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The dual-channel characteristics of large-scale helicity transfer in compressible turbulent
flows, including subgrid-scale (SGS) and viscosity terms, are investigated. After selecting
a suitable definition for large-scale helicity, we confirm the existence of the dual channel
of SGS and viscosity terms of large-scale helicity governing equations and theoretically
prove that no dual pressure term channel exists. The second channel of the SGS and
viscosity terms also consists of two terms, which originate from the rotation of the SGS
stress and the baroclinic of the velocity and density gradients, respectively. The identical
relationship of the ensemble averages of the dual channel of SGS and viscosity terms
can be theoretically and numerically confirmed, whereas their second channel which is
associated with shocklets is more intermittent. For the SGS term, the compression regions
are dominant in contrast to the expansion regions, and the strain regions are dominant
in contrast to the rotation regions in the inertial scale range. The viscous dissipation
mechanism of large-scale helicity differs from that of large-scale kinetic energy. It is
dominated by the first channel on the inside of the vortex structure and by the second
channel on the outside. The further decompositions of the second channel of the SGS and
viscosity terms provide a possible mechanism for the inverse helicity transfer. This means
that expansion motions promote inverse helicity transfer through the second terms of their
second channels.
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I. INTRODUCTION

Helicity is defined as the integral of velocity u(x, t ) and vorticity ω(x, t ) over volume, and it is
expressed as

H (t ) = 1

V

∫
V

u(x, t ) · ω(x, t ) dx. (1)

The integrand h(t ) = u(x, t ) · ω(x, t ) is called the helicity density. Consistent with the Helmholtz
and Kelvin theorems, if we assume that the flows are inviscid and barotropic, the helicity-governing
equation is reduced to

∂t (u · ω) + ∇ · ((u · ω)u + [
p(ρ) − 1

2 |u|2]ω) = 0, (2)

where p(ρ) is the pressure in the case of barotropic fluid [1–3]. When an ensemble average of the
above equation is used, the conservation law of helicity is present [4,5]. Nevertheless, the inviscid
and barotropic conditions cannot be satisfied in practical compressible turbulent flows [6]. However,
the helicity cascade process is still regarded as statistically conservative at the inertial subrange. The
main reason lies in the fact that viscosity works only on small scales and that pressure works only on
large scales statistically [7]. Relative to kinetic energy, helicity is pseudoscalar, which means that its
sign depends on the selected reference frame. Helicity topologically measures the twisting, linking,
and writhing of vortex lines even in a viscous flow [8–11].

Over the past few decades, scholars have had mixed views on the effects of helicity on the statis-
tical properties of turbulent flows. Some insist that helicity is a passive scalar and is not associated
with the energy spectra distribution [12–14]. In contrast, others believe that helicity can weaken the
nonlinearity strength of Navier-Stokes equations (NSEs) [15–17], the viscosity dissipation rate of
kinetic energy [18], the kinetic energy cascade process [19], kinetic energy transfer into internal
energy [7], and the decay rate of kinetic energy in rotating flows [20] and can promote the inverse
energy cascade process [21–26]. These helicity effects provide some theoretical suggestions for
developing suitable control methods for engineering flows, such as enhancing engine efficiency,
controlling rainfall intensity, and decreasing aircraft drag.

The study of helicity provides some new perspectives for natural and engineering flows. Supercell
formation and violent storms in atmospheric flows can be predicted by measuring helicity [27,28].
The conservation of magnetic helicity promotes the understanding of the Earth’s magnetosphere
and solar corona [29,30] and the development of tokamak reactors. The existence of helicity in a
jet-stirred tubular reactor leads to a higher turbulent mixing efficiency [31]. The study of helicity
can reveal associated flow structures beneficial to scalar transport in wall turbulence [32]. The
Taylor-Görtler vortices in turbulent boundary layers can also be considered helical structures with
high helicity [33,34], providing a possible explanation for the high heat flux in hypersonic vehicles
[35,36].

There exists a joint turbulent cascade of kinetic energy and helicity in three-dimensional turbulent
flows, which can be derived from Euler’s equations [12,37–39]. Many efforts have been devoted to
the study of energy cascades in incompressible and compressible turbulent flows [25,40–43], and
some methodologies can be extended to investigations of helicity cascades. Ditlevsen and Giuliani
[44] confirmed the existence of the helicity dissipation scale, which is analogous to the Kolmogorov
scale. Kurien et al. [45] proposed a helicity transfer timescale by using phenomenological argu-
ments. Chen et al. [39] compared the intermittency discrepancy of energy and helicity fluxes using
the refined similarity hypothesis. Eyink [40] proposed a multiscale gradient expansion method for
the subgrid-scale (SGS) stress tensor and obtained the approximate energy and helicity flux forms.
Biferale et al. [22] and Sahoo et al. [23,46] changed the nature of nonlinear terms of NSEs by
modifying the initial flow field into a single chirality and proposed a possible mechanism for the
inverse energy cascade in three-dimensional turbulent flows. Sahoo et al. [47] studied the scaling
properties of high-order structure functions of velocity and vorticity increments. In addition, the
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helical wave decomposition method was also employed to investigate the spectral properties of
energy and helicity with different chirality [24,38,48–50].

The presence of shock in compressible turbulent flows leads to a great challenge for the helicity
conservation law and other statistical properties of helicity transfer [3]. In addition, the variable-
density effect, couplings between velocity fields and thermodynamic parameters, and couplings
among vorticity and acoustic and entropy modes present only in compressible turbulent flows lead to
greater difficulty in helicity investigations. The coupling of the solenoidal and compressible modes
leads to a theoretical challenge for exploring the intrinsic mechanism of compressible turbulent
flows [51]. In compressible flows, the role of viscosity is more complex, and compressibility plays
an essential role in helicity generation [3,52]. Given the existence of large-scale helical structures,
a bridge should exist to transfer helicity from small scales to large scales [53,54]. Several previous
attempts were made by the authors to address the issues of helicity transfer in compressible turbulent
flows, including study of the effects of helicity on the energy cascade process [19], the effect
of pressure on the helicity cascade at relatively large scales [7], and cross-chirality transfer of
kinetic energy and helicity [55]. Our previous work on dual-channel helicity cascade theory in
incompressible turbulent flows [56] led to the question of whether the dual helicity cascade channel
exists in compressible turbulent flows. To address this issue, first, we need to choose a suitable
definition of large-scale helicity to satisfy the conservation law and eliminate pressure and viscosity.
Second, the expressions of the dual-channel helicity cascade should be derived, and a contrastive
study of the differences between incompressible turbulent flows and compressible turbulent flows
should be performed. Third, in addition to SGS terms, the question of whether the dual-channel
methodology applies to pressure and viscosity terms should be answered.

These problems motivate us to conduct a detailed investigation of large-scale helicity transfer in
compressible turbulent flows. The rest of the paper is organized as follows. In Sec. II we present the
details of direct numerical simulations (DNS) of compressible helical turbulent flows. In Sec. III we
derive the governing equation of large-scale helicity in compressible turbulent flows and confirm
the existence of dual channels of SGS and viscosity terms in helicity transfer. Then in Sec. IV
we investigate the statistical properties of the two channels of the SGS and viscosity terms under
the effects of compression, expansion, strain, and rotation. In Sec. V we summarize the major
conclusions and discuss the findings of the study.

