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The nonlinear transfer rate of the total energy (transfer rate of kinetic energy + transfer
rate due to the work done by the magnetization) for an incompressible turbulent ferrofluid
system is studied under the assumption of statistical homogeneity. Using the formalism of
the two-point correlators, an exact relation connecting the second-order statistical moments
to the average energy injection rate is derived for the scale-to-scale transfer of the total en-
ergy. We validate the universality of the exact relation through direct numerical simulations
for stationary and nonstationary cascade regimes. For a weak external magnetic field, both
kinetic and the total energy cascade with nearly the same cascade rate. A stationary cascade
regime is achieved, and hence a good agreement between the exact energy transfer rate and
the average energy injection is found. Due to the rapid alignment of the ferrofluid particles
in the presence of strong external fields, the turbulence dynamics becomes nonstationary.
Interestingly, there too, both kinetic and the total energy exhibit inertial range cascades but
with different cascade rates which can be explained using the nonstationary form of our
derived exact relation.

DOI: 10.1103/PhysRevFluids.9.094604

I. INTRODUCTION

To date, turbulence is one of the most challenging problems of physics that needs to be
completely understood. In common fluids, turbulence arises from the nonlinear interactions among
neighboring fluid layers, which leads to the formation of eddy-like structures of various sizes thus
conceiving a wide range of length scales. Energy is fed into the system at large scales and is
dissipated at very small scales. Well inside the intermediate inertial length scales, free from the
effects of forcing and dissipation, a fully developed turbulence is characterized by a universal
cascade of kinetic energy across the scales with a constant transfer rate ε. For homogeneous and
isotropic turbulence, ε can be exactly expressed in terms of the third-order moments of two-point
velocity fluctuations. For a turbulent magnetohydrodynamic fluid, the total energy (sum of kinetic
and magnetic energy) cascades throughout the inertial range. The respective energy transfer rate is
expressed in terms of two-point fluctuations of both velocity and magnetic field.

Derivation of the exact relations connecting ε and the two-point fluctuations was pioneered by
Kolmogorov [1] for a homogeneous and isotropic incompressible hydrodynamic fluid. Following
Kolmogorov, similar exact laws were also derived for different fluid systems including magneto-
hydrodynamic (MHD) turbulence [2–6]. Without the explicit assumption of isotropy, differential
exact relations involving the divergence of the third-order moments have been derived for several
other systems including the ones mentioned above [7–11]. This formalism is also extended to com-
pressible systems, where the ε can be written as a divergence of the third-order moments plus some
source terms [12–15]. An alternative form of the exact relation involving the second-order statistical
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moments is recently proposed for incompressible HD and MHD turbulence [16–19]. This form is
particularly interesting to cases where ε can not be written purely in terms of the divergence of
the two-point fluctuations (e.g., energy cascade in incompressible Hall-MHD turbulence, turbulent
compressible flows, etc.) [19,20]. One can then be interested to know if a similar type of universal
cascade can also be found in more complex fluids such as ferrofluids. Ferrofluids are complex
synthetic fluids that contain nanosized ferromagnetic particles suspended in a carrier liquid (water,
oil, other organic solvents, etc.). Ferrofluid particles interact via attractive van der Waals forces and
dipole-dipole interactions, which may result in aggregations. To prevent immediate aggregation,
these ferro-particles are, in general, coated with a surfactant [21–27]. In the absence of an external
magnetic field (H0), the particles are randomly orientated and the fluid have no net magnetism.
In the presence of H0, the magnetic particles respond by forming chainlike structures along the
field lines [28,29]. Such chainlike structures reduce the mobility and efficient mixing of different
parts of a ferrofluid thereby resisting the development of turbulence. In order to obtain a sustained
ferrofluid emulsion, it is therefore necessary to hinder the formation of chainlike structures. This can
be achieved by compelling the system to a strong turbulent forcing that introduces very high flow
velocities at large Reynolds number. Equivalently, in a fully developed turbulent ferrofluid, as the
strength of H0 increases, the turbulent transfers weaken, which eventually leads to the suppression
of turbulence [30–35]. Note that this is different from the emergence of weak turbulence regime due
to Alfvén-wave interactions in an MHD fluid [36] or the wave-driven turbulence observed on the
surface of a ferrofluid [37–39].

