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Maximization of inertial waves focusing in linear and nonlinear regimes
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We study the propagation of inertial waves (IWs) generated by an axisymmetric torus
oscillating at frequency ω f in a rotating fluid. Inertial waves are emitted from the torus
and propagate at an angle θ f that depends on the ratio of the rotation frequency of the
fluid to the forcing frequency of the torus. The waves focus in a neighborhood of the apex
of the propagation cone. Using direct numerical simulations, we characterize the flow in
this region, within a linear approximation or in the regime where nonlinear interactions
between waves produce a turbulent patch. Forcing by the torus is modeled in two ways.
The first model represents the effect of the oscillating torus as a local volume force in the
form of a Dirac delta function, called the Dirac ring. The second approach aims at a more
realistic three-dimensional model of a torus represented by a volume penalization tech-
nique. We observe the appearance of a mean flow composed of a central vortex produced
by the nonlinear interaction of the IWs. We show that this phenomenon is in agreement with
the theory of Davidson et al. [J. Fluid Mech. 557, 135 (2006)] for a rotating fluid. Using
Dirac ring forcing in the linear regime, we obtain the dependence on the propagation angle
of the vertical kinetic energy at the focal point, which reaches a maximum for θ f = 35◦, in
agreement with the linear theory developed by Liu et al. [Phys. Fluids 34, 086601 (2022)].
A similar angle is observed in the 3D torus forcing case for both linear and nonlinear
simulations: the angle θ f = 30◦ maximizes the vertical velocity and dissipation, attesting
an optimal energy transfer from the oscillating source to the focal region. In the nonlinear
regime, we obtain the detailed spectral distribution of the kinetic energy in the focal zone,
and we develop a spatiotemporal analysis of the velocity field that shows a wide presence of
IWs in the flow. Moreover, we identify triadic resonances of IWs that lead to the production
of the turbulent patch and of a large-scale mode similar to the geostrophic mean flow.
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I. INTRODUCTION

Geophysical and astrophysical flows are often submitted to a buoyancy force induced by stable
stratification and/or to Coriolis force, respectively, induced by rotation, respectively leading to the
appearance of internal gravity waves (GWs), inertial waves (IWs), or inertial gravity waves (IGWs)
when stratification and rotation are both present. In the dynamics of liquid cores of planets [1] or
Earth’s equatorial atmosphere [2] IWs play an important role, whereas GWs are particularly present
in the ocean even when coupled to large-scale motion due to rotation. In the ocean, the energy
injected by the tides leads to internal GWs that propagate and dissipate through various mechanisms,
such as wave breaking, that eventually produce 3D turbulence and enhance mixing [3]. In addition,
these waves contribute to the transport of heat and dissolved greenhouse gases, which are important
phenomena for climate modeling [4]. The conversion of tidal forces into internal waves occurs
when tidal currents encounter the topography of the seafloor and emit internal GWs. Several of
these waves can then interact with each other at remote distance of the topography and eventually
produce a local zone of turbulence that geophysicists call remote turbulence [5].

Remote turbulence is the result of local conversion of energy due to wave transport and wave
breaking occuring at remote topography. Energy exchanges between waves of different scales and
local eddies can then concentrate turbulent energy to varying degrees. But geometry also plays an
amplifying role when the rays of the waves are concentrated in a localized region called the focal
zone. Such geometric effects can be due to a horizontal curvature of the topography, as confirmed
by in situ measurements in an oceanic canyon [6], in a strait [7], or in an enclosed crater [8].
Several studies have investigated the focusing of conical waves generated by an oscillating sphere
in an inviscid stratified fluid [9], by vertical oscillations of a horizontal disk in a stratified fluid
[10], by a librating disk in an inertial wave context [11,12] or by periodic axial compression in a
closed rotating cylinder of gas [13]. More complex shapes were also considered such as background
topography in the form of a circular ring with a Gaussian cross section or an elliptical ring (both
by [14]) or a horseshoe-shaped ring [15] under tidal forcing. In the case of circular ring with a
Gaussian cross section, the amplification rate of the waves when focusing was obtained using linear
theory [14].

The configuration of a ring with a Gaussian cross section can be geometrically idealized in a
flow containing an oscillating torus-shaped solid ring, hence reproducing the focusing of waves at
the apex of the propagation cone with an angle θ f [Fig. 1(b)]. Many configurations are possible,
from experiments with a single torus [16] to experiments with a wave generator containing multiple
concentric tori which can be configured to focus the waves [17]. Several studies in stratified or
rotating fluids have analyzed this torus configuration: numerical simulations and experiments of
IWs by Duran-Matute et al. [18], experiments of GWs [16,19–21] and of IGW [20], analysis and
linear theory of GWs [22], or linear theory of IWs [23]. Since GWs and IWs are both transverse
waves with similar dispersion relations, their dynamics can be expected to be comparable, at least
qualitatively. In particular for IWs waves in a rotating flow, if the axis of rotation is along the
vertical direction z with the rotating rate �z, the relation between frequency ωdr and wave vector
k = (kx, ky, kz ) of a propagating IW satisfy the following dispersion relation [24]:

ωdr (θ ) = ±2�z sin θ, (1)

where θ (k) is the angle between k and the horizontal plane, called the propagation angle, such that
sin θ (k) = kz/|k| [see Fig. 1(a)]. For GWs, the dispersion relation is similar by replacing the sine
dependence in θ by a cosine function, and the rotation rate by the stratification intensity parameter
(Brunt-Väisälä frequency).

The structure of the waves emitted by an oscillating object changes depending on the presence of
viscous effects. For instance, uni- and bimodality for the waves emitted by a sphere are discussed by
Voisin et al. [25]. Large viscosity yields a unimodal form: the waves appear as a single wave beam
with maximum wave amplitude in its center, and they form a single focusing region [16,19]. At low
viscosity a bimodal form is observed, with each section of the torus generating two rays tangential
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FIG. 1. (a) Illustration of a propagating inertial wave with wave vector k and propagation angle θ (k).
(b) Illustration of the conical focusing of IWs emitted by a torus vertically oscillating at frequency ω f with
amplitude A.

to its boundary that cannot merge into a single wave beam due to low viscous diffusion, so that they
lead to four focusing regions [20]. In either unimodal or bimodal form, the conical structure of the
wave beams for the torus configuration is geometrically confined.

In terms of dynamics, the flow motion is either in a regime of linear wave superposition or in
a nonlinear regime of wave interactions with possible local overturning of the density in the stably
stratified case [16], depending on the ratio between the amplitude of forced oscillations and the large
radius of the torus, quantified by the Keulegan-Carpenter nondimensional number (see Sec. II B).
For the linear regime of waves, based on the theoretical work available for an oscillating sphere [25]
and for an oscillating torus [19], one finds a preferential propagation angle θp at which the growth of
the fluid velocity amplitude in the focal region is maximal for GWs. For IWs in a rotating fluid, this
preferential angle was found to depend on the parameters of the configuration when the local forcing
is modeled as a Dirac ring [23]. At the angle θp, the maximum wave energy is transferred from torus
oscillations to the vertical velocity in the focal zone, hence triggering a localized turbulent state
when nonlinearities eventually kick in.

In the present work we use direct numerical simulations (DNS) to investigate the existence of an
optimal propagation angle, in a configuration close to the theoretical approach assuming localized
ring forcing, or by considering a full 3D model of the torus. A second question concerns the
nonlinear wave regime, in which resonant triads are a mechanism of energy redistribution between
waves at different scales, as experimentally demonstrated in a unimodal form [19] for GWs and
in a bimodal form for GWs and IGWs (by the addition of rotation) [20]. In the review of Dauxois
et al. [26] of the instability of an GW beam, two mechanisms lead to the energy exchange between
different scales. The first is resonant triads between waves. The second is the generation of a
mean flow from internal GW beams by a streaming instability due to nonlinear interactions of
the oscillating wave beam with itself. Can similar mechanisms be observed for IWs focusing in a
rotation flow such as resonant triads and generation of mean flow? Alternatively, is there an optimal
propagation angle that amplifies the focusing to its maximum when varying the Rossby number
and keeping all other flow parameters unchanged? Although this last question was discussed by
Shmakova and Flór [19] for the stratification with GWs, it is still pending in the case of pure rotation
with IWs.

In order to answer these questions, we use DNS of a vertically oscillating torus in a rotating fluid
to reproduce the phenomenon of wave focusing at the apex of the wave propagation cone. We use
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a systematic comparison between the linear and nonlinear DNS to contrast the two regimes when
possible and to better highlight effects that are inherently nonlinear. In what follows, we first present
the governing equations and the numerical framework in Sec. II B. In this section, we also expose
the method used in DNS to model the forcing by the oscillations of a 3D circular torus or of an
idealized ring of Dirac with negligible size. In Sec. III we highlight the bimodal form of our flow
as well as the streaming-like instability that generates a mean flow observed by time averaging.
In Sec. IV we evidence the presence of a propagation angle that maximizes the transfer of energy
from the torus to the focal zone by computing both the vertical velocity and the kinetic energy
dissipation. Finally, in Sec. V we show that the flow is largely dominated by the presence of IWs
driven by resonant triads.