II. DNS OF COMPRESSIBLE HELICAL TURBULENCE

Some reference variables are selected to normalize the physical variables present in the governing
equations: the reference density ρ f , velocity Uf , pressure p f = ρ f U 2

f , temperature Tf , length
L f , viscosity μ f , thermal conductivity κ f , and energy per unit volume ρ f U 2

f . The dimensionless
parameters involved include the Reynolds number Re ≡ ρ f Uf L f /μ f , Mach number M ≡ Uf /c f ,
and Prandtl number Pr ≡ μ f Cp/κ f , which is set to 0.7. c f ≡ √

γ RTf is the speed of sound, where
γ ≡ Cp/Cv is the heat capacity ratio, which is set to 1.4 in our numerical simulation; Cp is the spe-
cific heat at constant pressure; Cv is the specific heat at constant volume; and α ≡ PrRe(γ − 1)M2

[55,57,58].
The dimensionless NSEs for three-dimensional compressible helical turbulence of ideal gas are

∂ρ

∂t
+ ∂ (ρu j )

∂x j
= 0, (3a)

∂ (ρui )

∂t
+ ∂ (ρuiu j )

∂x j
= − ∂ p

∂xi
+ 1

Re

∂σi j

∂x j
+ Fi, (3b)

∂E
∂t

+ ∂[(E + p)u j]

∂x j
= 1

α

∂

∂x j

(
κ

∂T

∂x j

)
+ 1

Re

∂ (σi jui )

∂x j
− � + Fju j, (3c)

p = ρT

γ M2
. (3d)
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where ρ is the density, u is the velocity, p is the pressure, T is the temperature, � is a cooling
function for sustaining a steady state statistically [57], and F is the large-scale force composed of
multiple parameters controlling kinetic energy and helicity. The multiple parameters include the
energy input rates of the compressive and solenoidal components and the helicity input rate. Hence,
the specific external force can be constructed as

Fi = √
ρ × (

π1uC
i + π2uS

i + π3ωi
)
, (4)

where the superscripts C and S denote the compressible and solenoidal components of velocity,
respectively, and π1, π2, and π3 are three indeterminate dimensional parameters. The external force
is fixed within the lowest two wave-number shells to avoid the pollution of external force on the
statistical results at middle and small scales. Similar to our previous work [55], the injection rates of
kinetic energy and helicity are fixed at 0.3 and −0.37, respectively. To obtain highly compressible
turbulent flows, the injection rate of the kinetic energy is divided equally into solenoidal and
compressible modes. For more details, refer to our previous work [55].

In addition, the viscous stress is defined as

σi j = μ

(
∂ui

∂x j
+ ∂u j

∂xi

)
− 2

3
μ

∂uk

∂xk
δi j . (5)

The total energy per unit volume E is

E = p

γ − 1
+ 1

2
ρuiui. (6)

The viscosity coefficient μ and thermal conductivity coefficient κ are determined via the Suther-
land law [59] for simplicity:

μ = 1.4042T 1.5

T + 0.40417
, κ = 1.4042T 1.5

T + 0.40417
. (7)

The DNS of compressible helical turbulence in a cubic box with a length of 2π is carried out in
the present study. To obtain high-fidelity numerical results to capture all the length scales of interest,
the grid resolution is 20483, and we adopt periodic boundary conditions in the x, y, and z directions.
For more numerical setting details, refer to our previous work [55].

Some one-point statistical parameters are defined to describe the characteristics of the present
compressible helical turbulence [60,61]. The integral length scale L f is

L f = 3π

2(u′)2

∫ ∞

0

Eu(k)

k
dk, (8)

where Eu(k) is the power spectrum of the velocity with
∫ ∞

0 Eu(k) dk = 〈u′2〉/2. The Taylor mi-
croscale λ is

λ = u′

〈[(∂u1/∂x1)2 + (∂u2/∂x2)2 + (∂u3/∂x3)2]/3〉1/2
, (9)

and the Kolmogorov length scale η is

η = [〈μ/Reρ〉3/ε]1/4. (10)

Here u′ is the root mean square (rms) of velocity vector u, which is defined as u′ =√
〈u2

1 + u2
2 + u2

3〉/3; E (k) is the spectrum of kinetic energy per unit mass; ε is the ensemble-averaged
viscous dissipation rate of kinetic energy per unit volume, which is defined as ε = 〈σi jSi j/Re〉; and
the strain-rate tensor is Si j = (1/2)(∂ui/∂x j + ∂u j/∂xi ). Hence, the Taylor microscale Reynolds
number Reλ and the turbulent Mach number Mt are defined as

Reλ = u′λ〈ρ〉
〈μ〉 , Mt = M

√
3u′

〈√T 〉 . (11)
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TABLE I. Some characteristic parameters of the present numerical simulations. �x is the mesh spacing, θ ′

is the rms of the velocity divergence, and ω′ is the rms of the vorticity magnitude.

Resolution Reλ Mt ε δ kmaxη η/�x Lf /η λ/η τη T0 θ ′ ω′ S3

20483 514 0.67 0.30 −0.37 3.23 1.03 477 33.96 0.032 0.94 22.22 20.47 −30.76

The mean viscous dissipation rate of helicity is δ = 4〈Si jRi j − SiiR j j/3〉, and Ri j =
(1/2)[∂ (ωi/ρ)/∂x j + ∂ (ω j/ρ)/∂xi]. τη is the Kolmogorov time scale, which is defined as τη =
(〈μ/ρ〉/ε)1/2. T0 is the large-eddy turnover time, which is defined as T0 = L f /u′. The skewness of
the velocity gradient S3 is defined as

S3 = [〈(∂u1/∂x1)3 + (∂u2/∂x2)3 + (∂u3/∂x3)3〉]/3

[〈(∂u1/∂x1)2 + (∂u2/∂x2)2 + (∂u3/∂x3)2〉/3]3/2
. (12)

The characteristic parameters of the flow fields are listed in Table I. To obtain the stationary
status of fully developed helical turbulent flows, the computational physical time exceeds five times
the large-eddy turnover time. We show the three-dimensional shocklet structures represented by the
local velocity divergence of the present mesh resolution in Fig. 1(a). Owing to strong compress-
ibility, the shocklets are composed of large-scale sheet structures, and the expansion structures are
randomly distributed on a small scale. The kinetic energy spectra under different mesh resolutions
are shown in Fig. 1(b). The kinetic energy spectra satisfies

∫ ∞
0 E (k) dk = 〈v2〉/2, with v = √

ρu. In
contrast to our previous result [55], the present energy spectrum with a higher Reynolds number and
a higher mesh resolution exhibits more small-scale structures, which is beneficial to our statistical
analysis.