Explorating turbulence within ferrofluid is imperative for investigating the implications of
magnetic fields on heat transfer phenomena, encompassing flow management, augmenting heat
transfer processes, and mechanisms dedicated to noise reduction through convection [40–43].
Although a number of theoretical and experimental studies have been carried out on ferrofluid
flows [24,26,27,44,45], only a few of them are dedicated to study of the turbulent properties of
such a flow [30,32–35]. In particular, for homogeneous turbulence, those studies investigated the
evolution of the turbulent kinetic energy (both translational and rotational) and the corresponding
power spectra [31–33]. In a turbulent ferrofluid, the sum of kinetic energy and work done due to
magnetization is an inviscid invariant and is therefore expected to exhibit a universal cascade with
a constant flux rate (ε) inside the inertial range. However, the possibility of a universal cascade in
terms of the statistical moment of field fluctuations has not been studied until recently where an
exact relation for homogeneous ferrofluid turbulence has been derived [46]. Unlike incompressible
HD, MHD, and binary fluid dynamics, ε in ferrofluid turbulence cannot be expressed as a divergence
of two-point increments, and instead, an alternative form similar to [16,17] of the exact relation has
been obtained for the energy cascade in ferrofluid turbulence.

In the current study, we revisit our previous work [46] with a realistic assumption of negligible
particle size and rederive a reduced form of the exact relation for the total energy transfer. The
derived law is then numerically tested with 3D direct numerical simulations (DNS) ranging from
1283 to 5123 grid points to find the signature of scale-independent energy transfer rate. Finally,
stationary and nonstationary cascades are studied by varying the strength of H0 and the effect of an
external field on the nature of turbulent cascade in the ferrofluids is discussed.

The paper is organized as follows. In Sec II the governing equations and conservation of total
energy for the ferrofluid system are described, whereas Sec. III contains the derivation of the exact
relation for negligible ferrofluid particle size. In Sec. IV we present the numerical methods and other
simulation details. In Sec. V we present and discuss our findings. Finally, in Sec. VI we summarize
and conclude.

II. MODEL AND INVISCID INVARIANT

A. Basic equations

The governing equations for incompressible ferrofluid (the constant density is normalized
to unity) consist of the evolution equations for linear momentum, angular momentum, and
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magnetization [32,46]:

(∂t + v · ∇)v = −∇p + ν∇2v + μ0(M · ∇)H − ζ∇ × (� − 2ω), (1)

I (∂t + v · ∇)ω = μ0(M × H) + η∇2ω + 2ζ (� − 2ω), (2)

(∂t + v · ∇)M = ω × M − 1

τ
(M − Meq), (3)

∇ · v = 0, ∇ × H = 0, (4)

where v is the velocity of the ferrofluid, � = ∇ × v is the vorticity, p is the fluid pressure, ω is
the ferrofluid particle spin rate, M is the magnetization vector, H is the magnetic field vector, I is
the moment of inertia per unit mass for a ferrofluid particle, ν is the kinematic viscosity, ζ is the
vortex viscosity, η is the spin viscosity, and τ is the relaxation time. The equilibrium magnetization
is given by Meq = MsL(ξ )H/H , where L(ξ ) = [ξ coth(ξ ) − 1]/ξ is the Langevin function with
ξ = μ0mH/kBT for a ferrofluid at temperature T . The parameters Ms and m are the magnitudes of
saturation magnetization and magnetic moment of a single ferrofluid particle, respectively. For small
values of ξ , one can write Meq = χH, where χ is magnetic susceptibility. Due to incompressibility,
v is divergenceless, and in the absence of any free current H is irrotational. Since the magnetic flux
(B) is divergence-free, the evolution of the magnetic field can directly be obtained from that of the
magnetization as B = μ0(H + M), and hence one can write

∇ · M = −∇ · H. (5)

Unlike our previous work [46], here we incorporate the fact that the specific moment of inertia
I (∼10−16 m2) and the spin viscosity η (∼10−15kg m s−1) are very small and can practically be
neglected with respect to the other terms in the evolution equation of angular momentum [32].
Hence, the angular momentum Eq. (2) reduces to

ω = �

2
+ μ0

4ζ
(M × H). (6)

Using Eq. (6) in Eqs. (1) and (3), one obtains
(∂t + v · ∇)v = −∇p + ν∇2v + μ0(M · ∇)H + μ0

2
∇ × (M × H), (7)

(∂t + v · ∇)M = 1

2
(� × M) + μ0

4ζ
(M × H) × M − 1

τ
(M − χH). (8)

Equations (7) and (8) along with Eqs. (4) and (5) constitute the complete set of equations for
ferrofluid turbulence. Note that we have a total of 10 variables, i.e., three components of each of
v, M, H, and the scalar pressure p. Since H is irrotational, it can be written as a gradient of a scalar
field H = ∇φ. Now, using Eq. (5), one can calculate φ = −∇−2(∇ · M), and hence H. Finally, p
is determined by taking the divergence of Eq. (8) and using the incompressibility condition (4) as
p = −∇−2{∇ · [(v · ∇)v − μ0(M · ∇)H]}.