II. NUMERICAL SIMULATIONS

A. Configuration and governing equations

We consider a rotating fluid submitted to a vertical oscillation of a torus at frequency ω f with
amplitude A [Fig. 1(b)]. The torus largest radius is a and its smallest radius b. It sends energy in the
form of an inertial wave cone, which concentrates energy with maximum at the apex of the cone.
The dynamics of this rotating incompressible flow is described by the Navier-Stokes equations in a
rotating frame [24] with adequate forcing terms:

∂u
∂t

+ ω × u = − 1

ρ
∇p + ν∇2u − 2� × u + f , (2)

∇ · u = 0, (3)

where u is the velocity field, ω = ∇ × u is the vorticity, and p is a modified pressure that includes
the centrifugal hydrostatic pressure. � = [0, 0,�z] is the angular velocity with constant vertical
rotation rate �z, ρ is the density, and ν is the kinematic viscosity. The forcing term f allows us
to model the effect of the oscillating solid body with a forced frequency ω f and amplitude A on
the rotating fluid. For example, the classical Saint-Andrew’s cross-shaped pattern of propagation
of IWs is obtained by a pointwise Dirac forcing oscillating with a frequency ω f , at a location x0,
with f (x, t ) = [0, 0, A sin(ω f t )δ(x − x0)]. In this paper, we study the oscillations of a 3D solid
circular torus and of an idealized Dirac ring model. The latter simplifies the torus as a circular
ring with negligible size, whose effect is represented by a local volume force in the momentum
equation mathematically expressed as a Dirac delta function. This permits to retrieve the analytical
results of Liu et al. [23] and to study the maximization of the focusing effect. This configuration of
the Dirac ring is a guide to the exploration of parameters in the case of the 3D solid torus. Therefore,
the two configurations are obtained numerically by using two kinds of body forces with different
characteristics:

(1) The vertically oscillating Dirac ring of radius a is modeled by a volume forcing as

f = [
0 0 A0 sin(ω f t )HDR

0 (x)
]

with HDR
0 (x) = δ(|x| − a), (4)

where A0 is the inertial forcing amplitude.
(2) The vertically oscillating 3D torus is modeled using a volume penalization method [27,28].

The penalization method was originally developed by Arquis et al. [29] to model the interface be-
tween a fluid and a porous medium with a ratio η between permeability and viscosity. In this method,
the Navier-Stokes equation applies to both the porous medium and to the fluid, distinguished only
by the forcing term that localizes the porous medium separately from the remaining fluid via a
spatial mask function. Angot et al. [30] demonstrated that when η → 0 the penalized region of the
porous medium represents adequately a solid, and the global solution converges to a solution with
no-slip boundary condition on the surface of the solid surrounded by fluid. The forcing term for
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penalization is thus

f = 1

η
(u − us)HT(x, t ), (5)

where HT(x, t ) is a mask function representing a torus-shaped solid body moving with vertical
velocity ż(t ) = Aω f sin(ω f t ). Thus, us = [0, 0, ż(t )] is the velocity of a point on the torus due
to vertical oscillation. The mask function is based on a solid torus body with largest radius a and
smallest radius b as indicated in Fig. 1(b) and is defined at time t = 0 as

HT
0 (x) =

{
0 if x /∈ torus,
1 if x ∈ torus. (6)

In Fourier space, we denote by ∗̂ the Fourier coefficient for a wave number k = (kx, ky, kz ). The
oscillating motion z(t ) = −A cos(ω f t ) of the solid can therefore be represented as the following
phase change of the Fourier modes [27]:

ĤT(k, t ) = ĤT
0 (k)e−ikzz(t ). (7)

In both torus and Dirac ring, the regions oscillating at forcing frequency ω f emit IWs propagating
at an angle θ f if ω f satisfies the dispersion relation (1) of inertial wave, i.e., ω f = ωdr (θ f ). This leads
to

θ f = sin−1(ω f /2�z ). (8)

Inertial waves propagating at an angle θ f have no typical scale, so that their wavelength can range
from large to small, in relation to the source size. Since the system is symmetric around the z axis
and the waves form a cone of propagation, the main difference between the two configurations is
that the Dirac ring produces a single focal point at height

Z f = a cot θ f , (9)

whereas the 3D torus produces a wider focal zone [Fig. 1(b)] whose size is related to the torus
radius b.

The difference in the injected power from the Dirac ring and the 3D torus, particularly in terms
of their spectral breadth, is discussed in Appendix A.

B. Parameters and numerical setup

Equations (2) and (3) are solved using a standard pseudospectral method in a 2π -periodic cubic
domain and using a spatial resolution of 5123 points. In the 3D torus configuration with forcing
(5), the penalization term is solved implicitly with η = 10−6 s [28,31]. The oscillations close to the
torus wall due to the discontinuity of the HT

0 function are filtered as in Kolomenskiy and Schneider
([27] Appendix A) with a Gaussian smoothing function ĤT

0 (k)e−Cs (k2
x /N2

x +k2
y /N2

y +k2
z /N2

z ) where Cs = 16
and Nx, Ny, and Nz the resolution in each direction. This gives a thicker mask function, and we note
that Hester et al. [32] recently showed that it is possible to get second-order convergence with the
penalization method using a carefully chosen adequate thickness of the mask function.

The flow produced by the oscillation of the 3D torus depends on several parameters: the geometry
of the torus with radii (a, b), the oscillation frequency ω f and amplitude A, the rotation rate �z, the
kinematic viscosity ν. By using T0 = ω−1

f , L0 = 2b, U0 = Aω f , ρ0 and P0 as characteristic time,
length, velocity, density, and pressure, respectively, the nondimensional form of (2) without forcing
is

1

Ke

∂u
∂t

+ u · ∇u = −E∇p + 1

Re
∇2u − 2

Ro
ez × u,

where Ke = A/2b is the Keulegan-Carpenter number that represents the ratio of the forcing ampli-
tude to the minor radius of the torus where E = P0/(ρ0U0) is the Euler number, Ro = Aω f /(�z2b)
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TABLE I. Simulation parameters for the case of Dirac ring, labeled DR, for which only linear DNS are
run, and for the 3D torus configuration, labeled T, for which linear and nonlinear DNS are run. For the DR
DNS runs numbered 4 to 24, θ f varies from 40◦ to 60◦ by increments �θ f = 1◦. The table shows the following
values for DR and T configurations: the frequency of the fastest IW is 2�z, the forcing frequency is ω f = 5
or ω f = 1.256, and the corresponding respective Rossby numbers are Ro = ω f A/(a�z ) for DR and Ro =
ω f A/(2b�z ) for T. The frequency 2�z must be compared with the maximum pulsation ωmax = 2π/�t and
minimum one ωmin = 2π/T solved in the 4D Fourier transform for which the time series is characterized by
its period T = N�t , number of points N , and interval �t (same parameters as the DNS time discretization).
N = 2000, �t = 0.025 for the T configuration, and N = 500, �t = 0.05 for the DR configuration.

DR DNS 1 2 3 4 5 . . . . 23 24 25

2�z 5.077 5.32 5.77 6.52 6.62 . . . . 9.7 10 14.61
θ f 80◦ 70◦ 60◦ 50◦ 49◦ . . . . 31◦ 30◦ 20◦

Ro(×10−2) 1.96 1.88 1.73 1.53 1.51 . . . . 1.03 1 0.68
ωmin 0.25 0.25 0.25 0.25 0.25 . . . . 0.25 0.25 0.25
ωmax 125 125 125 125 125 . . . . 125 125 125

T DNS 1 2 3 4 5 6 7 8 9 10

2�z 1.53 1.77 1.99 2.08 2.19 2.3 2.37 2.51 2.97 3.67
θ f 55◦ 45◦ 39◦ 37◦ 35◦ 33◦ 32◦ 30◦ 25◦ 20◦

Ro(×10−2) 1.37 1.18 1.05 1 0.96 0.91 0.88 0.83 0.7 0.57
ωmin 0.126 0.126 0.126 0.126 0.126 0.126 0.126 0.126 0.126 0.126
ωmax 251 251 251 251 251 251 251 251 251 251

is the Rossby number, and Re = Aω f 2b/ν is the Reynolds number. Classically, the reference
pressure P0 is not known and the default choice is E = 1. In that case, Ke, Re, and Ro characterize
the flow. In a similar torus configuration in a stratified fluid, one can introduce the Stokes number
St = Re/Ke = ω f b2/ν to study the linear waves [16].

For Dirac ring forcing, the nondimensional numbers are obtained by changing 2b into a and A
into A0/ω

2
f . In this study, we focus on the search for the optimal propagation angle θ f that maximizes

the energy focusing of the IWs, so that we restrict the parameter space by keeping constant the
geometrical parameters of the 3D torus (a = 0.848, b = 0.0942) and of the Dirac ring (a = 1).
With these values, the focal point remains in the domain for all the forcing angles considered in our
simulations in a cube of vertex length 2π .

In addition, when exploring the angle dependence of the energy-focusing efficiency with θ f , we
keep constant the three parameters Re � 1, Ke � 1, and St � 1 by keeping constant ν, A, and ω f .
We vary only the rotation rate �z while ensuring Ro � 1. Note that IWs appear at low Reynolds
and low Rossby numbers, whereas in the regime of high Reynolds and low Rossby numbers, wave-
turbulence interactions are expected to occur [33].

