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Townsend’s attached-eddy model (AEM) is one of the most widely used models in
explaining and predicting the logarithmic region of wall turbulence. Townsend pioneered
the postulate that wall-attached eddies exhibit self-similar velocity distributions. This
premise has led to the derivation of velocity variance scalings in the logarithmic region.
In particular, the attached eddies have been extracted at moderate scales and have been
illustrated to contain the most kinetic energies in the logarithmic region. In the present
contribution, we derive analytically the scalings of the moments of velocity gradients
of attached eddies by using the AEM. The direct numerical simulation data with the
moderate-scale extraction of attached eddies show good agreement with the derived scal-
ings. Moreover, the contributions of different-scale structures to the moments of velocity
gradients are compared, showing that the wall scalings of all-scale velocity gradients are
interestingly half of moderate-scale attached eddies. This also indicates the non-negligible
influence of the small-scale eddies on the velocity gradients in the logarithmic region.
In addition, there are departures in the moments of velocity Hessian, inspiring future
improvement in the extraction method of attached eddies.

DOI: 10.1103/PhysRevFluids.9.094602

I. INTRODUCTION

Turbulence has been dubbed the “problem of the century” since it is widely considered to be one
of the most challenging problems in classical physics. The development of a feasible physical model
for wall turbulence is known to be a challenging task due to its intrinsic complexity. Specifically,
the logarithmic region of wall turbulence has attracted a lot of interest [1,2] due to its significance
in turbulence momentum and kinetic energy generation and transfer, for which the attached-eddy
model (AEM) can act as a fundamental physical model. In recent years, lots of efforts have been
made to expand the AEM to explain more phenomena in wall turbulence [3–8].

Initially proposed by Townsend [3], the attached-eddy hypothesis (AEH) concentrates on the
equilibrium layer. Townsend emphasized that within the equilibrium layer, viscous stress is signif-
icantly lesser compared to Reynolds stress, leading to an approximation where the wall stress is
nearly equivalent to the Reynolds stress. Moreover, the equilibrium layer’s nearly constant nature is
suggested by the little variation in Reynolds stress within it. Consequently, it is usually also referred
to as the “constant-stress equilibrium layer,” which essentially corresponds to the logarithmic region
of wall turbulence. The spirit of the AEH is related to the turbulence energy distribution within the
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constant-stress equilibrium layer. Townsend assumed that the sizes of the primary attached eddies
in this layer are proportional to the distance from the wall [3]. In other words, the velocity fields of
the energy-containing attached eddies can extend to the wall, and in a sense, they are attached to the
wall. Therefore, Townsend named these eddies as “attached eddies.” He further assumed that the
logarithmic region can be conceptualized as a collection of a hierarchy of such eddies that share a
similar velocity distribution. Additionally, the probability density function of these eddies is found
to be inversely proportional to their height. This led to the determination of the velocity covariance
function for a flow composed of attached eddies, as given by

Ri j (x3) =
∫ hmax

hmin

p(h)Ii j (x3/h)dh, (1)

where Ri j = 〈uiu j〉 is the velocity covariance (the angle brackets denote ensemble average), hmin and
hmax are the minimum and maximum height of attached eddies, respectively, with h+

min ≈ 100 and
hmax ∼ δ [4,9], x3 is the normal distance to the wall, Ii j is the contribution to the correlation function
from attached eddies of height h (intensity function), p(h) is the probability density function of
attached eddies, and δ is the thickness of the turbulent boundary layer. Following this, Townsend
derived the second-order moments of velocity fluctuations as〈

u2
1

〉 = A1 ln(δ/x3) + B1, (2)〈
u2

2

〉 = A2 ln(δ/x3) + B2, (3)〈
u2

3

〉 = B3, (4)

where u1, u2, and u3 are the streamwise, spanwise, and wall-normal velocity fluctuations, respec-
tively, and A1, A2, B1, B2, and B3 are constants. The AEM has been widely revisited and developed
in recent years, leading to a series of theoretical results which are in agreement with real turbulence.
For example, Meneveau and Marusic [10] indicated that all even-order moments of streamwise
velocity fluctuation behave logarithmic functions of the distance from the wall with the assumption
of Gaussian velocity distribution. de Silva et al. [11] obtained logarithmic scalings for second- and
higher-order structure functions. Yang and co-workers found several new scalings in wall turbulence
[12–14]; Xie et al. [15] obtained the logarithmic scaling of the third-order structure function in
the logarithmic region of wall turbulence. Experimental measurements and numerical simulations
have provided a large amount of support for the scaling laws predicted by the AEM [2,10,16–
28]. Meanwhile, many reduced-order and data-driven methodologies have demonstrated remarkable
efficacy in elucidating the characteristics of attached eddies and corroborating their statistical rules
[29–36].