Before evaluating the compression or expansion effects, we need to investigate the scale dis-
tributions of the velocity divergence. The power spectrum of the velocity divergence θ is defined
as

∫ ∞
0 E θ (k) dk = 〈θ2〉. In Fig. 2(a) we show the power spectrum of the velocity divergence. The

power spectrum density of the velocity divergence in Fig. 2(a) shows a slight amplitude discrepancy
at the large and middle length scales, and it indicates the fluctuation of the velocity divergence
at the middle length scales is still large. However, both the compression and expansion motions
are involved in the power spectrum of the velocity divergence. To assess the compression and
expansion motions separately, we present the probability distribution functions (PDF) of the velocity

FIG. 1. (a) Isosurface of the velocity divergence, with threshold θ = −3θ ′ rendered in yellow and θ = 0.5θ ′

rendered in red. (b) Energy spectra of different mesh resolutions, and the energy spectrum of a mesh resolution
with 10243 is obtained from our previous work [55].
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FIG. 2. (a) Power spectrum of the velocity divergence θ . (b) PDF of the velocity divergence at different
length scales, where the line color corresponds to the length scales marked in (a). The inset shows the local
enlarged PDF of the velocity divergence to highlight the distribution of the dilatation at different length scales.

divergence at the corresponding length scales in Fig. 2(b), which are marked in Fig. 2(a). The PDF
of the velocity divergence indicates that the compression motion is dominant at all scales. With
decreasing length scale, the degree of dominance increases, which is associated with the shocklet
structures. For the PDF of the expansion motion shown in the inset of Fig. 2(b), weak expansion
motions are more concentrated at the middle and large length scales. Hence, the compression and
expansion motion degrees are high at the middle and small scales in our numerical simulations.
This approach is beneficial for assessing the compression and expansion effects on SGS transfer at
middle-length scales and on viscosity dissipation at small scales.

III. GOVERNING EQUATIONS OF LARGE-SCALE HELICITY IN COMPRESSIBLE
TURBULENT FLOWS

Helicity is a scalar product of velocity and vorticity, and we define large-scale helicity as a scalar
product of large-scale velocity and large-scale vorticity. However, two definitions of large-scale
velocity exist for compressible flows. The first approach involves performing a filter operation on
the velocity field, which is reflected as u(x) = ∫

d3rGl (r)u(x + r) [62]. The second definition is
obtained through the Favre filter as ũ(x) = ρu(x)/ρ [63]. The first definition is similar to that in
incompressible flows, and the second definition involves nonconstant density effects, which are
widely employed in compressible flows. In this section we derive the governing equations of large-
scale helicity on the basis of the Favre-filtered large-scale velocity as H̃ = ũ · ω̃, where ω̃ = ∇×ũ
[64] is the large-scale vorticity from the second definition. The governing equation of large-scale
helicity based on the direct-filtered velocity u and vorticity ω = ∇×u is derived and presented in
Appendix A.

Performing a filter operation on Eq. (3b) without considering external force and dividing by ρ,
we can obtain the following large-scale velocity equation:

∂ ũi

∂t
+ ũ j

∂ ũi

∂x j
= − 1

ρ

∂ρτ̃i j

∂x j
− 1

ρ

∂ p

∂xi
+ 1

Re

1

ρ

∂σ i j

∂x j
, (13)

where the Favre-filtered subgrid-scale stress is τ̃i j = ũiu j − ũiũ j . Performing a curl operation on
Eq. (13), we can obtain the following Favre-filtered vorticity governing equation:

∂ω̃i

∂t
+ ũ j

∂ω̃i

∂x j
+ ω̃ĩθ = ω̃ j

∂ ũi

∂x j
− εi jk

∂

∂x j

(
1

ρ

∂τ̃kl

∂xl

)
− εi jk

∂

∂x j

(
1

ρ

∂ p

∂xk

)
+ 1

Re
εi jk

∂

∂x j

(
1

ρ

∂σ kl

∂xl

)
.

(14)
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Hence, combining Eqs. (13) and (14), we can obtain the following governing equations of large-
scale helicity H̃ with the Favre filter:

∂H̃

∂t
+ ∂ J̃ j

∂x j
= −�H1

l − �H2
l + �l + Dl , (15)

where J̃ j is the spatial transport term, which is defined as

J̃ j = ũ j H̃ − (1/2)̃uiũiω̃ j + ω̃ĩτi j + εikl
∂ρτ̃l j

∂xk

ũi

ρ
+ ρτ̃i jεikl ũk

∂

∂xl

(
1

ρ

)
+ p

ω̃ j

ρ
+ pε jkl

∂ρ

∂xk

ũl

ρ2 − σ i j
ω̃i

ρ
+ σ i jεikl

ũk

ρ2

∂ρ

∂xl
− ũi

ρ
εikl

∂σ l j

∂xk
. (16)

Here, according to the naming conventions in our previous work [56], �H1
l is the first channel

originating from the advection term of the Favre-filtered velocity governing equation, and �H2
l is

the second channel originating from the advection and vortex stretching terms of the Favre-filtered
vorticity governing equation. They are defined as

�H1
l = −ρτ̃i j

∂

∂x j

(
ω̃i

ρ

)
, (17)

�H2
l = �H21

l + �H22
l , (18)

where

�H21
l = −εikl

∂ρτ̃l j

∂xk

∂

∂x j

(
ũi

ρ

)
, �H22

l = −ρτ̃i j
∂

∂x j

[
εikl ũk

∂

∂xl

(
1

ρ

)]
. (19)

If we assume that the filtered density is a constant, Eq. (17) and the first term of Eq. (18) would
recover to the first and second channels in incompressible flows [56]. Notably, the second term of
the second channel depends on the density gradient, and it is present only in variable-density flows.

The tensor geometry determines the transfer efficiency between unresolved and resolved scales,
in addition to the magnitudes of SGS stress and the strain rate for the energy cascade [65–68].
The tensor properties also lead to different transfer efficiencies, and a previous study proposed
that the transfer efficiency of the two involved symmetric tensors is smaller than that of the two
involved antisymmetric tensors for helicity cascades in incompressible turbulent flows [56]. The
tensor involving the filtered vorticity and density in Eq. (17) can be decomposed into symmetric R̃i j

and antisymmetric components �̃i j as follows:

∂

∂x j

(
ω̃i

ρ

)
= R̃i j + �̃i j, (20)

where

R̃i j = 1

2

[
∂

∂x j

(
ω̃i

ρ

)
+ ∂

∂xi

(
ω̃ j

ρ

)]
, �̃i j = 1

2

[
∂

∂x j

(
ω̃i

ρ

)
− ∂

∂xi

(
ω̃ j

ρ

)]
. (21)

The SGS stress tensor ρτ̃i j is symmetric, and its contraction with the antisymmetric component �̃i j

is zero. Hence, the first-channel helicity cascade involves only the contraction of two symmetric
tensors. For the second term of the second-channel helicity cascade, the tensor involves the cross-
product of the filtered velocity and density gradient, which is also decomposed into symmetric
and antisymmetric components. Therefore, the tensor geometry of the second term of the second-
channel helicity cascade is the same as that of the first channel.