B. Conservation of total energy

Similar to ordinary fluids, ferrofluid equations also conserve the total energy in the absence of
viscous terms. The total energy consists of the kinetic energy of the fluid and the internal energy
resulting from the work performed by the ferrofluid particles in response to the external magnetic
field. Using Eq. (7), the kinetic energy evolution equation can be written as

∂t Ekin = ∂t

(
v2

2

)

= −∇ ·
[(

v2

2
+ p

)
v − μ0

2
(M × H) × v

]
+ μ0

2
[(M × H) · � + 2v · (M · ∇)H] − ν�2.

(9)
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Again using Eq. (8), the differential work performed by the ferrofluid particles due to H is given by
dEmag = −H · dM, and hence the corresponding evolution equation is given by

∂t Emag = −H · ∂t M

= H · [(v · ∇)M] − 1

2
H · (� × M) − μ0

4ζ
H · [(M × H) × M] + 1

τ
H · (M − χH)

= H · [(v · ∇)M] − 1

2
H · (� × M) − μ0

4ζ
(M × H)2 + 1

τ
H · (M − χH)

= H · [(v · ∇)M] − 1

2
H · (� × M) − ζ

μ0
(2ω − �)2 + 1

τ
H · (M − χH). (10)

Note that, unlike HD and MHD fluids, here the work done by the magnetic field dEmag cannot be
written as an exact differential, and hence, a separate expression for the energy density and the
corresponding two-point correlator cannot be obtained. The evolution equation of the total energy
is given by∫

∂t (Ekin + Emag)dτ = −
∫

∇ ·
[(

v2

2
+ p + μ0M · H

)
v − μ0

2
(M × H) × v

]
dτ + d, (11)

where dissipation term is

d =
∫ [

−ν�2 + μ0

τ
H · (M − χH) − ζ (� − 2ω)2

]
dτ. (12)

The first term in the r.h.s. of Eq. (11) vanishes by the use of the Gauss divergence theorem, and
finally ignoring the dissipation terms, we obtain the conservation of the total energy. In viscous
flows, where the dissipative effects are not negligible, the l.h.s. of Eq. (11) does not vanish. In such a
situation, one needs to add an additional injection term f which would then lead to the conservation
of energy by balancing the dissipation as d = − f . In the next section, we shall see if a constant flux
of energy can be obtained by ensuring the driving only at large scales and dissipation only at small
scales.

III. DERIVATION OF EXACT RELATIONS

In this section, using two-point statistics, we derive an exact relation for the transfer of total
energy within the inertial range. For the sake of numerical implementation, it is necessary to cast
the constitutive relation (6) and the governing equation (7) and (8) in terms of dimensionless starred
variables as

ω∗ = 1

2
�∗ + Re

2.2
(M∗ × H∗), (13)

∂t∗v∗ = v∗ × �∗ − ∇∗
(

p∗ + v∗2

2

)
+ 1

Re
∇∗2v∗ + (M∗ · ∇∗)H∗ + 1

2
∇∗ × (M∗ × H∗), (14)

∂t∗M∗ = −(v∗ · ∇∗)M∗ + 1

2
(�∗ × M∗) + Re

2.2
(M∗ × H∗) × M∗ − 1

�
(M∗ − χH∗), (15)

where we used ζ = 0.55ν [32], v = vrmsv
∗, M =

√
1
μ0

vrmsM∗, H =
√

1
μ0

vrmsH∗, t = l0
vrms

t∗, p =
v2

rms p∗, � = vrms
l0

τ , Re = l0vrms
ν

with l0 representing the box size and vrms the root-mean-square
velocity of the input velocity profile. In order to simplify the notations, we shall omit the stars from
the dimensionless variables hereinafter. To achieve a sustained turbulent flow, the system is driven
by a large-scale forcing f v (delta correlated in time) in the momentum equation. The evolution
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equation of the energy correlation function is then given by [using Eqs. (14) and (15)]