The attached eddies have long been presumed to play an important role in momentum transfer in
the logarithmic layer [3,6,29,37,38], and one can anticipate that they may also contribute to energy
transfer. Indeed, several studies have investigated the interscale energy transfer in wall turbulence
by spectral budget analysis [39–44]. In addition, the interscale energy transfer of turbulence can also
be probed via velocity gradients. In isotropic turbulence, it has been shown that the relation between
second- and third-order moments of velocity gradients can be represented by the Karman-Howarth
equation [45]. Specifically, in physical space, the interscale energy transfer can be quantitatively
represented by involving the concept of the third-order moments of the velocity gradients [46]. In
anisotropic turbulence, the interscale energy transfer is still not well explained yet, but some recent
studies imply that it might be analogical to the isotropic flows. For example, Fig. 17 of Ref. [47]
shows that all components in an anisotropic flow lead to positive values of third-order moments of
the velocity gradients in early transition, indicating an inverse energy transfer from small to large
scales. In this sense, it may be interesting to dig a little more into the energy transfer by attached
eddies. Towards this direction, the first step is then to investigate the prediction of the AEM on the
moments of velocity gradients.
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FIG. 1. Premultiplied spectrogram of the streamwise velocity gradient ∂u1/∂x1 at Reτ = 5200, where SE,
AE, and DE denote small-scale eddies, attached eddies, and detached eddies, respectively, which are defined
by Hu et al. [23].

As discussed earlier, attached eddies are assumed to contain significant energies, and they are
at moderate scales [23]. However, velocity gradients are small-scale quantities. It is then natural
to believe that the AEM cannot capture all-scale velocity gradients but only moderate scales. It
can be seen from Fig. 1 that the small-scale eddies contain the majority of the streamwise velocity
gradient. Despite this, it may be still insightful to study the moderate scales first, as they are turbulent
structures associated with energy production [41]. Therefore, the present contribution aims to focus
on the moderate-scale structures which can be represented as attached eddies, to show the prediction
of the AEM by comparing with the direct numerical simulation (DNS) extraction, and finally to
compare with all-scale energy transfer.

The structure of this paper is organized as follows. In Sec. II, we show the derivation of the
moments of velocity gradients of attached eddies with arbitrary order by the AEM. Section III
examines the derived scaling laws of velocity gradient moments from the DNS data of turbulent
channel flows, where the contributions of different scales to the moments of velocity gradients are
extracted. More results are shown in Sec. IV for the scalings of moments of higher-order velocity
derivatives. Conclusions are presented in Sec. V.

II. THEORY

In this section, we will revisit the model of Woodcock and Marusic [5], which rigorously refined
the original model of Townsend and meticulously derived all moments of velocity in the logarithmic
region, employing a more rigorous mathematical approach for attached-eddy modeling. Then, we
will extend this approach to the moments of velocity gradients.

A. Model of Woodcock and Marusic

One of the key points in the AEM is that the attached eddies have similar velocity distributions
regardless of their sizes. The velocity at x is denoted as [5]

Uone eddy = Q
(

x − xe

h

)
, (5)

where xe is the center of an attached eddy, h is the height of the attached eddy, and the self-similar
velocity distribution function Q can be determined from the Biot-Savart’s law. According to the
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AEM, all attached eddies are independent of each other, therefore the expression for the velocity
induced by all attached eddies at x is

U total =
n0∑

k=1

Q
(

x − xk

hk

)
, (6)

where xk is the center of the kth attached eddy, hk is the height of the kth attached eddy, and n0 is
the number of attached eddies.

To derive an arbitrary moment of velocity in the logarithmic region by attached eddies, some
useful quantities need to be defined [5]. Firstly, the probability density function of attached eddies
follows a −1 power law of h as [3,4]

p(h) ∝ 1

h
, (7)

where
∫ hmax

hmin
p(h)dh = 1, hence, we have

p(h) = 1

ln(hmax) − ln(hmin)

1

h
. (8)

Then, the velocity contribution function of attached eddies is defined as

Ik,l,m(X3)
def=

∫∫ +∞

−∞
Qk

1(X )Ql
2(X )Qm

3 (X )dX1dX2, (9)

where X = (X1, X2, X3) = (x1/h, x2/h, x3/h) (x1, x2, and x3 are the streamwise, spanwise, and wall-
normal coordinates, respectively), and Ik,l,m(X3) is an integral in the X1-X2 plane. Another important
quantity is the cumulants of velocity, defined as