The first term of the second-channel helicity cascade is more complex than that in incompressible
form, and it is reflected in the rotation of the SGS stress tensor. We make a derivation to study the
tensor properties in Appendix B and conclude that the first term of the second-channel helicity
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cascade can be decomposed into a contraction of two antisymmetric tensors, similar to the incom-
pressible form, and a component that results from compressibility.

The transfer efficiency of two symmetric tensors is greater than that of two antisymmetric tensors,
and it can be explained as a simple geometry of antisymmetric tensors [56,65]. In compressible
turbulent flows, the first channel of the helicity cascade can be considered the contraction of
two symmetric tensors, whereas the second channel cannot be considered the contraction of two
antisymmetric tensors. However, we infer that the transfer efficiency of the second channel of the
helicity cascade is still greater than that of the first channel because the second channel involves the
contraction of two antisymmetric tensors.

�l refers to the pressure term, which is defined as

�l = �1
l + �2

l , �1
l = p

∂

∂x j

(
ω̃ j

ρ

)
, �2

l = p
∂

∂x j

(
ε jkl

∂ρ

∂xk

ũl

ρ2

)
. (22)

Dl denotes the viscous term, which is calculated as follows:

Dl = D1
l + D2

l , (23)

D1
l = −σ i j

∂

∂x j

(
ω̃i

ρ

)
, D2

l = −εikl
∂σ l j

∂xk

∂

∂x j

(
ũi

ρ

)
+ σ i j

∂

∂x j

(
εikl

ũk

ρ2

∂ρ

∂xl

)
. (24)

The pressure term �l and viscous term Dl on the right-hand side (r.h.s.) of Eq. (15) involve only
large-scale flow fields, which can be resolved in large-eddy simulations (LES). The helicity flux
terms �H1

l and �H2
l involve both large- and small-scale flow fields, which represent the interscale

transfer of helicity in compressible flows. Hence, the form of the Favre-filtered helicity H̃ could
recapitulate the conservative characteristic of the helicity cascade in compressible flows, eliminating
the pressure and viscosity terms [7].

The point-to-point first and second channels of the pressure terms are the same, which is
theoretically proven in Appendix C. For the statistical characteristics of the pressure term of helicity
transfer in compressible turbulent flows, we performed a detailed analysis in our previous paper [7].
Regarding the viscosity terms, their reduced forms are the same in incompressible turbulent flows
but are different in compressible turbulent flows. The specific derivation is also given in Appendix C.

By comparing the governing equations of filtered helicity H and Favre-filtered helicity H̃ , we
can conclude that only Favre-filtered helicity H̃ is appropriate for investigating the helicity cascade
in compressible turbulent flows. Owing to the presence of a large-scale hydrodynamic source term,
unresolved presence, and viscous terms in Eq. (A5), the intrinsic mechanism of the transfer of
filtered helicity H is unclear. In other words, too many unresolved terms need to be modeled in this
form of large-scale helicity.

IV. DUAL CHANNELS OF HELICITY TRANSFER

A. SGS terms

From Eqs. (17) and (18), large discrepancies in the helicity cascade exist between incompressible
and compressible turbulent flows. In this section we investigate the statistical characteristics of
the first and second channels of the helicity cascade on the basis of the above numerical results,
especially under the influence of compressibility.

In our previous work [56], we theoretically proved the equality relation of the ensemble averages
of the first and second channels in three-dimensional turbulent flows. The equality relation applies
to the dual channels of the helicity cascade in compressible turbulent flows, and we also employ the
following identical relation:

∇ · (a×b) = b · (∇×a) − a · (∇×b), (25)
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FIG. 3. The ensemble averages (a) and rms (b) of the first and second channels of the helicity cascade.

with a = ũ and b = ∇ · (ρτ̃ )/ρ for any filter width. The expressions of the first- and second-channel
helicity fluxes can be rewritten as

�H1
l = −ρτ̃i j

∂

∂x j

(
ω̃i

ρ

)
≡ − ∂

∂x j
(̃τi jω̃i ) + ω̃i

ρ

∂

∂x j
(ρτ̃i j ), (26)

�H2
l = −εikl

∂ρτ̃l j

∂xk

∂

∂x j

(
ũi

ρ

)
− ρτ̃i j

∂

∂x j

[
εikl ũk

∂

∂xl

(
1

ρ

)]

≡ − ∂

∂x j

[
εikl

∂ρτ̃l j

∂xk

ũi

ρ
+ ρτ̃i jεikl ũk

∂

∂xl

(
1

ρ

)]
+ ũiεi jk

∂

∂xk

(
∂ρτ̃l j

∂xl

1

ρ

)
. (27)

Hence, the difference of the first- and second-channel helicity flux can be expressed as

� = �H1
l − �H2

l ≡ ω̃i

ρ

∂

∂x j
(ρτ̃i j ) − ũiεi jk

∂

∂xk

∂ρτ̃l j

∂xl

1

ρ

+ ∂

∂x j

[
εikl

∂ρτ̃l j

∂xk

ũi

ρ
+ ρτ̃i jεikl ũk

∂

∂xl

(
1

ρ

)
− τ̃i jω̃i

]
≡ ∂

∂x j

[
ε jkl ũk

∂ρτ̃l j

∂x j

1

ρ
+ εikl

∂ρτ̃l j

∂xk

ũi

ρ
+ ρτ̃i jεikl ũk

∂

∂xl

(
1

ρ

)
− τ̃i jω̃i

]
. (28)

Making an ensemble average on the above expression, it can be simplified according to the three-
dimensional homogeneity,

〈�〉 = 〈
�H1

l

〉 − 〈
�H2

l

〉 ≡ 0. (29)

Hence, the ensemble averages of the first- and second-channel helicity fluxes are equal, and the
equality relation is numerically confirmed in Fig. 3(a).

In Fig. 3(a) we also present the ensemble averages of the first and second terms of the second
channel of the helicity cascade. The first term is dominant except at relatively small scales. The
second term is associated with the density gradient, and the positive and negative cancellations in
the compression and expansion regions lead to smaller amplitudes. With decreasing length scale,
the scale accumulation effect does not increase, and the second term of the second channel is nearly
constant at small scales. This regulation is similar to the scale effect of pressure terms present in
the governing equations of large-scale kinetic energy and helicity [7,69,70]. In addition, we show
their root-mean-square (rms) values in Fig. 3(b). The fluctuations of the second channel are larger
than those of the first channel, and the fluctuations of the first term are also larger than those of
the second term. With decreasing length scale, the fluctuations begin to increase gradually, which
reveals greater fluctuations at small scales. For the second channel, the fluctuations mainly originate
from the first term.
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FIG. 4. PDF of the first and second channels of the helicity cascade and the first and second terms of the
second channel with filter width l/η = 32.