Two sets of direct numerical simulations have been run for the two configurations. For the Dirac
ring configuration, we run only linear simulations obtained by setting ω × u = 0 in Eq. (2), for
comparison with the analytical results of Liu et al. [23]. We choose �t = 0.05, ν = 10−4, A0 =
0.01, ω f = 5 so that Re = 100, Ke = 0.0004 � 1, and St = 50 000 � 1. Twenty-five linear sim-
ulations use propagation angles from θ f = 20◦ to 80◦ adjusted by varying the rotation rate in the
range 2�z = 5.077 to 14.61; therefore Ro � 1 varies from 0.0038 to 0.00136 (see Table I). A
tentative nonlinear DNS shows that most of the energy sent into the fluid feeds eddies that are close
to the Dirac ring and not in the focal point, so with little influence in the focal region.

For the 3D torus configuration, the 10 simulations correspond to parameters detailed in Table I.
They consist of a first linear simulation (again with ω × u = 0) run for a sufficiently long time so
that the wave network has time to establish in the geometrical domain. The network is a side effect of
the periodic boundary conditions, but similar reflections exist in physical experiments in containers
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FIG. 2. Time series of vertical velocity uz,focus at the focal point Zf in the case θ f = 33◦ from our DNS in
the torus configuration.

with plane walls. A sponge zone technique [34] could be implemented numerically to absorb waves,
but with a high numerical cost due to the enlargement of the domain, an increase of dissipation due
to the buffer zone and small wave reflection. As far as we know, laboratory experiments are obtained
either in the presence of rigid walls or in the presence of free interfaces (water surface). We also
tested the effect of a rigid horizontal wall using the penalization method on our results. It shows
that dissipation and energy in the bulk flow are twice as large in the presence of the wall than with
periodic conditions. However, the concentration in the focal zone (the ratio of the focal zone to
the total) is about the same for energy and dissipation. In addition, these linear simulations can be
compared to the linear simulations in the configuration of the Dirac ring. Starting with this linear
flow state we then pursue fully nonlinear DNS with ω × u 	= 0, to study the nonlinear focusing of
the IWs that produces local turbulence in the focal region. For the 10 DNS, we choose �t = 0.025,
ν = 10−5, A = 0.0157, ω f = 1.256 so that Re = 372, Ke = 0.083 � 1, and St = 1115 � 1. The
simulations differ by their forcing angles θ f from 20◦ to 55◦ adjusted by varying 2�z ∈ [1.53, 3.67]
and therefore Ro ∈ [0.057, 0.137], again maintaining Ro � 1 (see Table I). Figure 2 shows a time
series of the vertical velocity including the linear and nonlinear phases of the simulation. For the
majority of DNS, convergence in the linear phase requires a duration of about 150T�z where T�z =
2π/�z is the rotation period of the fluid.

Although we keep Ke and Re constant and vary only Ro in our simulations, one can also discuss
the role of the Ekman number Ek = Ro/Re = ν/(�2b) in relation with the presence of boundary
layers on the torus. The wave beams originate from the oscillating torus due to the oscillating Ekman
boundary layers that break at critical latitudes into IWs. One can estimate the transport velocities of
the shear layer and therefore of the waves, which vary between Ek1/6 and Ek3/10 (see Fig. 1 in [35]).
In our DNS, this means that velocities injected in waves vary from about ∼15% to ∼30% between
low and high Ro.

Nevertheless, the viscous spreading of the wave beam (size and amplitude) and the associated
decay of the velocity and vorticity envelopes depend on the distance x from the source and on the
viscous length l = [ν/(2�z sin θ f )]1/2 [36,37]. Hence, by varying only �z in the DNS and keeping
ω f constant, l � 2.8 × 10−3 remains constant, and all the beams undergo the same decay and arrive
in the focal zone with the same energy loss whatever the Ro. This would not be the case if �z

were kept constant and ω f varied in order to keep Ek constant and also the wave velocity. With the
chosen values of ω f and θ f from 55◦ to 20◦, l variation is 55%. Our choice is to retain the same
beam characteristics with a slight reduction in energy.

III. ORGANIZATION OF THE FLOW

A. Focal zone and wave structure

We analyze here the organization of the flow for the 3D torus configuration for both the linear
stage and the following nonlinear regime.

Due to the vertical axial symmetry of the torus, the velocity field in the linear case is expected
to be also symmetric, since no symmetry-breaking mechanism is present. Therefore, in this regime,
the superposition of all the propagating IWs results in zero horizontal velocity and maximal vertical
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FIG. 3. Visualization of the instantaneous vertical velocity uz at a given time t from a numerical simulation
with θ f = 33◦ with oscillating 3D torus (shown in yellow). Linear simulation results with (a) 3D volume
rendering (values of uz close to 0 are transparent) and (c) in a 2D vertical (x, z) plane. Nonlinear simulation
(b) for 3D volume rendering and (d) in a 2D vertical plane.

velocity on the central axis of the focal zone. This is observed in Fig. 3(a) for the 3D distribution
around the torus and Fig. 3(c) for the 2D vertical plane cut distribution of the instantaneous vertical
velocity field from the linear simulation at propagation angle θ f = 33◦. Moreover, the IWs have the
form of a bimodal beam since each section of the torus generates two rays tangential to the torus
boundary. Figures 3(a) and 3(b) also show that these rays do not merge into a single wave beam by
diffusion as in other cases [20] because the Stokes number St = 1115 � 1 is too large for this to
occur, as discussed in the Introduction.

Figures 3(b) and 3(d) show the vertical velocity distributions for the nonlinear regime. They
reveal that the initial concentration of vertical velocity in the focal zone due to linear superposition
of waves eventually turns into nonlinear interactions that create a localized turbulent state. The
3D visualization of Fig. 3(b) shows that the overall organization of the flow has a conical shape
consistent with the cylindrical symmetry, and the maximum velocity is located in the focal zone.
The vertical section of Fig. 3(d) shows details of the flow organization inside the cone, with two
main features: (i) secondary IWs emerging from the focal region and propagating at an intermediate
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FIG. 4. Visualization of the averaged velocity from DNS at θ f = 33◦ (the 3D torus is in black). (a) 3D
visualization of averaged vertical velocity uz (blue to red) and velocity vector in two horizontal cuts colored by
the average horizontal velocity uavg

h (black to yellow) in the linear simulation. (b) 3D visualization of vertical
average velocity uz (blue to red) in a vertical cut and two isosurfaces of uz = ±9 (chosen at 12.1% of the
maximum of uz) in the nonlinear simulation.

propagation angle closer to vertical than the incoming waves and (ii) a vertical structure reminiscent
of Taylor-like columns in rotating flows. Overall, the nonlinear flow is slightly different but not too
far from the linear wave propagation flow. The corresponding regime is therefore that of weak wave
turbulence, with the addition of a vertical mode that will be further discussed in the next section,
Sec. III B.

B. Main averaged flow

The main averaged flow is obtained by time averaging the velocity field over N times, as

u(x) = 1

N

N∑
i=1

u(x, ti ). (10)

The main averaged flows in the linear and nonlinear regimes are shown in Fig. 4. In the linear DNS
[Fig. 4(a)], IWs are linearly superimposed and disappear when averaged, even in the focal zone.
All that remains is the main flow that contains two large-scale rotors in the form of two cylinders
turning clockwise and counterclockwise and elongated in the vertical direction (corresponding to a
small vertical wave number kz � 0) with a radius of the order of the large torus radius. Indeed, under
the assumption of linearity and stationary, the linear Taylor-Proudman theorem [38] can be applied
so that ∂uz/∂z = 0. The flow is therefore invariant along the z axis and is 2D with two (2D2C)
or three velocity components (2D3C). The vertical displacement imposed by the torus is therefore
reflected throughout the fluid column above the torus to ensure that ∂uz/∂z = 0. One concludes that
the large scale observed in linear simulation appears as a classical Taylor column triggered by the
displacement of a solid body in a rotating fluid.

An important question concerns the persistence of such Taylor columns in turbulent regimes.
Large structures identified to geostrophic modes [39] are observed in rotating flows in experiments
by Brunet et al. [40] where the flow is forced by oscillating cylinders, by Boury et al. [41] where
a trapezoidal domain is forced by a wave generator, or in simulations by Le Reun et al. [42] where
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the flow is excited by the elliptical instability. Geostrophic modes are similar in shape to Taylor
columns but with richer dynamics.

In our nonlinear simulations, the main averaged flow observed in Fig. 4(b) is rather different.
First, we observe that the Taylor columns remain but are significantly weaker than a central and
secondary vortex that appears along the vertical axis of the torus. This vortex appears to originate
from the focal zone and to extend towards the central point of the torus. It was already observed in
experiments and DNS by Duran-Matute et al. [18]. Second, as will be quantitatively confirmed in
Sec. V, the flow is dominated by waves, so that we expect that the central vortex energy comes from
a conversion of wave energy due to nonlinear mechanisms.