∂tR = 1

2
〈(v′ · ∂tv + v · ∂tv

′) − (H · ∂t M′ + H′ · ∂t M)〉

= 1

2

〈
v′ · (v × �) + v · (v′ × �′) − v · ∇′

(
p′ + v′2

2

)
− v′ · ∇

(
p + v2

2

)
− 1

2
H′ · (� × M)

− 1

2
H · (�′ × M′) + v · (M′ · ∇′)H′ + v′ · (M · ∇)H + H′ · (v · ∇)M + H · (v′ · ∇′)M′

+ 1

2
v′ · [∇ × (M × H)] + 1

2
v · [∇′ × (M′ × H′)]

〉
+

〈
1

Re
v · ∇′2v′ + 1

Re
v′ · ∇2v

− Re

2.2
H′ · [(M × H) × M] − Re

2.2
H · [(M′ × H′) × M′] + 1

�
H′ · (M − χH)

+ 1

�
H · (M′ − χH′) + v′ · f v + v · f ′

v

〉
, (16)

where unprimed and primed quantities represent the variables at the point x and x′(≡ x + �),
respectively, � is the increment vector, and 〈·〉 denotes the ensemble average, which is equivalent to
the space average due to statistical homogeneity. Again, using incompressibility and homogeneity,
one can show 〈v′ · ∇( v2

2 + p)〉 = 〈v · ∇′( v′2
2 + p′)〉 = 0. Equation (16) can further be simplified as

∂tR = 1

2

〈
−δ(v × �) · δv − δv · δ[(M · ∇)H] − δH · δ[(v · ∇)M] − 1

2
δv · δ[∇ × (M × H)]

+ 1

2
δH · δ(� × M)

〉
+

〈
1

Re
v · ∇′2v′ + 1

Re
v′ · ∇2v − Re

2.2
H′ · [(M × H) × M]

− Re

2.2
H · [(M′ × H′) × M′] + 1

�
H′ · (M − χH) + 1

�
H · (M′ − χH′) + v′ · f v + v · f ′

v

〉
,

(17)

where we have used the following relations (obtained under the assumption of statistical
homogeneity):

(i) 〈(v × �) · v′ + (v′ × �′) · v〉 = −〈δ(v × �) · δv〉, (18)

(ii) 〈v · (M′ · ∇′)H′ + v′ · (M · ∇)H + H · (v′ · ∇′)M′ + H′ · (v · ∇)M〉
= 〈−δv · δ[(M · ∇)H] − δH · δ[(v · ∇)M] 〉, (19)

(iii) 〈H′ · (� × M) + H · (�′ × M′) − v′ · [∇ × (M × H)] − v · [∇′ × (M′ × H′)]〉
= 〈δ� · δ[(M × H)] − δH · δ(� × M)〉. (20)

To see the effect of the applied external field H0 on the energy transfer, we apply a uniform external
field of strength H0 along ẑ direction. Decomposing the total magnetic field as H = H0 + H̃ =
H0ẑ + H̃, we obtain

∂tR = 1

2

〈
−δ(v × �) · δv − δv · δ[(M · ∇)H̃] − δH̃ · δ[(v · ∇)M] − 1

2
δ� · δ(M × H̃)

+ 1

2
δH̃ · δ(� × M)

〉
+

〈
1

2
H0 · (δ� × δM)

〉
+ D + F, (21)
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where D consists of the two-point dissipative terms

D = 1

2

〈
1

Re
v · ∇′2v′ + 1

Re
v′ · ∇2v − Re

2.2
H̃′ · [(M × H) × M] − Re

2.2
H̃ · [(M′ × H′) × M′]

+ 1

�
H̃′ · (M − χH) + 1

�
H̃ · (M′ − χH′)

〉
, (22)

and F consists of purely the large-scale contributions, where

F = 1

2
〈v′ · f v + v · f ′

v〉 −
〈

Re

2.2
H0 · [(M × H) × M] − 1

�
H0 · (M − χH)

〉
. (23)

Assuming a statistically stationary state where ∂tR = 0 and ignoring the dissipative effects inside
the inertial range, finally, we obtain the exact relation as

A(�) = A1(�) + A2(�) = 2ε, (24)

where

A1(�) =
〈
δv · {δ(v × �) + δ[(M · ∇)H̃]} + δH̃ ·

{
δ[(v · ∇)M] − δ(� × M)

2

}
+ δ� · δ(M × H̃)

2

〉
,

(25)