We show the PDF of the first and second channels of the helicity cascade and the first and second
terms of the second channel in Fig. 4 with a typical filter width l/η = 32. The corresponding PDFs
are consistent with the conclusions in Fig. 3(b). Extreme events [71], which fluctuate more strongly
by two orders than the mean of the second term of the second channel, are currently less common,
whereas extreme events of the first term of the second channel are more common, for both the left
and right tails. Their discrepancies are similar, the orders for high-order moments (n � 2, where n
is the order) of the second channel are larger than those of the first channel, and the second term
is smaller than the first term of the second channel. In other words, the skewness of the second
channel is larger than that of the first channel, and the skewness of the second term of the second
channel is smaller than that of the first term of the second channel. This regulation also applies to
their discrepancies in flatness.

Similar to the refined similarity hypothesis of a local energy flux proposed by Kraichnan [72]
and a local helicity flux proposed by Chen et al. [39], we can define a set of scaling exponents ζ (p)
for a helicity cascade at length scale l as〈∣∣l2�X

l

∣∣p/3〉 ∼ lζ (p), (30)

where X denotes H1 for the first channel, H2 for the second channel, H21 for the first term of the
second channel, and H22 for the second term of the second channel. In Fig. 5 we show the structure
functions of the first and second channels and the first and second terms of the second channel at
different length scales for order p from 1 to 8. For all the results in log-log coordinates, the curves
within the x axis from l = 60η to l = 400η exhibit a nearly linear property, and we fit all the curves
within this region to obtain the slopes using the extended self-similarity procedure [73].

The above-fitted slopes are shown in Fig. 6, and the classic p/3 scaling exponent marked as
K41 is also plotted to compare the intermittency discrepancies. The scaling exponent of the second
channel deviates more from K41 without considering any intermittency, in contrast to the first
channel. This means that the second channel is more intermittent than the first channel is, and the
regulation is consistent with our previous conclusion regarding incompressible turbulent flows [56].
For the intermittency discrepancies of the first and second terms of the second channel, the results
in Fig. 6(b) reveal that the first term is more intermittent, and this conclusion is also consistent with
the PDF discrepancy in Fig. 4.

In contrast to the first channel, the scaling exponent of the second channel tends to saturate with
order p � 6, and both the first and second terms of the second channel also tend to saturate with
order p � 6. In incompressible turbulent flows, whichever channel we choose, the scaling exponents
of the helicity cascade increase monotonically [39,56]. Previous studies confirmed that the structure
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FIG. 5. Structure functions of the first channel (a), the second channel (b), the first term of the second
channel (c), and the second term of the second channel (d).

functions saturate due to the appearance of shocklets in compressible turbulent flows [74–76] and
that compressibility plays an important role in intermittent turbulence. As we stated previously, the
second channel is more closely associated with variable density or compressibility, and the saturated
scaling exponents of the second channel confirm this theoretical analysis.

To evaluate the compression or expansion effects on the first and second channels of the helicity
cascade, we present the ensemble averages of the first and second channels conditioned in the
compression regions (θl < 0) and expansion regions (θl > 0) in Fig. 7(a). In contrast to those in
the expansion regions, the flows in the compression regions dominate the helicity cascade for

FIG. 6. Scaling exponents of the first and second channels (a) and the first and second terms of the second
channel (b). The black solid line refers to the K41 theory [77].
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FIG. 7. (a) The ensemble averages of the first and second channels in compression regions (θl < 0) and
expansion regions (θl > 0). (b) The ensemble averages of the first and second channels in the strain regions
(Ql < 0) and rotation regions (Ql > 0).

both the first and second channels. However, the equality relation is broken in the compression
or expansion region because the three-dimensional homogeneity cannot be satisfied in only the
compression or expansion region. If the sample points are large enough, the statistical discrepancies
in the compression and expansion regions would be negligible. In compression regions, the first
channel has a dominant role with larger amplitudes. Nevertheless, the second channel dominates
the helicity cascade in expansion regions. The different roles of the first and second channels reveal
the complexity of the interscale transfer of helicity in compressible turbulent flows.

In Fig. 7(b) we show the ensemble averages of the first and second channels in the strain regions
(Ql < 0) and rotation regions (Ql > 0), and Ql is the second invariant of the velocity gradient at
scale l [78–80]. Overall, the discrepancies in the strain and rotation effects are similar to those in
the compression and expansion effects. This means that the first channel is dominant in the strain
regions, and the second channel is dominant in the rotation regions. However, for the first or second
channel, only the flows at large scales in the strain regions are dominant, and the flows at small
scales in the rotation regions are dominant. The critical length scales that differ in terms of the roles
of the strain and rotation regions are approximately 30η, which also distinguishes the inertial and
dissipation regions. The dominant strain regions at relatively large scales for the helicity cascade are
consistent with the energy cascade process, which is also concentrated within large strain regions
[81]. At relatively small scales, the rotation motion begins to affect the helicity transfer across
scales. Although the ensemble averages of cross-scale transfer at small scales are small, the local
fluctuations are still very strong [82]. Hence, it is also worth exploring their statistical characteristics
at small scales.

The compression or expansion effects on the first and second channels are shown in Fig. 8. To
the naked eye, the compression regions are dominant, and even some small expansion regions are
present. The velocity divergence is related to shocklets in the present numerical simulations. The
compression regions tend to include large-scale sheet structures, which also confirms that shocklets
play an important role in helicity transfer.

The compression and expansion effects on the first and second terms of the second channel
are numerically explored in Fig. 9(a), and flows in the compression regions dominate the first
and second terms of the second channel. In compression regions, the first term is dominant at
large scales, whereas the second term is dominant at small scales. The sign of the second term
in the expansion regions is positive, and it corresponds to an inverse helicity cascade. As we stated
previously, the second term is present only in compressible flows without more species. Hence, we
can conclude that the expansion motions could promote the inverse helicity cascade via the second
term of the second channel.
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FIG. 8. Three-dimensional isosurfaces of the first channel (a) and second channel (b) rendered by local
velocity divergence with filter width l = 32η.

For the strain and rotation effects on the first and second terms of the second channel, we present
their ensemble averages conditioned in the strain and rotation regions in Fig. 9(b). At large scales,
the strain regions dominate the first and second terms. However, at small scales, the rotation regions
dominate the first and second terms. In the strain or rotation regions, the first term is dominant
at large scales, and the second term is dominant at small scales. The critical scales lie within the
dissipation regions.

The compression or expansion effects on the second term of the second channel are further
numerically investigated with different filter widths in Fig. 10 via the conditional averaging method
[58,83]. In expansion regions, the ensemble averages of the second term of the second channel
are positive. In addition, their amplitudes increase with increasing expansion degree. Its ensemble
average is nearly zero around zero velocity divergence, which indicates that the second term of
the second channel depends on compression or expansion in the present numerical simulations. In
compression regions, their amplitudes also increase with increasing compressibility.

In Fig. 11 we show the three-dimensional isosurfaces of the first and second terms rendered by
local velocity divergence. Both spatial distributions confirm the dominant roles of the compression

FIG. 9. (a) The ensemble averages of the first and second terms of the second channel of the helicity
cascade in the compression regions (θl < 0) and expansion regions (θl > 0). (b) The ensemble averages of the
first and second terms of the second channel of the helicity cascade in the strain regions (Ql < 0) and rotation
regions (Ql > 0).
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FIG. 10. The ensemble averages of the second term of the second channel of the helicity cascade are
conditioned on the local velocity divergence with filter widths l/η = 32, l/η = 64, and l/η = 90.

regions. Nevertheless, the dominating degree of the first term of the compression regions is smaller
than that of the second term. The overwhelming role of the compression regions of the second term
confirms that the second term of the second channel is associated with compressibility.