In the context of rotating fluids, the theory of Davidson et al. [43], confirmed by the numerical
experiments of Ranjan and Davidson [44], is the one that comes closest to our configuration among
the few theories that explain the emergence of columnar vortices. This theory is based on the linear
emission of IWs by a localized patch or "blob" of turbulence produced by nonlinear interactions.
Inertial waves emitted from this blob propagate at faster group velocity for low frequency ω � 0
in the vertical direction (k ⊥ �) than for any higher frequency in other directions. They impose
themselves on the flow, giving rise to columnar features. Nonlinear effects on IWs acting over
longer periods of time are supposed to develop and maintain this structure. In the present nonlinear
simulations, the focal zone can be considered as a blob resulting from nonlinear interactions of IWs,
unlike the focal zone in the linear case which is a mere linear superposition of IWs. Helicity is in
the following used as a diagnostic to confirm that these structures are formed by IWs, as proposed
in [44], since IWs with negative helicity propagate upwards (relative to the axis of rotation), while
waves with positive helicity propagate downwards.

In order to confirm this, we plot in Fig. 5 the distribution of the vertical helicity Hz = uzωz of
the instantaneous flow and helicity Havg

z = uavg
z ω

avg
z of the mean averaged flow in a vertical plane.

The helicity for the instantaneous and averaged fields obtained by linear simulations is shown in
Figs. 5(a) and 5(c), respectively. The distribution of instantaneous field helicity is directly related to
the propagation of the IWs, and is concentrated along the rays of propagation of the waves and in
the focal region. When averaged over several dozen periods, the (periodic) wave pattern disappears
from the distribution of the flow helicity, while the Taylor column remains, having negative helicity
above, and positive helicity below the ring. The flow has zero background helicity, and overall, the
net helicity, obtained by summing over the domain, is zero.

Helicity in the nonlinear regime is shown in Figs. 5(b) and 5(d) for the instantaneous and
averaged fields, respectively. The distribution of the instantaneous field reminds is of the linear case
from the presence of the waves’ propagation pattern. However, the nonlinear interactions produce
secondary waves emitted from the focal region, as well as a vertical mode in the vicinity of the
axis of symmetry. We also note that the helicity amplitude is very similar in linear and nonlinear
simulations, and this is true as well for the averaged flow helicity. The latter is plotted for the
nonlinear DNS in Fig. 5(d). By definition, averaging a field means filtering the low frequencies
ω � 0 in the linear and nonlinear cases. Inertial waves such as ω � 0 are then filtered out. In contrast
to the linear case, the wave pattern of primary propagating waves emitted by the torus is still present.
Background helicity far from the center region is small, if not zero.

Most striking is that the averaged helicity distribution (for the nonlinear DNS) reveals a max-
imum of concentration in and around the focal region, that extends throughout the vertical extent
of the fluid domain. The average shown in Fig. 5(d) shows that the helicity Havg

z in the central
vortex is of sign opposite to the helicity in the wave cones, which seems to be a signature of the
evolution of a turbulent cloud under rotation. The development of the central vortex observed here
is in agreement with with the description by of Davidson et al. [43] and Ranjan and Davidson [44]
for grid turbulence and DNS of homogeneous turbulence.

For the sake of a critical discussion of various theories, one can mention Greenspan’s [39]
theorem that prohibits the formation of geostrophic modes (close to the columnar vortex) by an exact
resonant triadic mechanism in a rotating fluid. Two other mechanisms can bypass Greenspan’s
theorem and transfer energy from wave interaction to columnar vortex such as quasiresonant triadic
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FIG. 5. Distribution of vertical helicity in a vertical plane containing the axis of symmetry, for θ f = 33◦

in simulation for the 3D torus. Colors: red for positive helicity and blue for negative helicity. (a) Linear and
(b) nonlinear data for the instantaneous vertical helicity Hz; (c) linear and (d) nonlinear data for the averaged
vertical helicity Havg

z . The shadow of the torus is shown in black. The domain shown is only five-sixths of the
size of the calculation box, which is 2π .

interactions [45,46] and quartetic interactions [40,47]. In fully developed rotating turbulence, it
was shown that the geostrophic mode is largely dominated by wave/wave interactions [48] without
identification of the precise mechanisms. It is note easy to isolate such wave/wave interactions in
wave turbulence or in fully developed turbulence, and all the more in our geometry where turbulence
is confined and concentrated within a small region. Other theories may explain the generation of a
main flow such as streaming instability observed in experiments of stratified fluid [26,49], but it is
yet to be adapted to rotating fluids. A possible hint is the role of helicity, which we have used as a
diagnostic tool in the framework of Davidson’s theory, but helicity plays also an important role in
the transition from 3D to 2D turbulence without the presence of waves [50–52]. In this transition,
the level of helicity in spatial triads plays an important role (for further reading see [50] and [51]).
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FIG. 6. RMS of vertical velocity uz in the focal zone as a function of the propagation angle θ f : solid purple
curve without symbols for the theoretical result of Dirac ring configuration adapted from Liu et al. [23]; cyan
triangles for the linear numerical simulations for the ring of Dirac configuration (DR index); orange triangles
for the 3D torus configuration (T index) in the linear simulation; and red symbols for the nonlinear simulation.
The large circles in blue and red indicate the maximum of each curve.

IV. MAXIMUM ENERGY TRANSFER IN THE FOCAL ZONE

In order to characterize the efficiency of the energy input by the forcing into the focal region,
we investigate hereafter the evolution with θ f of the root mean square (rms) vertical velocity in
this region—which amounts to evaluating the vertical kinetic energy—and of the kinetic energy
dissipation.

A. Vertical velocity in the focal zone

Due to axisymmetry, the linear superposition of waves at the focal point results in a concentration
of vertical velocity and zero horizontal velocity. We investigate this property and compare it to the
nonlinear regime obtained by DNS. For that, we start by defining a neighborhood of the focal point
in which we quantify the energy coming from the oscillating torus that feeds the vertical velocity.
Both the 3D torus and the ring of Dirac configurations are considered in the numerical simulations.

For the ring of Dirac configuration, we compute the vertical velocity uz in a small cube around
the theoretical position of the focal point at altitude Z f computed in Eq. (9). This cube is defined by
the four grid cells surrounding the focal point and is denoted CDR. For the 3D torus configuration,
the focal zone is spread out, and we define it as the points inside a sphere CT of radius R = 0.5 with
a center at height Z f . The location of CT is shown in Fig. 7. For the two configurations, we compute
the rms vertical velocity averaged over N times ti and in space over the cube CDR or the sphere CT:

uDR,T
z,rms =

√√√√ 1

NNRD,T

NRD,T∑
j=1

N∑
i=1

[(uz(x j, ti ) − uz(x j )]2, (11)

where uz(x j ) is the time average of uz at point x j in CDR or CT and NRD,T is the number of points
within CDR or CT.

We characterize the transfer of energy to the vertical velocity by computing the velocity am-
plitude and its dependence on θ f . Figure 6 shows the dependence of uDR

z,rms and uT
z,rms on θ f . For

the Dirac ring case, the linear numerical simulation result matches closely the theoretical result
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FIG. 7. Distribution of the instantaneous dissipation field ε(x, t ) in a vertical azimuthal plane, for the torus
configuration, at θ f = 33◦. (a) Linear simulation; (b) nonlinear simulation. The white circle delimitates the
focal zone CT.

derived from Liu et al. [23]. For the simulation and the theoretical results, the maximum vertical
velocity in the focal zone is observed at θDR

DNS � 35◦. For the 3D torus configuration, we observe
larger oscillations of the curves uz,rms(θ f ) than in the Dirac ring case. We attribute this to the
higher sensitivity of the forced wave packets to the topology of the flow in the vicinity of the torus.
Nonetheless, in Fig. 6 for the 3D torus configuration (obtained with nonlinear DNS), the amplitude
curve clearly indicates a maximum at θT

DNS � 30◦, i.e., close to the value for the Dirac ring case.
These data can be compared with those obtained in the literature for stratified fluids in similar

forced propagation of internal waves. The latter’s dispersion relation corresponds to propagation
angles θGW = ±N cos−1(ω f /N ), where N is the Brunt-Väisälä frequency (the stronger the stratifi-
cation, the larger N), differing only by the cosine function instead of a sine in the dispersion relation
of rotating fluids [Eq. (8)]. Transposing our results, we therefore expect θGW = 90◦ − θIW � 60◦ in
the case of stratification, close to the preferential angle θGW � 55◦ observed by Maffioli et al. [53] in
DNS of stratified turbulence mixing GWs, eddies, and large-scale structures, also in good agreement
with the linear theory that maximizes the horizontal energy flux of GWs found by Maffioli et al.
[53]. It disagrees, however, with other results by Dohan and Sutherland [54] (θGW � 35◦ from linear
theory maximizing the GW vertical energy), by Shmakova and Flór [19] (θGW = 35◦), or by Voisin
et al. [25] (analytical theory for a sphere or a cylinder). Note that the shape of the oscillating object as
well as the different body force (gravity, Coriolis) could be responsible for the observed differences.