A2(�) = −
〈

1

2
H0 · (δ� × δM)

〉
, (26)

and ε = F ≈ 〈v · f v − H0 · { Re
2.2 [(M × H) × M] − 1

�
(M − χH)}〉 = εinj − εH0 is the mean energy

injection rate.
Equation (24) is the main analytical result of this paper. It gives the energy cascade rate for

ferrofluid turbulence, where the ferrofluid particles are of negligible size. Whereas A1(�) denotes
the part of ε coming exclusively from the fluctiations, A2(�) gives the contribution of external
magnetic field H0 to ε. Note that A2(�) is not entirely coming from the mean-field contribution
of the momentum evolution Eq. (14) but also comes from the nonlinear terms in Eq. (15), which
are proportional to H0 and are obtained while calculating H · ∂t M′ or H′ · ∂t M. As shown above,
the external magnetic field (H0) not only actively contributes to the inertial range energy transfer
but also modifies the input energy injection (ε) coming from large scales to the inertial range. In
the next section, we numerically investigate if ferrofluid turbulence shows an inertial range energy
cascade and eventually calculate the cascade rate.

IV. NUMERICAL METHOD AND SIMULATION DETAILS

We perform three-dimensional direct numerical simulations (DNS) of Eqs. (14) and (15) us-
ing a pseudospectral method with periodic boundary conditions. The box length is taken to be
2π with N grid points in each direction. We run three simulations with 1283, 2563, and 5123

grid points with input Reynolds numbers Re = 250, 500, and 1428, respectively. The aliasing
error is removed by a standard 2/3-dealiasing method, thus limiting the maximum available
wave number to N/3. The code is parallelized using an MPI-based slab decomposition scheme
[47]. The velocity field is initialized from a fully developed pure Navier-Stokes (NS) flow. A
random initial condition is used for the magnetization field, and a uniform time-independent
external magnetic field of strength H0 = 0.1 is applied along the z direction. The energy is in-
jected by forcing the momentum evolution equation with a large-scale Taylor-Green forcing f v ≡
f0[sin(kox) cos(koy) cos(koz),− cos(kox) sin(koy) cos(koz), 0], where ko = 2 is the energy-injection
scale and f0 = 0.5 is the forcing amplitude. The system is time evolved using a fourth-order
Runge-Kutta (RK4) method until a statistical stationary state is achieved. In the following, using the
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FIG. 1. Time variation of ∂t E , energy injection rate f = 〈 f v · v〉 and dissipation rate d for the external
field strength H0 = 0.1. See run 1a (left), run 2a (center), and run 3a (right) from Table I for simulation
parameters.

exact law derived above, we shall numerically investigate if a universal energy cascade of energy is
obtained in fully developed ferrofluid turbulence and the contribution of different nonlinear terms.

In Fig. 1 we plot the rate of total energy [∂t E = ∫
∂t (Ekin + Emag)dτ ], which is determined by

the volume integration over the rate of translational kinetic energy and the rate of work due to
magnetization in the presence of an external field of the fluid [see Eq. (11)]. As is evident from the
figure, the average energy dissipation rate (d) is balanced by the average energy injection rate ( f )
leading to a statistically stationary state for the total energy, i.e., ∂t E ≈ 0. All the statistics are done
when the statistical steady state is achieved. The presence of structures at all scales in the velocity,
magnetization, and magnetic field intelligibly signifies that the turbulence is fully developed (see
Fig. 2).

Simulation parameters are summarized in Table I. All the runs are well resolved as the ratio of
the maximum wave number kmax = N/3 to the Kolmogorov wave number kη = 2π/η where η =
(ν3/ε)1/4 is greater than 1. One could expect to better resolve the Kolmogorov scale by increasing
the grid size, i.e., the ratio kmax/kη should increase with the increase in grid size. However, at the
same time, we are decreasing the fluid viscosity which corresponds to a higher value of kη. Thus,
we could achieve kmax/kη ∼ 1.5 for 5123 grid points.