B. Viscosity term

The role of viscosity in the evolution of helicity is completely different from that in the evolution
of kinetic energy. From the perspective of governing equations, viscosity plays a statistically
dissipative role in the transfer of kinetic energy into internal energy. Nevertheless, viscosity creates
a bridge for helicity transfer between different chirality. Specifically, if viscosity plays a dissipation
role for left-chirality helicity, it must play a generating role for right-chirality helicity, and vice versa.
Hence, the kinetic energy-governing equation must be accompanied by an internal energy governing
equation to describe the energy path correctly. However, the helicity-governing equation does not
need to couple with other equations. In addition, viscosity also has other effects [5], such as
mediating the process of reconnecting vortex lines, causing vorticity to diffuse away from the vortex
centerline [84–87].

FIG. 11. Three-dimensional isosurfaces of the first term (a) and second term (b) of the second channel of
the helicity cascade rendered by local velocity divergence with filter width l = 32η.
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FIG. 12. The ensemble averages (a) and rms (b) of the first and second channels of the viscosity terms and
the first and second terms of the second channel.

According to the previous derivation, there are also two channels of viscosity terms for helicity-
governing equations in compressible turbulent flows, especially compared with incompressible
turbulent flows. The second channel can be further decomposed into two terms, which also originate
from the variable density effect. The filtered viscosity terms should satisfy the inviscid criteria
proposed by Aluie [63] and Zhao and Aluie [88], which indicates that the viscosity effect should
not be negligible only at small scales. The numerical results of the viscosity terms shown in
Fig. 12(a) are consistent with the inviscid criteria, which proves that the filter operation in the
present numerical analysis is valid. In Fig. 12 we present the ensemble averages and rms of the first
and second channels of the viscosity terms and the first and second terms of the second channel.
The identical relation of Eq. (25) also applies to the relation of the first and second channels of
the viscosity terms, with a = ũ and b = ∇σ/ρ/Re. This means that the ensemble averages of the
first and second channels of the viscosity terms are equal, and the numerical results in Fig. 12(a)
confirm the identical relation. The first term of the second-channel viscosity term is similar to its
form in incompressible turbulent flows, and the second term originates from the baroclinic effect
of the velocity and density gradient. The numerical results in Fig. 12(a) reveal that the first term
of the second-channel viscosity term is dominant, in contrast to the second term. The degrees of
fluctuation are shown in Fig. 12(b). The rms of the second-channel viscosity term is larger than that
of the first channel, and the rms of the first term of the second-channel viscosity term is larger than
that of the second term. These regulations are consistent with those of SGS terms.

The corresponding PDF is shown in Fig. 13. The PDF of the first-channel viscosity term is
larger than that of the second-channel viscosity term at the left and right tails, and it means that the
second-channel viscosity term is more intermittent than the first-channel viscosity term. The PDF
of the first term of the second-channel viscosity term is larger than that of the second term, and it
means that the first term of the second-channel viscosity term is more intermittent than the second
term. To conclude, the second term of the second-channel viscosity term seems to be statistically
negligible. However, some discrepancies may exist in the compression or expansion regions because
its definition determines that it is associated with the density gradient.

To investigate the compressibility effects on the above viscosity terms, we present their ensemble
averages in the compression and expansion regions in Fig. 14. The ensemble averages of the first-
and second-channel viscosity terms in the compression regions are larger than those in the expansion
regions, which means that the compression effect is dominant for viscosity dissipation. For the
first term of the second-channel viscosity term, the compression effect is also dominant. However,
the second term of the second-channel viscosity term depends on the compression and expansion
motions. In compression regions, the ensemble averages of the second term are positive, which
plays a dissipation role in the helicity transfer. In expansion regions, the ensemble averages of the
second term are negative, which plays a generation role in the helicity transfer. This conclusion is
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FIG. 13. PDF of the first and second channels of the viscosity terms and the first and second terms of the
second channel with filter width l/η = 8.

further validated in Fig. 15, which shows the ensemble average of the second term of the second-
channel viscosity term conditioned on local velocity divergence with different filter widths. The
larger ensemble averages at small scales originate from small-scale shear. With increasing expansion
motion, the amplitudes of the second term also increase. This correlation is consistent with the
corresponding regulation of the expansion effect on the second term of the second-channel helicity
flux shown in Fig. 10.

It can be concluded that an expansion motion can promote inverse helicity transfer through the
second term of the second-channel viscosity term, which leads to high helicity distributions. This
regulation is consistent with our previous work [55], which revealed that expansion motion can
promote inverse helicity transfer through nonlinear terms in addition to SGS terms and viscosity
terms.

Helicity evolution is associated with vortex structures. The rotation motion is dominant within
the vortex structures, and the strain motion is dominant between vortex pairs [81]. The ensemble
averages of the above viscosity terms in the strain and rotation regions are shown in Fig. 16.
Discrepancies in the first- and second-channel viscosity terms exist in the strain and rotation regions.
For the first channel, strain motion dominates the viscosity dissipation process, which is similar to
the viscosity dissipation of kinetic energy [71,89]. Nevertheless, the rotation motion dominates the

FIG. 14. (a) The ensemble averages of the first and second channels of the viscosity terms in the compres-
sion and expansion regions. (b) The ensemble averages of the first and second terms of the second-channel
viscosity term in the compression and expansion regions.
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FIG. 15. The ensemble averages of the second term of the second channel of viscosity terms conditioned
on local velocity divergence with filter widths l/η = 2, l/η = 4, l/η = 8, and l/η = 12.

viscosity dissipation process for the second channel. This means that viscosity dissipation occurs
both inside and outside of vortex structures, with the first channel dominating the outside and
the second channel dominating the inside of vortex structures. With decreasing length scale, the
dominant role of the second channel in the rotation regions becomes more apparent. We infer that
below the Kolmogorov scale in the dissipation ranges, the rotation motion of the fluid element
seems to be similar to rigid rotation [90,91], and the second-channel viscosity term is important.
The dominant role of the second channel in the rotation regions is further reflected in the first term
of the second-channel viscosity term in Fig. 16(b).

V. CONCLUSIONS AND DISCUSSION

In this work, we explore the large-scale helicity transfer in compressible helical turbulent flows
and confirm the existence of the dual-channel characteristics of SGS and viscosity terms extended
from our previous dual-channel theory of helicity cascades in incompressible turbulent flows [56].
We can prove theoretically that dual channels exist only in SGS terms for large-scale helicity transfer
in incompressible turbulent flows, and dual channels exist only in SGS and viscosity terms in
compressible turbulent flows. The dual-channel SGS and viscosity terms exhibit different statistical
characteristics, especially under the effects of compression, expansion, strain, and rotation motions.