B. Dissipation in the focal zone

The energy sent by the torus and spatially propagated by the IWs is mainly dissipated in the
focal zone. We compute the dissipation rate field in the fluid domain as ε(x, t ) = ν[∇u(x, t )]2

and plot its distribution in an azimuthal vertical plane in Figs. 7(a) and 7(b) for the linear and
nonlinear simulations, respectively, with θ f = 33◦. The strong concentration of dissipation in the
focal zone CT is clear, but the dissipation is concentrated in structures smaller in the nonlinear
simulation than in the linear one, since the focal region appears as a turbulent patch. For the
nonlinear simulation [Fig. 7(b)], the bottom focal zone exhibits a somehow more homogeneous
concentration of dissipation than the top focal region. This is due only to the specific choice of
azimuthal plane, which cuts through vertically elongated structures that rotate around the axis of
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FIG. 8. Averaged dissipation rates εG in the whole fluid domain (blue curves) and εFZ in the focal zone
(red curves), by numerical simulations for the 3D torus configuration. Solid lines for nonlinear simulation and
dashed lines for the linear simulation, respectively, noted NL and L.

symmetry and can be captured differently depending on their azimuthal location. In order to quantify
the concentration of dissipation, we define a space- and time-averaged dissipation rate by grid point
in a volume V as

ε = 1

N (V )

N (V )∑
j=1

N∑
i=1

ε(x j, ti ), (12)

where N (V ) is the number of grid points in V , x j ∈ V and N is the number of times for averaging.
We compute the dissipation rate in the focal region εFZ by applying the average (12) to the focal zone
with V = CT. Moreover, we compute the global dissipation in the whole domain εG by applying (12)
to the global fluid volume. We compare the two dissipation rates in Fig. 8 for different values of θ f

for linear and nonlinear simulations of the flow forced by the torus. As expected, more energy is
dissipated in nonlinear simulations than in linear ones, and the concentration of energy in the focal
region εFZ in the nonlinear simulation is almost 10 times larger than εG. In other words, with the
same oscillation (same frequency ω f and same amplitude A), there is more power sent by the torus
in the focal zone in the nonlinear case than in the linear case. The maximum dissipation is reached
for θT

DNS � 30◦, which is consistent with the peak vertical energy observed at this angle in Sec. IV A.
Oscillations are observed on the rms vertical velocity (Fig. 6) and on the dissipation rate (Fig. 8)

for linear and nonlinear simulations. They reflect a variation of forcing in terms of available IWs:
in a confined domain, multiple wave reflections superimpose different waves, creating stationary
waves, also called inertial modes. This phenomenon was also observed experimentally by Boury
et al. [55], and we discuss it further in Appendix B.

V. LINEAR AND NONLINEAR REGIMES FOR WAVES

A. Spatiotemporal analysis of flow and harmonic forcing

We focus here on the 3D torus configuration with the propagation angle θ f = 33◦ that maximizes
vertical velocity and dissipation, as described in Sec. IV. We analyze the spatiotemporal spectral
content of the flow to quantify the injected energy and identify the resulting waves that are produced.
The presence of inertial wave propagation is attested by the verification of the dispersion relation
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(1) applied to a 3D wave vector k and a frequency ω. We thus carry out a 4D space-time Fourier
transform of the velocity field u(x, t ) in our simulation data to obtain the transformed spectral field
ũ(k, ω).

This kind of analysis was used by Yarom and Sharon [56] in experimental data of rotating
turbulence and extended to DNS of stratified turbulence by Lam et al. [57]. We apply the 4D
transformation (x, t ) → (k, ω) to fields of DNS in spectral Fourier space û(k, t ), which are stored
every one or two time steps depending on the case. In total, we use 1000 fields with a resolution
of 5123 points for the three velocity components. We then compute a temporal FFT with a Hann
window to obtain ũ(k, ω). This completes the full 4D FFT transform. Compared to other methods—
data reduction for a 2D analysis as done in experiments by Yarom and Sharon [56] and Campagne
et al. [58], and in simulations by Clark Di Leoni et al. [59], or by using statistical homogeneity
assumptions in Maffioli et al. [53]—our method requires larger memory storage and computational
time, but with an evident gain of accuracy since a full detailed 3D analysis is permitted. Although
the homogeneity assumption seems to be available in fully turbulent flows, it is not applicable in
our linear simulations for the reason that the phase correlation of velocity modes is not random (see
the Appendix in Maffioli et al. [53] for a detailed discussion about this assumption and a comparison
with FFT4D).

We apply the 4D space-time analysis to obtain the fields ũL(k, ω) of the 10 linear DNS, and
the fields ũNL(k, ω) of the 10 nonlinear ones. In Table I we report the minimum and maximum
time frequencies ωmin and ωmax available in each case. Using these fields, we can successively com-
pute the space-time spectrum of the kinetic energy density EL,NL(k0, ω) at scale k0 and frequency
ω, the temporal spectrum EL,NL(ω) at frequency ω, the spatial spectrum EL,NL(k0) at scale k0, and
the total energy EL,NL

tot as

EL,NL(k0, ω) =
∑

k0−0.5�|k|<k0+0.5

|ũL,NL(k, ω)|2, (13)

EL,NL(ω) =
∑

k0

EL,NL(k0, ω), (14)

EL,NL(k0) =
∑

ω

EL,NL(k, ω), (15)

EL,NL
tot =

∑
k0,ω

EL,NL(k0, ω). (16)

The spectra EL,NL(k0, ω), EL,NL(ω) and EL,NL(k0) are normalized by the total energy EL,NL
tot to

facilitate comparison between different parametric cases. In Eq. (13) the averaging extends over the
interval k0 − 0.5 � |k = (kx, ky, kz )| < k0 + 0.5 due to the Cartesian grid discretization kx, ky, kz =
−N/2, . . . ,−1, 0, 1, . . . , N/2 where N is the resolution of the DNS, such that k is rarely equal
to k0.

Figure 9 shows the distribution in (k, ω) space of the kinetic energy density spectra EL,NL(k0, ω)
for the linear and nonlinear simulations. The dashed line in the plots also indicate the maximum
frequency 2�z available for IWs from the dispersion relation. As expected, the spectral kinetic
energy density is concentrated on the forcing frequency ω f in the linear [Fig. 9(a)] and nonlinear
simulations [Fig. 9(b)]. However, whatever the spatial scale k, there is more energy in the frequency
domain around the peak at ω f in the nonlinear case than in the linear case. This spread is therefore
linked to the redistribution of energy via nonlinear mechanisms. The concentration of energy along
constant k lines shows that some scales are more energetic than others. In the linear and nonlinear
simulations, we observe a global decrease of energy as the timescale related to the spectral modes
decreases, i.e., when k increases. This phenomenon is more marked in the linear case beyond k =
50. Moreover, some harmonics of the form nω f , n = 2, 3, . . . , 7 appear as a concentration of energy
along constant ω lines, which persist whatever the scale k. The origin of these harmonic frequencies
is linked to the constant part of the forcing term that reflects the vertical displacement of the torus
in Eq. (5). This term is − 1

η
usĤT (x, t ) in physical space, and − 1

η
ż(t )ĤT

0 (k, θ (k))e−ikzz(t ) in spatial
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FIG. 9. Normalized spatiotemporal spectra: (a) linear simulation spectrum EL(k, ω)/EL
tot; (b) nonlinear

simulation spectrum ENL(k, ω)/ENL
tot ; (c) forced case spectrum E f (k0, ω)/E f

tot. The dashed line represents the
rotating rate 2�z. The color bars indicate the log of the amplitude of the spectra.

Fourier space as discussed in Appendix A. When applying the temporal Fourier transform noted
Ft , the spatiotemporal spectrum of forcing is

E f (k0, ω) =
∑

k0−0.5�|k|<k0+0.5

∣∣ĤT
0 (k, θ (k))Ft

[
ż(t )e−ikzz(t )

]
(ω)

∣∣2
. (17)

As in Eqs. (14), (15), and (16) for the spectra of kinetic energy density, one defines in (17) similar
spectra for the forcing: total temporal spectrum E f (ω) = ∑

k E f (k, ω), total spatial spectrum
E f (k) = ∑

ω E f (k, ω), and total forcing E f
tot = ∑

k,ω E f (k, ω). Figure 9(c) for the normalized

energy E f (k0, ω)/E f
tot shows that the forcing induces harmonic frequencies nω f which are also

visible in the linear and nonlinear spectra, and, surprisingly, their energies do not decrease with
scale. Harmonic forcing seems also to be found in experiments that generate the harmonics of waves,
as in the case of a cylinder oscillating in a rotating fluid with a residual nonharmonic component
of the oscillation profile of the wave generator [36]. The harmonics of IWs do not appear in our
simulations wherein the condition nω � 2�z for their appearance is not met.

In order to analyze the spectra more precisely, we plot the spectra as functions of ω for the linear
and nonlinear simulations in Fig. 10. Figures 10(a) and 10(b) show the normalized energy density
spectra EL,NL(k0, ω) at k0 = 25 and k0 = 50, respectively. Figure 10(c) shows the total temporal
spectrum EL,NL(ω). The corresponding forcing spectrum E f is also shown in the three figures.

The power law ω−2 found by Le Reun et al. [60] in wave turbulence for rotating fluid is shown in
Figs. 10(a) and 10(b). For nonlinear simulations, the spectrum at large spatial scale ENL(k = 25, ω)
in 10(a) is consistent with the ω−2 scaling at frequencies smaller than the forcing one ω f with a large
peak similar to that found in weak inertial-wave turbulence experiments (see Monsalve et al. [61]).