λk,l,m(x3)
def= n0

∫ hmax

hmin

Ik,l,m(X3)p(h)dh. (10)

When it comes to the mean velocity [5], we have 〈U1〉 = λ1,0,0, 〈U2〉 = λ0,1,0, 〈U3〉 = λ0,0,1, which
means that the cumulants of velocity are essentially equivalent to the averaging Eq. (6) in this case.
Then we follow Ref. [5] to assume that an attached eddy does not contribute to the velocity field
whose location is beyond the height of the eddy, i.e.,

Q(X ) ≈ 0, for x3 > h. (11)

Using this assumption, Eq. (10) becomes

λk,l,m(x3) =
⎧⎨
⎩

n0
∫ hmax

x3
Ik,l,m(X3)p(h)dh, for x3 > hmin,

n0
∫ hmax

hmin
Ik,l,m(X3)p(h)dh, for x3 � hmin.

(12)

Considering the case of logarithmic region, we have x3 > hmin. Substituting Eq. (8) and the Taylor
series of Ik,l,m(X3) at X3 = 0 into Eq. (12), and integrating X3 by replacing the variable h with X3, a
concrete expression for the cumulants of velocity can be obtained as

λk,l,m(x3) = β

[
−Ik,l,m(0) ln

(
x3

hmax

)
+

+∞∑
n=1

1

n! × n

(
1 − xn

3

hn
max

)
dnIk,l,m(0)

dX n
3

]

= −β

[
Ik,l,m(0) ln

(
x3

hmax

)
+

+∞∑
n=1

1

n! × n

(
x3

hmax

)n dnIk,l,m(0)

dX n
3

]
+ Ak,l,m, (13)

with Ak,l,m constant, and β = n0/(ln(hmax) − ln(hmin)). This then leads to the scaling laws for
velocity components in the logarithmic region, i.e., Eqs. (2)–(4). More details for the derivation
can be also found in Ref. [5].
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B. Scalings of velocity gradient moments by attached eddies

Here we introduce a rigorous mathematical derivation of all moments of velocity gradients from
a statistical perspective by using the AEM. The gradient operator on a single attached eddy (5) leads
to

∇uone eddy = 1

h
T

(
x − xe

h

)
, (14)

where T = ∇Q is the velocity gradient tensor. Accordingly, the velocity gradient generated by all
attached eddies can be expressed as

∇utotal =
n0∑

k=1

1

hk
T

(
x − xk

hk

)
. (15)

Similar to Eq. (9), we introduce a velocity gradient contribution function of attached eddies,
defined as (without summation convention)

Ln(X3)
def=

∫∫ +∞

−∞

3∏
i=1

3∏
j=1

(
Ti j (X )

h

)ni j

dX1dX2, (16)

where n is a 3 × 3 tensor with ni j an arbitrary non-negative integer number. By further defining
(without summation convention)

Jn(X3) =
∫∫ +∞

−∞

3∏
i=1

3∏
j=1

T
ni j

i j (X )dX1dX2, (17)

Eq. (16) is written as

Ln(X3) = 1

hN
Jn(X3), (18)

where N = ∑3
i=1

∑3
j=1 ni j . Similar to Eq. (10), we then define the cumulants of velocity gradients

as

μn(x3)
def= n0

∫ hmax

hmin

Ln(X3)p(h)dh. (19)

Substituting Eqs. (8) and (18) to (19), we obtain

μn(x3) = β

∫ hmax

hmin

Jn(X3)

hN+1
dh. (20)

Another basic assumption in the AEM is that an attached eddy does not contribute to the velocity
field at a location beyond its height. This assumption is important in the derivation since it allows
one to delineate the influence range of each attached eddy. Using the same assumption as Woodcock
and Marusic [5], for velocity gradient tensor we obtain

Ti j (X ) = 0, for x3 > h, (21)

and Eq. (20) writes

μn(x3) =
⎧⎨
⎩

β
∫ hmax

x3

Jn(X3 )
hN+1 dh, for x3 > hmin,

β
∫ hmax

hmin

Jn(X3 )
hN+1 dh, for x3 � hmin.