FIG. 16. (a) The ensemble averages of the first and second channels of the viscosity terms in the strain and
rotation regions. (b) The ensemble averages of the first and second terms of the second-channel viscosity term
in the strain and rotation regions.
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FIG. 17. Normalized helicity spectrum.

A suitable definition for large-scale helicity in compressible turbulent flows is selected to
represent the conservative character of a helicity transfer, eliminating the pressure and viscosity
terms. Like inviscid criteria for large-scale kinetic energy in compressible turbulent flows [63,88],
large-scale helicity should involve the Favre-filtered velocity and vorticity, which is defined as
H̃ = ũ · ω̃. Equation (15) indicates that only SGS transfer occurs in the inertial subrange; it does
not consider the pressure and viscosity terms.

On the basis of a simple algebraic operation, we can prove that the two point-to-point pressure
terms originating from the momentum and vorticity governing equations are the same in com-
pressible turbulent flows, and the dual-channel characteristics of the SGS and viscosity terms are
highlighted. According to the three-dimensional homogeneity condition, the ensemble averages of
the first and second channels of the SGS and viscosity terms are equal, but the second channels are
more intermittent. The higher intermittency results from the density gradient, which is associated
with shocklets. Similar to the kinetic energy cascade, the compression motions dominate the dual
channel of the helicity cascade. The strain and rotation motions also have an important effect on
the dual channel of the helicity cascade. The first channel is dominant in the strain regions, and the
second channel is dominant in the rotation regions. Hence, the dissipation mechanism of large-scale
helicity is different from that of large-scale kinetic energy. For kinetic energy, viscous dissipation
mainly occurs in the strain regions, which correspond to the intersections of two corotating vortices.
Nevertheless, viscous dissipation of helicity occurs both inside and outside of vortex structures
through the first and second channels, respectively. At smaller scales within dissipation ranges, the
rotation motions are dominant for both the first and second channels of SGS helicity transfer. This
can be explained by the fact that the rotation motions become apparent as the length scales decrease.

The second-channel SGS and viscosity terms can be further decomposed into two terms. The
first terms are dominant, and their intermittencies are higher than those of the second term. The
compression motions are also dominant for the first and second terms of the second-channel SGS
and viscosity terms. In expansion regions, the ensemble averages of the second term of the second-
channel SGS and viscosity terms are positive and negative, respectively. Both terms correspond to an
inverse helicity transfer. Combined with the expansion effect on the chirality-transfer process [55],
we can conclude that the expansion motions promote inverse helicity transfer, which is reflected in
the second channels of the SGS and viscosity terms. In addition, we schematically summarize the
proposed induced mechanism in Fig. 17. In fully developed helical turbulent flows, the helicity
spectrum obeys the power-law solution H (k) ∼ CHδε−1/3k−5/3, where CH is the Kolmogorov
constant of the helicity spectrum [25,39]. In Fig. 17 we show the normalized helicity spectrum
in the present numerical simulations with a high Reynolds number. Owing to the limitation of the
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computational cost, the present Reynolds number is still not large enough to exhibit an apparent
inertial subrange. At small scales, the second term of the second-channel viscosity in expansion
regions (D22

l |θl > 0) serves as a source of helicity generation. At medium scales, the second term of
the second-channel helicity flux in expansion regions (�H22

l |θl > 0) serves as an inverse cross-scale
transfer mechanism. It transfers the helicity generated or deposited at small scales to large scales,
and large-scale helical structures can be sustained to some extent.

In summary, we comprehensively study large-scale helicity transfer in compressible turbulent
flows and highlight the dual-channel characteristics of the SGS and viscosity terms. From the per-
spective of the vortex dynamics, the dual channels of the helicity transfer involve the vortex twisting
and stretching processes, under the influence of the compressibility. Meanwhile, it also uncovers the
inverse helicity transfer process. The inverse helicity transfer mechanism can be uncovered through
dual-channel helicity transfer in expansion regions, and it is premised on investigating the effects
of helicity on turbulence statistics. The rotation motions are also regarded as important dissipation
mechanisms through the second-channel viscosity term, in contrast to previously described strain
motions.

ACKNOWLEDGMENTS

This work is funded by the National Natural Science Foundation of China (Grants No. 12302281,
No. 11975053, No. 12232018, and No. 91852203). Z.Y. is also supported by the China Postdoctoral
Science Foundation (No. 2022M710459). All the numerical simulations were performed on super-
computers in China. In addition, we would like to express our honest appreciation to Dr. F. Tong for
many useful discussions.

APPENDIX A: GOVERNING EQUATION OF THE LARGE-SCALE HELICITY
H = u · ω IN COMPRESSIBLE TURBULENT FLOWS

Expanding Eq. (3b) without considering external force and subtracting Eq. (3a), we can obtain
the following velocity governing equation:

∂ui

∂t
+ u j

∂ui

∂x j
= − 1

ρ

∂ p

∂xi
+ 1

Re

1

ρ

∂σi j

∂x j
. (A1)

Performing a curl operation on Eq. (A1), we can obtain the following governing equation of vorticity
in compressible flows:

∂ωi

∂t
+ u j

∂ωi

∂x j
= ω j

∂ui

∂x j
− ωiθ − εi jk

∂

∂x j

(
1

ρ

∂ p

∂xk

)
+ 1

Re
εi jk

∂

∂x j

(
1

ρ

∂σkl

∂xl

)
, (A2)

where εi jk is the Levi-Chivita tensor.
Next, filter operations are performed on Eqs. (A1) and (A2), and the following governing

equations of filtered velocity and vorticity can be obtained:

∂ui

∂t
+ u j

∂ui

∂x j
+ uiθ = −∂τ i j

∂x j
− uiθ − 1

ρ

∂ p

∂xi
+ 1

Re

1

ρ

∂σi j

∂x j
, (A3)

∂ωi

∂t
+ u j

∂ωi

∂x j
+ ωiθ = ω j

∂ui

∂x j
− ∂γ i j

∂x j
− εi jk

∂

∂x j

(
1

ρ

∂ p

∂xk

)
+ 1

Re
εi jk

∂

∂x j

(
1

ρ

∂σkl

∂xl

)
, (A4)

where τ i j is the subgrid-scale stress defined as τ i j = uiu j − uiu j and where γ i j is the subgrid-scale
vortex stretching stress defined as γ i j = u jωi − uiω j − (u jωi − uiω j ).