094605-16



MAXIMIZATION OF INERTIAL WAVES FOCUSING IN …

FIG. 10. Normalized spatiotemporal spectra EL,NL(k, ω)/EL,NL
tot and E f (k, ω)/E f

tot for (a) slice at k = 25;
(b) slice at k = 50. (c) Normalized total temporal spectrum EL,NL(ω)/EL,NL

tot , E f (ω)/E f
tot. (d) Normalized

spatial spectrum EL,NL(k)/EL,NL
tot , E f (k)/E f

tot, and ĤT
0 (k) from (19). The blue, red, and black curves are,

respectively, for the linear, nonlinear, and constant forcing term. The green curve for ĤT
0 (k) has been shifted

by ×10−4, and the black curve for E f (k)/E f
tot has been shifted by ×10−2 for better comparison. The dashed

black lines represent the power laws ω−2 and k−3 suggested by Le Reun et al. [60].

The spectrum ENL(k = 50, ω) [Fig. 10(b)] at smaller spatial scale is steeper. The wave turbulence
frequency scaling is not retrieved at all spatial scales.

As expected, all the spectra in Figs. 10(a), 10(b), and 10(c) have a frequency peak at forcing
frequency ω f . As shown above in Eq. (17), the constant part of the forcing contains the displacement
term Ft [ż(t )e−ikzz(t )](ω) which triggers the harmonics nω f . Moreover the associated amplitude of
forcing decreases with ω but not between scales when comparing the spectra at k = 25 and k = 50.
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This constant part of forcing is therefore responsible for the peaks observed at harmonic frequencies
for linear and nonlinear simulations in Figs. 10(a) and 10(b).

However, in nonlinear simulations, the peaks of energy spectrum are smoothed out by nonlinear-
ities, with enlarged bandwidths around the harmonics nω f . This is associated to local redistribution
and a slightly off-resonant transfer of energy across scales. Moreover, for frequencies smaller than
ω f , we observe a difference between linear and nonlinear regimes. In the latter, two secondary
peaks are visible at smaller frequencies ω1 � 0.35ω f and ω2 � 0.65ω f in the spectra at k0 = 25
and k0 = 50 such that

ω1 + ω2 � ω f . (18)

This is a typical signature of wave turbulence based on the triadic resonant condition for IWs,
namely, ωdr (k) = ωdr (p) + ωdr (q) and k = p + q [47,62], and was also recently observed by
Shmakova et al. [20] for torus configuration in a stratified fluid. The total time spectrum ENL(ω)
in Fig. 10(c) also contains the same two peaks although less marked than for the spectra at
fixed k = 25 and k = 50. Although triadic exchanges are a feature of spectral nonlinear terms in
turbulence—expressed as a convolution integral over spectral modes satisfying k = p + q—they do
not necessarily correspond to inertial wave resonance interactions, all the more so since the energy
injection does not control which individual modes are forced. Nevertheless, in Sec. V B we shall
show that the spectrum is indeed dominated by IWs in our simulations, so that the observed peaks
at ω1 and ω2 are actual IWs.

The total spatial spectrum of the kinetic energy density E (k) is shown in Fig. 10(d). For linear
and nonlinear simulations, it also contains periodic bumps at certain scales that are directly linked
to the spectrum E f (k) of the forcing term (black solid curve) and hence to the spectral trace of
the mask function ĤT

0 (k, θ (k)) [Eq. (A2)] that represents the torus geometry. Averaging over all
orientations of k at a given scale k0 on a Cartesian grid, one gets

ĤT
0 (k0) =

∑
|k|=k0

ĤT
0 (k, θ (k)), (19)

which is plotted in Fig. 10(d) (green solid curve), and is at the origin of the bumps. The bumps are
visible at small scale for linear and nonlinear simulations, but they are smoother in the nonlinear
regime due to local turbulent diffusion. Figure 10(d) also shows the power law k−3 suggested in
several studies [60,63,64], which is consistent with our numerical results.

B. Signature of IWs

The above spectral analysis demonstrates the necessity to assess and quantify precisely the
presence of IWs in the torus configuration. A mere space-time spectrum function in (k, ω) is not
sufficient, because an angular space-time spectrum function in (k, ω, θ ) is required to assign angles
θ to wavevectors and their dispersion relation [geometry in Fig. 1(a)]. As in Lam et al. [57], we
define angular spectra

EL,NL(θ0, k0, ω) =
∑

k0−0.5�|k|<k0+0.5
θ0−�θ�θ (k)<θ0+�θ

|ũL,NL(k, ω)|2. (20)

We select spectral angles in the interval θ0 − �θ � θ (k) < θ0 + �θ with �θ = 0.5◦.
The normalized spectra EL,NL(θ, k, ω)/EL,NL

tot at scales k = 25 and k = 50 used in Sec. V A are
shown in Fig. 11. The color range is adapted to the maximum of each spectrum. Note that the stripey
aspect of the plots is due to the forcing geometry, as explained in Appendix C.

In the linear case [see Figs. 11(a) and 11(c)], the energy is concentrated in the harmonics of the
forcing, and the dispersion relation is observable for k = 25 and less so for k = 50, showing that
waves are present at smaller scales where the dissipation, although small, is significant with respect
to the forcing. Note the presence of four peaks of energy density due to the resonance phenomenon
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FIG. 11. Spectral kinetic energy density EL,NL(θ, k, ω)/EL,NL
tot for scales k = 25 and k = 50 for θ f = 33◦.

Panels (a) and (b) are for k = 25, (c) and (d) are for k = 50; (a) and (c) are for linear simulations, (b) and
(d) are for nonlinear simulations. Color bar in log of amplitude.

when the frequency of the forcing ω f is equal to the natural frequency of the IW associated with the
propagation angle θ f , i.e., when ω f = ωdr (θ f ). In the nonlinear simulations in Figs. 11(b) and 11(d),
the energy is less concentrated on the harmonics of forcing and more on the dispersion relation than
in the linear simulations. We also observe a diffusion of the energy around the curve of the dispersion
relation, as in stratified and rotating turbulence [65]. In both cases, at k = 25 and k = 50, the waves
are dominant compared to the linear case. Combined with the results of Sec. V A, one concludes
that the triadic resonance of IWs appears in the flow and maintains the presence of waves at different
scales.

The total angular spectrum of all scales, is obtained by accumulating the angular spectrum of
each scale (20) as

EL,NL(θ, ω) =
∑

k

EL,NL(θ, k, ω). (21)

EL,NL(θ, ω) is shown in Figs. 12(a) and 12(b), with the same color range for the linear and nonlinear
simulations. In both cases, the energy distribution is concentrated along the dispersion relation of
the IWs ω = ωdr (θ ) given by (1) as a signature of IWs, so that, overall, the kinetic energy seems to
be contained mostly in IWs. However, in the nonlinear simulation, the above-described harmonic
frequencies due to forcing are limited to 2ω f and to a lesser extent to 3ω f , whereas in the linear case
the higher harmonic frequencies 3ω f , 4ω f , . . . , 7ω f are strongly persistent for any θ . Moreover,
the energy concentration around the dispersion relation is sharper in the linear case than in the
nonlinear simulation where it is locally diffused. Again, this suggests that a nonlinear mechanism
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FIG. 12. Total angular spectral kinetic energy density EL,NL(θ, k0, ω)/EL,NL
tot for θ f = 33◦: (a) for linear

simulation spectrum (label L); (b) for nonlinear simulation spectrum (label NL). The color bar indicates the
log of amplitude. The dashed line represents the dispersion relation ωdr (θ ) given by (1).

such as triadic resonance of IWs enhances the presence of waves compared to linear phenomena.
To explain this mechanism, quantitative theory would have to take into account triadic interactions,
which are one of the key elements in our analysis of the flow.

C. Nonlinear interaction in the focal zone

As shown in Sec. IV, the focal zone is the most intense zone in terms of dissipation, and the bulk
flow is practically dominated by IWs. We now need to link these two observations by studying the
nonlinear interaction that takes place in the focal zone. For this, we rely on a bispectrum analysis of
the vertical velocity field uz.

We start by showing in Figs. 13(a) and 13(b) the time oscillations of uz(x0, t ) for linear and non-
linear simulations, respectively, at a point x0 = (0, 0, Z f ) in the focal zone. Velocity oscillations are
regular in the linear case [Fig. 13(a)] but modulated in amplitude in the nonlinear one [Fig. 13(b)].
As expected, a wide peak of energy at frequency ω f and secondary peaks at harmonic frequencies
nω f appear in Fig. 13(c) for the total time spectrum Ez(ω) of uz(x0, t ) and for linear and nonlinear
simulations. The spectrum of the nonlinear simulation [Fig. 13(c)] differs from that of the linear
simulation by a much larger level of background vertical kinetic energy at all frequencies than
in the linear simulation, attesting of nonlinear enrichment of the spectrum. The two time spectra
obtained at the focal point x0 are consistent with the spectra obtained in the complete domain in the
nonlinear and linear simulations in Fig. 10(c), although in the latter plot the peaks are sharper.