In addition to the aforesaid simulations, we have also performed a series of three simulations for
a comparatively strong field strength H0 = 1.0. Rather than searching for a stationary state, we have
used the same forcing ( f0 = 0.5) as used for the weaker H0 and collected the data for a state where
the average energy is not constant but changing at a constant rate in time (see Fig. 3). In this case,
we investigate whether the kinetic and the total energy still cascade with constant rates. Note that the
chosen values of H0 are comparable to realistic situations. For example, in [32] the three values of H0

FIG. 2. Snapshot of the modulus of (a) velocity (v) (b) magnetization (M) and (c) magnetic field (H̃) at
simulation time t = 10 for run 3a (Table I).
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TABLE I. Simulation parameters: “NS” represents Navier-Stokes flow, the subscript “a” represents runs
with H0 = 0.1, and “b” represents runs with H0 = 1.0. Urms is the stationary root mean square (rms)
velocity, M0 is the mean magnetization, λ = [5

∫
E (k) dk/

∫
k2E (k) dk]1/2 is the Taylor length scale, and

L = (3π/4)
∫

E (k)k−1 dk/
∫

E (k) dk is the integral length scale, where E (k) is the kinetic energy spectrum
[48]. ReL = UrmsL/ν is the integral-scale Reynolds number, and Reλ = Uλλ/ν is the Taylor-scale Reynolds
number, where Uλ is the velocity corresponding to the scales λ and is calculated using the phenomenological
relation Uλ/Urms ∼ (λ/L)1/3 [49]. For all runs, dimensionless relaxation time � = 0.1 is used.

Run N Urms M0 L λ η ReL Reλ kmax/kη L/λ L/η

NS 512 1.219 – 0.929 0.194 0.044 1619 201 1.193 4.78 21.11
1a 128 0.739 0.01 0.613 0.343 0.21 113 52 1.432 1.79 2.92
2a 256 0.772 0.01 0.541 0.247 0.125 209 73 1.698 2.19 4.33
3a 512 0.797 0.01 0.506 0.15 0.057 576 114 1.553 3.37 8.88
1b 128 0.731 0.11 0.651 0.377 0.222 118 57 1.508 1.73 2.93
2b 256 0.776 0.11 0.57 0.284 0.133 221 87 1.812 2.00 4.29
3b 512 0.803 0.11 0.514 0.17 0.061 589 135 1.662 3.02 8.43

are 158 Oe, 316 Oe, and 1264 Oe which map to 1.1, 2.2, and 8.8 nondimensional H0, respectively.
Among these, the value 1.1 is very close to H0 = 1.0 of our case. H0 = 8.8 or further higher values
are not taken since the current magnetization equation is applicable only to moderately high values
of H0 as reported by [32]. The value H0 = 0.1 is taken to check the possibility of a nearly stationary
cascade.

For a fully developed turbulent flow, inside the inertial range, a flat region is expected for A(�)
when plotted as a function of increment vector �. The flatness indicates the scale-independent nature
of the energy cascade rate and this constant flux rate is equal to the average injection rate i.e.,
A(�) = const = 2ε. The average 〈(·)〉 is calculated over the possible pairs of x and x′ = x + �,
i.e., A(�) = 〈A(x, �)〉x. This average is sufficient for the calculation of all flux terms. However, in
practice, exact scaling laws are written assuming statistical isotropy. In order to achieve that, we
vary the increment vector over 73 directions spanned by the base vectors ∈ {(1,0,0), (1,1,0), (1,1,1),
(2,1,0), (2,1,1) (2,2,1), (3,1,0), (3,1,1)} (in units of the grid resolution). Finally, a one-dimensional
interpolation is done before the final averaging over all the 73 directions, which gives the isotropic
A(�) = ∑

A(�)/73 [18,50,51]. Interestingly, in our derived exact relation, A(�) is found to be more
or less identical in all 73 directions and hence A(�) � A(�) (see Fig. 4). This is because our derived
A(�) is according to the alternative form ([16,17,19]) and is free of any global divergence.

FIG. 3. Time variation of ∂t E , f , and d for the external field strength H0 = 1.0. See run 1b (left), run 2b
(center), and run 3b (right) from Table I for simulation parameters.
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FIG. 4. Energy cascade rate along all the 73 directions (dotted curves) and the average over all the
directions (solid black curve) for a typical simulation (run 3a).