(22)
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Considering the cases of logarithmic region, we can limit the calculations to x3 > hmin. Since dh =
−x3/X 2

3 dX3, 1/hN+1 = (X3/x3)N+1, and the Taylor series of Jn(X3) at X3 = 0 is

Jn(X3) =
+∞∑
n=0

dnJn(0)

dX n
3

X n
3

n!
, (23)

Eq. (22) becomes

μn(x3) = β

xN
3

Cn(x3), (24)

where Cn(x3) = ∑+∞
n=0 [dnJn(0)/dX n

3 ]/[n!(N + n)][1 − (x3/hmax)N+n]. Focusing on the logarithmic
region, following Ref. [5] we have x3/hmax � 1, therefore

Cn(x3) ≈
+∞∑
n=0

dnJn(0)/dX n
3

n!(N + n)
, (25)

indicating that Cn(x3) can be considered as constant.
Therefore, we can finally derive the scaling laws of velocity gradient moments as

μn(x3) ∝ 1

xN
3

. (26)

From the literature, the moments of longitudinal velocity gradients are usually important, since
they are sometimes analogous to the cases of homogeneous isotropic turbulence. For example,
Ref. [48] derived the interscale relations for the moments of longitudinal velocity gradients and
increments in homogeneous isotropic turbulence, and directly applied the results to channel flows.
References [47,49] further illustrated that the moments of longitudinal velocity gradients lead to
similar normalized values, such as the skewness, among different directions in anisotropic flows.
In the present paper, we then follow these works and focus on the longitudinal velocity gradients
by using the AEM. According to Eq. (26), the second- and third-order moments of longitudinal
velocity gradients should satisfy the following scalings:〈(

∂u1

∂x1

)2
〉

∝ 1

x2
3

,

〈(
∂u2

∂x2

)2
〉

∝ 1

x2
3

,

〈(
∂u3

∂x3

)2
〉

∝ 1

x2
3

, (27)〈(
∂u1

∂x1

)3
〉

∝ 1

x3
3

,

〈(
∂u2

∂x2

)3
〉

∝ 1

x3
3

,

〈(
∂u3

∂x3

)3
〉

∝ 1

x3
3

. (28)

Subsequently, the skewness S1, S2, and S3 can be defined for the longitudinal streamwise, spanwise,
and wall-normal velocity gradients respectively, i.e.,

S1 =
〈(

∂u1
∂x1

)3〉
〈(

∂u1
∂x1

)2〉3/2 , S2 =
〈(

∂u2
∂x2

)3〉
〈(

∂u2
∂x2

)2〉3/2 , S3 =
〈(

∂u3
∂x3

)3〉
〈(

∂u3
∂x3

)2〉3/2 . (29)

Equations (27) and (28) indicate that S1, S2, and S3 are all constants along wall direction x3. This
conclusion is in agreement with the applications in Refs. [47,48].

III. SCALINGS OF MOMENTS OF FIRST-ORDER VELOCITY DERIVATIVES

In this section, DNS datasets on turbulent channel flows at various Reynolds numbers (Reτ ≈
1000, 2000, and 5200, respectively) are employed to validate the scaling laws of velocity gradients.
Here the friction Reynolds number is defined as Reτ = uτ δ/ν, where ν is fluid kinematic viscos-
ity and uτ = √

τw/ρ is the friction velocity with τw mean wall shear stress and ρ fluid density. The
flow fields at Reτ ≈ 1000 and 5200 were produced by Lee and Moser [19] and accessed via the
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Johns Hopkins Turbulence Database [50]. The DNS data at Reτ ≈ 2000 were produced by Hoyas
and Jiménez [51].

A. Extraction of attached eddies

According to Townsend [3], the attached eddies are only a portion of the turbulent motions in
wall turbulence, while the logarithmic terms in Eqs. (2) and (3) represent swirling motions on a
large scale. Townsend claimed that these motions have no discernible effect on the energy transfer
rate to smaller eddies through viscous dissipation. As a result, Townsend classified the swirling
component as “inactive.” This perspective underscores the complexity of boundary layer flows in
wall turbulence, which encompasses various motion types, including attached eddies among others
[52–54].

Our objective is to extract the velocity gradient field attributable specifically to attached eddies.
We follow Hu et al. [23] and decompose the flow field into wall-attached eddies, wall-detached
eddies, and small-scale Kolmogorov eddies by a simple spectral filtering. This decomposition
scheme indicates that the attached eddies are in charge of the streamwise and spanwise velocity
of the scale

αAE
1,2x3 < λx1 < βAE

1,2 δ, x+
3 > γ AE

1,2 , (30)

where αAE, βAE, and γ AE are constants, the subscripts 1 and 2 denote the streamwise and spanwise
velocity components, respectively, γ AE denotes a viscous cutoff length, and λx1 is the streamwise
wavelength. The superscript “+” indicates the viscous normalization by uτ and ν. Moreover, the
attached eddies are responsible for the wall-normal velocity of the scale