We characterize the spectral enrichment by nonlinear interactions in the focal zone using a
bispectral analysis. For this, we consider the Fourier transform of the third-order cumulant function,
which is the bispectrum that measures the statistical dependence between three spectral components
(ω1, ω2, ω3) satisfying the resonance condition of the frequencies ω3 = ω2 + ω1, a condition deriv-
ing from the nonlinear terms in the energy balance equations [64]. We compute these statistics by
using the HOSA Matlab toolbox proposed by Swami et al. [66]. The vertical velocity signal uz(t )
is decomposed into N = 379 segments with 99% overlap between them, and we apply Hamming
windowing on each segment containing the velocity ui

z(x0, t ), i = 1, . . . , N . The FFTs are computed
with 2048 points. The bispectrum of the ith segment is calculated as

bi(ω1, ω2) = ûi
z(ω1)ûi

z(ω2)ûi
z(ω1 + ω2), (22)

where ûi
z represents the FFT on the ith segment of ui

z(x0, t ) and ∗ is the complex conjugate.
The power spectrum of bi(ω1, ω2) is |bi(ω1, ω2)|2. The bispectrum is estimated by averaging all
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FIG. 13. Vertical velocity signal uz(x0, t ) as a function of normalized time 2ωzt in the focal zone by the
simulation of the torus configuration at θ f = 33◦: (a) linear simulation; (b) nonlinear simulation; (c) temporal
spectrum energy E (ω) in blue for linear simulations, and red for the nonlinear ones.

segments noted 〈∗〉, as

〈|b(ω1, ω2)|2〉 =
N∑

i=1

|bi(ω1, ω2)|2. (23)

The bicoherence is the normalized bispectrum

B(ω1, ω2) = 〈|b(ω1, ω2)|2〉
〈|ûz(ω1)|2〉〈|ûz(ω2)|2〉〈|ûz(ω1 + ω2)|2〉 . (24)

Note that 〈|ûz(ω1)|2〉, 〈|ûz(ω2)|2〉, and 〈|ûz(ω1 + ω2)|2〉 are the classical power spectra for the
frequencies ω1, ω2 and ω1 + ω2.

Figure 14(a) is the map of bicoherence B(ω1, ω2) for the linear simulation and Fig. 14(b) for
the nonlinear simulation (note the different scales). For the same resolution and same numerical
parameters, the nonlinear data are overall more concentrated around the peak than that in the
linear case, which reveals the importance of nonlinear interactions. For any fixed frequency ω3

with a spectrum E (ω3) as in Fig. 13(c), the bicoherence function B(ω1, ω2) measures the statistical
dependence of ω3 on a combination of frequency pairs (ω1, ω2) such that ω3 = ω1 + ω2. The chosen
frequency ω3 appears on the maps of B(ω1, ω2) in Figs. 14(a) and 14(b) as an oblique line passing
from top left to bottom right, defined by the affine equation ω2 = ω3 − ω1. For example, the highest
frequencies resulting from the dispersion relation are ω3 = ±2� and are represented as diagonal
dashed black lines in Figs. 14(a) and 14(b). The highest frequencies of the waves are ω1 = ±2� and
ω2 = ±2� (vertical and horizontal dashed black lines, respectively), meaning that an interaction
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FIG. 14. Bicoherence contours obtained at θ f = 33◦: (a) linear simulation; (b) nonlinear simulation. Color
bar indicates the log of amplitude. The hexagon (solid black line) represents the domain of nonlinear interaction
of IWs. The dotted line represent highest frequencies (±2�) of the IWs.

between the waves produces a frequency ω3 in the square ω1 = ±2� and ω2 = ±2�. If this
frequency ω3 is a frequency of waves, then this square is limited by the two oblique lines ω3 = ±2�:
the irregular hexagon drawn as a solid black line therefore represents the nonlinear interaction of
IWs. Within this hexagon, the frequencies ω1 and ω2 and their interaction ω3 = ω1 + ω2 satisfy the
dispersion relation of IWs (1), namely, ω3 = ωdr (k), ω2 = ωdr (p) and ω1 = ωdr (q) with k, p, and
q the wave vectors of waves satisfying the triadic resonant condition ωdr (k) = ωdr (p) + ωdr (q).

In the linear simulations, the convective nonlinear term ω × u = 0, but there is still a nonlinear
interaction due to the penalization term (5), in particular for the torus forcing term − 1

η
usHT (x, t )

that produces harmonics from temporal nonlinear interactions due to multiplication in Fourier space,
as seen in Sec. V A [the term Ft [ż(t )e−ikzz(t )](ω) in Eq. (17)]. According to B(ω1, ω2) [Fig. 14(a)],
most of the interactions take place in the hexagon of the IWs, and three oblique lines corresponding
to the frequencies ω3 = 0, ω f , 2ω f are visible. From B(ω1, ω2), it can be deduced that

(1) Stationary modes ω3 = 0 are the geostrophic modes (see Sec. III B), which are due to one
interaction between the waves (ω1 = ω f , ω2 = −ω f ) and its symmetric part (ω1 = −ω f , ω2 =
ω f ) and

(2) The frequency ω3 = 2ω f (highest frequency out of the dispersion relation) is due to one
interaction between waves (ω1 = ω f , ω2 = ω f ).

Note that the main frequency of the waves is imposed by the forcing at ω f (see Sec. V B). For the
frequency ω3 = ω f , there are two different interactions between the stationary modes (geostrophic
modes) and the waves (ω1 = 0, ω2 = ω f ) and between the waves (ω1 = −ω f , ω2 = 2ω f ) and their
symmetric part.

In the nonlinear simulations [Fig. 14(b)], unlike linear ones, we observe many more interactions
indicated by peaks of the bicoherence function, in particular in the hexagon. This means that triadic
resonance-type interactions seem to dominate all other interactions. Moreover, the stationary mode
at ω3 = 0, identified as central and secondary vortices in Sec. III B, is due to other interactions such
as those between waves (ω1 = 2ω f , ω2 = −2ω f ) and waves (ω1 = 3ω f , ω2 = −3ω f ). In addition,
there are interactions between the higher harmonics ±2ω f ,±3ω f , . . . and the waves at ±ω f , or in
general with the higher harmonics ±2ω f ,±3ω f , . . . . This frequency enhancement between linear
and nonlinear simulations is linked to the introduction of the nonlinear convective term and reflects
a transfer between the waves and between the harmonics and the waves. This is not observed in the
linear simulations [Fig. 14(a)].
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VI. CONCLUSION

Using direct numerical simulations, we study the focusing of IWs caused by the oscillation of
a torus in a fluid with background rotation. Two models for representing the oscillating torus are
considered: a Dirac ring configuration, which allows us to compare the results with those from the
linear theory developed by Liu et al. [23], and a 3D solid torus representing closely the experimental
realizations, and allowing us to extrapolate the analytical results to a more complex configuration.
For a Dirac ring configuration, only linear simulations are considered, whereas for the 3D torus,
linear and nonlinear simulations are performed to better understand the limits of the linear approach.
For all the simulations, the frequency ω f of the torus oscillations was fixed but the rotation rate of
the fluid background �z was varied to vary the angle of the waves emitted by the torus or by the
ring of Dirac. In so doing, only the Rossby number Ro � 1 varies with the propagation angle for
forcings by the Dirac ring or by the 3D torus, and the other nondimensional numbers—Reynolds Re,
Keulegan-Carpenter Ke, and Stokes St—are fixed. For the 3D torus configuration, since the Stokes
number is large St � 1, the waves have a bimodal structure in agreement with the linear theory of
Shmakova et al. [20] with a maximum of vertical velocity in focal zone.

Our first result concerns the averaged main flow for the 3D torus configuration. In the linear case,
the average main flow appears in the form of a flow invariant along z (axis of rotation) and could
be assimilated to a geostrophic mode. The flow consists of two contra-rotating cylinders. In the
nonlinear case, the averaged main flow is mainly dominated by a central vortex whose formation
seems to be in agreement with the linear theory of Ranjan and Davidson [44]. We thus observe the
generation of a mean flow with central vortex only due to the nonlinear focusing of the waves in
agreement with the mechanisms related to a patch of turbulence described by these authors.

In addition, we have shown that the maximum of the vertical velocity in the focal zone is
consistent with the linear theory for the Dirac ring configuration [23]. Indeed, the curves for the
numerically measured and theoretically predicted vertical velocities overlap and reach a maximum
at propagation angle θ f = 35◦. This ring of Dirac configuration serves as a guide and benchmark
before considering the case of the 3D torus for which the maximum amplification is at around
θ f = 30◦. Moreover, for this angle, the dissipation in the focal zone appears to reach a maximum,
which is always more important in the nonlinear than in the linear case.

Finally, using a four-dimensional spatiotemporal analysis, we have shown that the flow is
dominated by IWs on a wide range of scales that we precisely identify. The observed wave scales
can be smaller in the nonlinear case than in the linear case, suggesting the existence of a nonlinear
transfer that reinforces the presence of IWs despite the presence of harmonics. This mechanism
seems to be linked to triadic resonant interactions. The harmonic frequencies are induced by the
torus oscillation on all scales. We have performed a bicoherence analysis in the focal area to identify
nonlinear interactions. In the nonlinear case, it turns out that the triadic resonant interactions of the
waves dominate all other interactions.