V. RESULTS

In Fig. 5 we plot A(�), A1(�), A2(�) for external field strengths H0 = 0.1 and 1.0. While
A2(�) consists of the flux contributions due to the initial external field H0, A1(�) accounts for
the contributions due to H̃. A flat region in A(�) (black solid curve) is clearly found within the

FIG. 5. Energy cascade rates as a function of � for a box with 5123 grid points for H0 = 0.1ẑ (left) and
H0 = 1.0ẑ (right).
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FIG. 6. Various components of two point energy dissipation rate and A(�) as a function of � for a box with
5123 grid points for H0 = 0.1ẑ (left) and H0 = 1.0ẑ (right).

intermediate range of scales. It indicates the existence of a scale-independent energy cascade within
the internal range and thus numerically validates the Kolmogorov type of universality for our derived
exact relation [Eq. (24)] for ferrofluids. For statistical stationary state, in addition, the constant
scale-independent cascade rate should be equal to twice the average energy injection rate (ε) at large
scales. This equality expressed in Eq. (24) holds reasonably well for H0(=0.1) where we observe
A(�) ≈ 2ε within the inertial range [see Fig. 5(a)]. Note that energy flux rate A(�) is balanced with
the modified injection rate ε, which is not merely the external energy input rate 〈 f v · v〉. This is well
expected as we achieved a statistical stationary state for one-point average energy with H0 = 0.1.
Also, A2(�) is small compared to A1(�) (∼20 times smaller), and consequently the total energy
transfer is mainly governed by A1(�) as A1(�) ≈ A(�) ≈ 2ε. Similar to Fig. 5(a), both A(�) and
A1(�) in Fig. 5(b) become constant for a range of scales thus exhibiting a clear signature of both
kinetic and the total energy cascades.

However, for stronger external field (H0 = 1.0), A2(�) increases and becomes only ∼4 times
smaller than A1(�), which remains unaffected by any change in H0. Due to negative contribution of
A2(�) in A(�), the latter decreases with respect to A1(�). Note that, 2ε also decreases as H0 increases
and is slightly dominated by A1(�) in the inertial range as is evident from Fig. 5(b). Globally, one
can easily see that the exact relation A(�) = 2ε is not closely verified for H0 = 1.0 as there appears
a gap between A(�) and 2ε. This could be due to the fact that scale-dependent dissipative terms
are no longer negligible in the inertial length scales. In order to probe this, we have also plotted
different contributions from the total dissipation in Fig. 6. For both values of H0, all the dissipation
effects are found to remain small in the inertial range and become important at small scales. It
is therefore natural to understand that the gap between A(�) and 2ε is mainly because a proper
stationary state was not obtained for H0 = 1.0 and the exact law is calculated in the presence of a
nonzero but constant ∂t R. This is particularly interesting as it gives an evidence of energy cascade
even in a nonstationary regime where the more general exact relation A(�) = ∂t R + 2ε is satisfied
and affirms a constant A(�) when ∂t R is a nonzero constant. In Fig. 7 we plot A(�) along with
its components by varying the number of grid points from 1283 to 5123. As is expected, for both
H0 = 0.1 and H0 = 1.0, the extent of the flat region increases with the number of grid points and a
better convergence towards A(�) = 2ε is obtained [see Figs. 7(e) and 7(f)].
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FIG. 7. Comparison of the energy cascade rates A(�) and its components for grid points 1283 to 5123 (top
to bottom) with external magnetic field strength H0 = 0.1 and H0 = 1.0 (left and right).

The extent of the inertial range is described in terms of the largest energy-containing integral
scale (L) and the Kolmogorov scale (η) corresponding to the smallest eddies. As one goes on
increasing the resolution (or grid points), the large-scale Reynolds number Re increases and so
does the ratio (L/η), thus corresponding to a wider inertial range. From the plots, the increase in
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TABLE II. Order of magnitude of different terms of A(�) for grid points 5123.

H0 〈δv · δ(v × �)〉〈δv · δ[(M · ∇)H̃]〉〈δH̃ · δ[(v · ∇)M]〉〈δH̃ · δ(� × M)〉〈δ� · δ(M × H̃)〉〈H0 · (δ� × δM)〉
0.1 0.1 10−5 10−5 10−3 10−3 10−2

1.0 0.1 10−5 10−4 10−2 10−2 10−1

the inertial range with grid size is evident from the considerable shift of η towards smaller scales,
whereas L shifts very slightly towards the left. Similar to η, the Taylor microscale (λ), which denotes
the length scale where dissipation begins to impact turbulent eddies, also appears to migrate towards
smaller scales leading to a wider inertial range. All these three length scales are denoted by vertical
lines for all the runs plotted in Fig. 7. Further, for a particular grid resolution, the ratios L/λ and
L/η can be used to quantify the coupling between large and small scales. Smaller values of L/λ