According to the definition of H , we can obtain the governing equation of large-scale helicity H
by combining Eqs. (A3) and (A4) as follows:

∂H

∂t
+ ∂J j

∂x j
= −H θ − �H1

l − �H2
l + uiθωi + � + D, (A5)
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where J j is the spatial transport term, which is defined as follows:

J j = u jH − (1/2)uiuiω j + ωiτ i j + uiγ i j . (A6)

Here, �H1
l and �H2

l refer to the first and second channels of the helicity cascade similar to those in
the incompressible case, respectively, and are defined as follows:

�H1
l = τ i j

∂ωi

∂x j
, �H2

l = γ i j
∂ui

∂x j
. (A7)

� refers to the pressure term, which is defined as follows:

� = − 1

ρ

∂ p

∂xi
ωi + εi jk

ρ2

∂ρ

∂x j

∂ p

∂x j
ui. (A8)

D denotes the viscous term, which is defined as follows:

D = 1

Re

1

ρ

∂σi j

∂x j
ωi + 1

Re
εi jk

∂

∂x j

(
1

ρ

∂σkl

∂xl

)
ui. (A9)

The first term on the r.h.s. of Eq. (A5) only includes a large-scale flow field, and it acts as a resource
term at all scales, similar to the vortex stretching term of the enstrophy governing equation in
three-dimensional turbulent flows. The presence of large-scale source terms originating from the
velocity field breaks the conservative characteristic of the helicity cascade, except for the pressure
and viscosity terms in compressible turbulent flows. The other terms on the r.h.s. of Eq. (A5) involve
large- and small-scale flow fields. In particular, the two expressions of the interscale helicity are the
same as those in incompressible turbulent flows.

APPENDIX B: TENSOR GEOMETRY OF THE FIRST TERM OF THE SECOND-CHANNEL
HELICITY CASCADE

For the convenience of tensor analysis, we introduce a density-weighted velocity v and a filtered
density-weighted velocity w as follows:

v = √
ρu, w =

√
ρũ. (B1)

This weighted velocity form is suitable for investigating the spectral properties of physical variables
in compressible flows, such as kinetic energy [92]. The SGS stress can be rewritten as follows:

ρτ̃i j ≡ √
ρui · √

ρu j −
√

ρũi ·
√

ρũ j ≡ viv j − wiw j . (B2)

Using the above definitions, the tensor operation of the first term of the SGS stress involved in the
first term can be written as follows:
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∂

∂xm
(vkvm)

]
= εi jk

∂

∂x j

(
vm

∂vk

∂xm
+ vk

∂vm

∂xk

)

= εi jk
∂

∂x j

[
εkmnωmvn + ∂

∂xk

(
1

2
vmvm

)
+ vk

∂vm

∂xm

]

= v j
∂ωi

∂x j
− ω j

∂ui

∂x j
+ 2ωiθ + εi jk

∂θ

∂x j
vk

= ∂

∂x j
(ωiv j − viω j ) + ωiθ + εi jk

∂θ

∂x j
vk, (B3)
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where ω = ∇×v, and θ = ∇ · v. Similarly, the tensor operation of the second term of the SGS stress
involved in the first term can be written as follows:

εi jk
∂

∂x j

[
∂

∂xm
(wkwm)

]
= εi jk

∂

∂x j

(
wm

∂wk

∂xm
+ wk

∂wm

∂xk

)
= εi jk

∂

∂x j

[
εkmn�mwn + ∂

∂xk

(
1

2
wmwm

)
+ wk

∂wm

∂xm

]
= w j

∂�i

∂x j
− � j

∂wi

∂x j
+ 2�iϑ + εi jk

∂ϑ

∂x j
wk

= ∂

∂x j
(�iw j − wi� j ) + �iϑ + εi jk

∂ϑ

∂x j
wk, (B4)

where � = ∇×v, and ϑ = ∇ · v. Hence, the SGS term involved in the first term can be obtained as
follows:

εi jk
∂

∂x j

[
∂

∂xm
(vkvm − wkwm)

]
= ∂

∂x j
[(ωiv j − �iw j ) − (viω j − wi� j )]

+ωiθ − �iϑ + εi jk
∂θ

∂x j
vk − εi jk

∂ϑ

∂x j
wk. (B5)

We define ϒi j = (ωiv j − �iw j ) − (viω j − wi� j ). It is an antisymmetric tensor and is similar to
the form in incompressible turbulent flows [56].

APPENDIX C: THE IDENTICAL RELATIONSHIPS OF THE PRESSURE TERMS AND THE
REDUCED FORM OF THE VISCOSITY TERMS IN INCOMPRESSIBLE TURBULENT FLOWS

Under the constant-density hypothesis, Eq. (22) can be simplified as follows:

�1
l = 0, �2

l = 0. (C1)

Equation (23) can also be simplified as follows:

D
1 = −ν

(
∂ui

∂x j
+ ∂u j

∂xi

)
∂ωi

∂x j
, D

2 = −νεikl
∂

∂xk

(
∂ui

∂x j
+ ∂u j

∂xi

)
∂ui

∂x j
. (C2)

Here ν = μ/ρ is the kinematic viscosity coefficient, and the dynamic viscosity coefficient μ is also
assumed to be constant. Under the hypothesis of constant density, the Favre filter can be reduced
to other direct filters, and we replace the symbol ·̃ with the symbol · in the above derivation. The
velocity gradient tensor and vorticity gradient tensor can be decomposed as follows:

∂ui

∂x j
= Si j + Qi j,

∂ωi

∂x j
= Ri j + �i j . (C3)

Here Si j = (∂ui/∂x j + ∂u j/∂xi )/2 is the symmetric component of the velocity gradient tensor,
Qi j = (∂ui/∂x j − ∂u j/∂xi )/2 is the antisymmetric component of the velocity gradient tensor,
Ri j = (∂ωi/∂x j + ∂ω j/∂xi )/2 is the symmetric component of the vorticity gradient tensor, and
�i j = (∂ωi/∂x j − ∂ω j/∂xi )/2 is the antisymmetric component of the vorticity gradient tensor.
Substituting the symmetric and antisymmetric components of the velocity and vorticity gradient
tensors into Eq. (C2), the first and second viscous terms can be further simplified as follows:

D
1 = −2νSi jRi j, D

2 = −2νRi jSi j . (C4)

The simplified viscous terms are consistent with our previous work in the area of incompressible
turbulent flows [56]. To conclude, the dual-channel characteristics of the pressure and viscosity
terms exist only in compressible turbulent flows.
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In compressible turbulent flows, the first and second channels of the pressure terms of helicity
transfer are the same, except for spatial transportation. Hence, the pressure term of helicity transfer
can be regarded as being twice as much as the first term [7]. In the following, we prove the identical
relation of the dual channels of pressure terms.

First, we define the difference between the first and second channels of the pressure terms as �.
If the first and second channels of the pressure terms are the same, � should be equal to zero:

� = − 1

ρ

∂ p

∂xi
εi jk

∂ ũk

∂x j
− εi jk

∂

∂x j

(
− 1

ρ

∂ p

∂xk

)
ũi

= − ∂ p

∂xi

[
1

ρ
εi jk

∂ ũk

∂x j
− εi jk ũ j

∂

∂xk

(
1

ρ

)]
= −

[
∂

∂xi

(
pεi jk

∂ (̃uk/ρ )

∂x j

)
− p

∂

∂xi

(
εi jk

∂ (̃uk/ρ )

∂x j

)]
. (C5)

The first term on the r.h.s. of Eq. (C5) can be regarded as spatial transportation, and we focus on the
second term. According to vector identity, we can obtain the following result:

∂

∂xi

(
εi jk

∂ (̃uk/ρ )

∂x j

)
= 0. (C6)

Hence, the first and second channels of the pressure terms are the same without considering spatial
transportation.
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