A possible extension of the present study to get even closer to the oceanographic context would
involve the inclusion of the effect of local variations in topography on the production of waves
of different phases and their focusing, by considering a torus with azimuthal variations of shape
or radius. Our study also calls for the development of a weakly nonlinear theory to reach beyond
existing linear theories, to take into account nonlinear interactions between waves and better predict
mixing in the ocean that takes place in the presence of stratification. One question concerns the
stability of the central vortex. In another way, the subcritical or supercritical nature of the instability
could be explored in order to determine the effects of hysteresis around the threshold of the
instability. We have simulated a wave regime; however, it will also be necessary to explore regimes
with higher Reynolds numbers that are beyond the scope of this study. Our work falls within the
scope of studies aimed at quantifying the intense events linked to wave focusing in order to make a
significant contribution to the global energy balance.
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APPENDIX A: COMPARED INJECTED POWER BY DIRAC RING
AND 3D TORUS FORCINGS

The two configurations do not inject the same energy distribution into the focal point or the focal
zone. In the first approximation, the energy sent by the forcing f depends directly on the spatial
functions HT

0 or HDR
0 . This comes from the physical space power equation at t and x obtained

by multiplying (2) by u(x, t ). Equivalently, the spectral power equation at t and k is obtained
by Fourier transforming (2) and multiplying it by the velocity Fourier component û(k, t ), and
adding the complex conjugate. This yields Lin’s equation for spectral energy density in isotropic
homogeneous turbulence [67] when averaging on the set of wave vectors with the same modulus.
The advantage of Fourier space is to interpret the power equation in terms of scale. Integrating
these power equations over the entire physical or Fourier domain provides two ways of obtaining
the same kinetic energy evolution equations. In Fourier space, the injected power forcing is given
by the inner product f̂ (k, t ) · û(k, t ) + CC where ∗ is the complex conjugate of ∗, ∗̂ is the spatial
Fourier transform, and CC means that we add the complex conjugate of the previous expression.
Since ĤT

0 (k) and ĤDR
0 (k) are the Fourier transforms of HT

0 and HDR
0 , the injected power includes

terms as A0 sin(ω f t )ĤT
0 (k) · û(k, t ) in the Dirac ring case and − 1

η
ż(t )ĤT

0 (k)e−ikzz(t ) · û(k, t ) in the

3D torus case. ĤT
0 and ĤT

0 therefore act as transfer functions in Fourier space that spatially filter the
velocity field.

Due to axisymmetry, we express HT
0 and HDR

0 in polar coordinates (k, θ ), where k = |k|, θ =
tan−1(kz/kh) and kh = (k2

x + k2
y )1/2. The expressions for ĤT

0 and ĤDR
0 are given in Liu et al. [23]

and Beleggia et al. [68] as

ĤDR
0 (kh, θ ) = 2πJ0(kh cos θ ), (A1)

ĤT
0 (k, θ ) = 4π

k sin θ

∫ b

−b
J0[(k cos θ (a + x)] sin(k sin θ

√
b2 − x2)(a + x) dx, (A2)

where J0 is the zeroth-order Bessel function of the first kind. In Eq. (A1), the geometrical parameter
is the radius a = 1 for the case of Dirac ring, and in Eq. (A2) a = 0.848 and b = 0.0942 for the 3D
torus. The amplitude maps in (θ, k) of |ĤT

0 (k, θ )| and |ĤDR
0 (k, θ )| from these equations are plotted in

Fig. 15 using explicit numerical integration for all θ except for θ = 0 where the calculation diverges.
The distribution of the mask functions show the dependence in Fourier space of the energy input in
the system since their enter the definition of the forcing f . Figure 15 therefore shows that |ĤT

0 (k, θ )|
and |ĤDR

0 (k, θ )| let the energy pass to all angles θ for both configurations, but also that, for the 3D
torus configuration, energy is concentrated at large scales from small k up to k � 30, while for the
Dirac ring, it extends to all resolved scales. Moreover, the figure shows that, although energy at the
forcing frequency ω f is sent to all angles and scales, only a small part goes into the wave vector k
that corresponds to the precise angle θ f from the dispersion relation (8).

APPENDIX B: SOURCE DISCRETIZATION EFFECT ON THE ENERGY TRANSFER

As noted by Boury et al. [55] in their experimental work, in a confined domain, whether in
numerical simulations or in experiments, each wave vector allowed in such a confined geometry is
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FIG. 15. Absolute value of forcing terms in Fourier space (k ≡ |k|, θ ): (a) ring of Dirac |ĤDR
0 (k, θ )|; (b) 3D

torus |ĤT
0 (k, θ )|. Both functions are normalized by their maximum value.

quantified with a discrete collection of wave numbers in each direction. In a 2π -periodic domain,
the wave vectors k are a set of integers k = (l, m, n). If small scales can be described by a multitude
of wave numbers, this is no longer the case for large scales, where only a few wave numbers
represents them. For instance, for a wave number k = 1, there are only six possible wave vectors
k = (±1, 0, 0), k = (0,±1, 0), . . ..

This quantification of the permitted wave numbers has a consequence on the spatial forcing by
the 3D torus ĤT

0 (k) or by a Dirac ring ĤRD
0 (k). On the one hand, in Figs. 16(a) and 16(c) we have

plotted the theoretical forcing of ĤT
0 (k) and ĤRD(k), based on formulas (A2) and (A1), respectively,

with a continuous description of the wave vectors in terms of the modulus k = |k| and the angle θ .
On the other hand, Figs. 16(b) and 16(d) show the numerical forcing ĤT

0 (k) and ĤRD(k) based on
the values of the wave vector in terms of modulus and angle discretized on the Cartesian grid such
that k = (l, m, n), (l, m, n) ∈ {1, . . . , Nx}3 with Nx the simulation resolution. When comparing the
filters, the main difference between a continuous and a quantified grid comes from the large scales.
Compared with the theoretical formulas for the two configurations, the energy contained in the small
scales (k > 30) is well evaluated by the Cartesian grid, but the energy contained in the large scales
is underestimated, with energy gaps at several θ angles. This numerical effect is more detrimental
to the 3D torus configuration than to the Dirac ring configuration. Indeed, at fixed θ , compared to
the theoretical formula, in the Dirac ring configuration the energy of the small scales is of the same
order of magnitude as the energy of the large scales, which compensates for the gaps. However,
this is no longer the case in the 3D torus configuration, as the larger scales contain noticeably more
energy and the smaller scales can no longer compensate for the gaps. For each angle, the total
energies injected by the forcing terms ĤT

0 (k) and ĤRD(k) therefore vary between the theoretical
formula and the Cartesian grid, but these variations are less significant for the ring of the Dirac
configuration than for the 3D torus configuration. This has consequences for the vertical component
of the velocity and the dissipation. Again, this phenomenon is observed equivalently in experiment
and simulations whenever an enclosed fluid domain is considered.

APPENDIX C: FREQUENCY QUANTIZATION DUE TO THE SOURCE GEOMETRY

Figure 17(a) shows the distribution in the (θ, ω) plane of EL,NL(θ, k, ω) normalized by EL,NL
tot for

k = 12 for nonlinear simulations in the torus configuration. The spectrum appears as concentrated
energy along stripes, but the presence of the dispersion relation of IWs is clear. The stripes appear
for two reasons:
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FIG. 16. Comparison of the modulus of the forcing of Dirac ring |ĤRD
0 (k, θ )| as a function of wave number

k and the angle θ in the same range used in the simulations between (a) theoretical value from (A1) and
(b) numerical computation from a Cartesian grid. The same is for for 3D torus forcing |ĤT

0 (k, θ )| between
(c) theoretical values from Eq. (A2) and (d) numerical results.

(1) The quantization of the wave vectors since not all angles θ are possible due to the dis-
cretization on a Cartesian grid and bounded domain in particular at large scale (see Sec. IV B and
Appendix B).

(2) The spatial forcing of the torus. Upon defining the average ĤT
0 (k0, θ0) =∑

|k|=k0,θ (k)=θ0
ĤT

0 (k, θ (k)) over all k of norm k0 and angle θ0, we observe that the forcing
term ĤT

0 (k0 = 12, θ0) is zero for several angles θ visible in Fig. 17(a), which is due to the Cartesian
grid.

At fixed k, we compute the number N (k, θ ) of possible points on the grid for each θ0. Fig-
ure 17(b) shows these two sources of stripes, ĤT

0 (k0, θ0) and N (k, θ ), normalized, respectively, by
maxθ (ĤT

0 (k = 1, θ )) and
∑

θ (N (k = 12, θ ). Moreover, the product of the two sources of stripes
ĤT

0 (k0, θ0)N (k0, θ0) is also plotted in the figure to identify the angles that form the stripes, based
on the two previous reasons. The figure shows the coincidence of the zeros and variations of this
function of kinetic energy density with the modulation with θ plotted in Fig. 17(a).
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FIG. 17. (a) Angular spectral kinetic energy density ENL(θ, k0 = 12, ω)/ENL
tot for θ f = 33◦. The dashed

black lines represent the dispersion relation ωdr (θ ) defined in Eq. (1). The color bar indicates the log of the
amplitude. (b) Dependence on θ of ĤT

0 (k = 12, θ ) normalized by max (HT
0 (k = 1, θ )) (middle panel), and

N (k = 12, θ ) normalized by
∑

θ N (k = 12, θ ) (top panel), ĤT
0 (k = 12, θ )N (k = 12, θ ), plotted in percentage

to indicate the injected power in different stripes.
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