and L/η indicate more coupling and vice versa. For, e.g., the ratio L/λ decreases from 4.78 to 3.37
as we move from a hydrodynamic case (run NS) to a ferrofluid system with H0 = 0.1 (run 3a).
The same ratio decreases to 3.02 as H0 increases to 1.0 (run 3b) indicating a stronger coupling in
the second case. The stronger coupling results from the large-scale effect coming from the external
mean field [52]. This is also true for L/η. Thus we conclude that the coupling between the large and
the small scales is the smallest in the pure HD case (H0 = 0) and increases with the increase of H0,
and hence the inertial range becomes smaller for stronger magnetic field strengths. Interestingly,
when we increase H0 = 0.1 to 1.0, the value of Urms does not change much, which is consistent
with the observation in [32]. However, the mean magnetization M0 is increased from 0.01 to 0.11
indicating an increased alignment of the ferrofluid particles with the external field.

For all runs, the pure kinetic term 〈δv · δ(v × �)〉 is found to be the most dominating term in A(�)
(see Table II for the relative order of magnitude of various terms). Among other terms, the energy
transfer due to 〈δ� · δ(M × H̃)〉 and 〈δH̃ · δ(� × M)〉 increases in magnitude with H0. However,
these two contributions cancel each other within the inertial range and thus do not affect the total
energy transfer. The remaining terms 〈δH̃ · δ[(v · ∇)M]〉 and 〈δv · δ[(M · ∇)H̃]〉 are several orders
of magnitude less than the kinetic term and are almost unaffected by the strength of external field.
Finally, as mentioned above, the effect of the external field enters through 〈H0 · (δ� × δM)〉 which
increases with H0.

VI. DISCUSSION AND CONCLUSIONS

Using two-point statistics, we have derived the exact relation corresponding to the transfer of
total energy for three-dimensional incompressible homogeneous ferrofluid turbulence. The exact
relation is equally applicable to isotropic and anisotropic flows. For anisotropic flows, unlike the
divergence form of the exact relation, the energy cascade rate can be calculated in a straightforward
manner without worrying about the geometry of the system. Using direct numerical simulations,
we have numerically calculated the cascade rate owing to our derived exact relation. For weak
external magnetic fields, we have studied the turbulent dynamics of a statistical stationary state
where the kinetic energy almost equals the total energy and exhibits an inertial range cascade. For
a stronger external magnetic field, we have studied the dynamics of a nonstationary regime with a
constant energy dissipation rate. Note that, for a strong H0, achieving a statistical stationary state is
found to be practically difficult as ferromagnetic particles tend to align themselves quickly along a
strong external field thereby leading to a constant leakage of energy from the fluid to the external
field. This distinguishes ferrofluid turbulence from ordinary fluid turbulence, where the stationary
energy cascade is observed. For ferrofluids, one can, however, obtain a nonstationary cascade with a
constant cascade rate if the energy is dissipated at a uniform rate. This is similar to the current study
where both the kinetic and the total energy cascade with a uniform transfer rate both for stationary
and nonstationary regimes. However, the kinetic energy cascade rate is found to be greater than the
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FIG. 8. Compensated kinetic energy spectrum for all runs in Table I.

total energy cascade rate, which includes the loss of energy due to magnetic field. With the increase
in resolution from 1283 to 5123, we also observed that the flat region between Kolmogorov scale
and integral scale increases and a better convergence towards the exact law is achieved.

In spectral space, the kinetic energy power spectrum gives a k−5/3 spectrum for both values of
H0 thereby justifying the existence of a Kolmogorov-type cascade for kinetic energy in ferrofluid
turbulence (see Fig. 8). Similar to the physical space, wider range for k−5/3 spectrum is also found
for simulations with increasing grid points. Finding power spectra for total energy is, however, not
evident for ferrofluid turbulence where the energy density function cannot be written due to the
inexact differential form of the magnetic energy part.

With the help of the derived exact relation, one can also study the turbulent relaxation in
ferrofluids using the recently proposed principle of vanishing nonlinear transfer [53]. This principle
has recently been used to successfully predict the relaxed states in binary fluid turbulence [54] and is
currently being implemented to find the relaxation in ferrofluids in a separate study. Complementary
to the current study, one can also investigate if the energy conservation is also satisfied in triads
and search for the corresponding mode to mode transfers [55]. Using the said concept, a natural
continuation would be to study contributions from local and nonlocal triads in the energy cascade
in ferrofluids in the presence of an external magnetic field of various strengths. The current study
can also be extended to the compressible ferrofluid system including the temperature evolution
equation into account [56].
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