2

(
1

m!

∂mϕn,k

∂zm

∣∣∣∣
z=0

)
, k = 1, 2, (A22)

ψn,m
i, j,k,2

= ∂ i+ j

∂ξ i
1∂ξ

j
2

(
1

m!

∂mϕn,k

∂zm

∣∣∣∣
z=−h1

)
, k = 1, 2, (A23)

βn,m
i, j,k,p

=
⎧⎨⎩ψn,0

i, j,k,p
, m = 0,∑m

s=1 ψn,s
i, j,k,p

μs,m,p, m � 1,
(A24)

γ n,m
i, j,k,p

=
⎧⎨⎩

ψn,1
i, j,k,p

, m = 0,∑m
s=1(s + 1)ψn,s+1

i, j,k,p
μs,m,p, m � 1,

(A25)

δn,m
i, j,k,p

=
⎧⎨⎩

2ψn,2
i, j,k,p

, m = 0,∑m
s=1(s + 1)(s + 2)ψn,s+2

i, j,k,p
μs,m,p, m � 1,

(A26)

φ̄i, j,k,p
n =

n∑
m=0

βn−m,m
i, j,k,p

, φ̄i, j,k,p
z,n =

n∑
m=0

γ n−m,m
i, j,k,p

, φ̄i, j,k,p
zz,n =

n∑
m=0

δn−m,m
i, j,k,p

. (A27)

Detailed expressions for Li, Sm−1,i, and Sm,i are given in Sec. II C 2.
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