αAE
3 x3 < λx1 < βAE

3 x3, x+
3 > γ AE

3 , (31)

where the subscript 3 denotes the wall-normal velocity component.
For channel flow, the constants in Eqs. (30) and (31) are set according to Ref. [23], i.e., αAE

1 =
5.7, αAE

2,3 = 1, βAE
1 = 4, βAE

2 = 1, βAE
3 = 5, and γ AE

1,2,3 = 100. Note that from Eqs. (30) and (31),
attached eddies represent the medium-scale eddies; in contrast, wall-detached eddies are categorized
as larger-scale eddies, primarily the scales where λx1 � βAE

1,2 δ for (u1, u2) and λx1 � βAE
3 x3 for u3.

Additionally, the scales where λx1 � βAE
1,2 δ for (u1, u2) and λx1 � βAE

3 x3 for u3 represent small-scale
Kolmogorov eddies.

We then define the logarithmic range to better compare the results. The details of this definition
are slightly different in literature according to practical applications, while in the present contribu-
tion, the lower and upper bounds of the logarithmic range are determined by using the viscous
cutoff [23] and boundary thickness [2,50,55,56] respectively. Specifically, the viscous cutoff is
x+

3 = 100 according to Eqs. (30) and (31), and the upper bound is defined as x3/δ = 0.2 [19,55]. As
a consequence, the logarithmic ranges are x+

3 = 100–200, 100–400, and 100–1040 for Reτ = 1000,
2000, and 5200, respectively.

Under these definitions, the approximation of x3 � hmax in the derivation of Eq. (25) can
be verified. Taking the Reτ = 1000 case as an example, hmax is half the height of the channel,
corresponding to x3/hmax ∼ O(10−1) in the logarithmic range. Consequently, for the second-order
moments of velocity gradient (i.e., N = 2) the relative error of Eq. (25) is on the order of 10−2,
while for the third-order moments the relative error is on the order of 10−3.

B. Comparison between DNS results and AEM predictions

The second- and third-order moments of longitudinal velocity gradients of attached eddies in
the logarithmic region, calculated from DNS data using Eqs. (30) and (31), are displayed in Fig. 2.
It can be observed that the second- and third-order moments approximately follow x−2

3 and x−3
3 ,

respectively. These results are in agreement with the theoretical predictions in Eqs. (27) and (28).
Here all third-order moments of longitudinal velocity gradients are negative. This can be explained
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FIG. 2. Scalings of the second- and third-order moments of longitudinal (a), (b) streamwise, (c), (d) span-
wise, and (e), (f) wall-normal velocity gradients of attached eddies, extracted by using Eqs. (30) and (31). The
vertical dashed lines indicate the upper bounds of the logarithmic region at different Reynolds numbers.
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FIG. 3. Skewness of longitudinal (a) streamwise, (b) spanwise, and (c) wall-normal velocity gradients. The
vertical dashed lines indicate the upper bounds of the logarithmic region at different Reynolds numbers.

by using traditional theories in isotropic turbulence [47,57], indicating that the energy transfers
forward from large to small scales. The observation that the attached eddies generate negative values
on the third-order moments, then implies that the energy can transfer from the attached eddies to
smaller scales. This fact might inspire future investigations on considering the interscale energy
transfer of attached eddies and improving the AEM.

In addition, it is found that the x−2
3 and x−3

3 laws are not always perfectly satisfied in Fig. 2.
For example, in Figs. 2(c), 2(e), and 2(f) the slopes of DNS results are slightly less than theoretical
predictions. These departures may stem from the method for extracting the attached eddies, which
was introduced in the previous section. This method has been tested in the velocity field and
shows good agreement with the AEM [23], while the present results might suggest more future
reconsideration on the details.

In Fig. 3, we further calculate the skewness values of −S1, −S2, and −S3, which are defined in
Eq. (29) for the attached eddies. It is shown that the values of S1, S2, and S3 are all negative and
constant in the logarithmic region, indicating a forward energy transfer from large to small scales
[58]. It can be observed that they are all of the order of 10−1 in the logarithmic regions, which is of
the same magnitude as the canonical value in incompressible homogeneous isotropic turbulence
[46,57,59]. For comparison, in compressible turbulence, this magnitude is usually much larger
[60,61]. This fact might suggest that the interscale transfer of attached eddies is analogical to the
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case of incompressible homogeneous isotropic turbulence. Related investigations, with comparison
to the case of inhomogeneous free shear flows [47], are then expected to be performed in the future.

C. Scalings of velocity gradient moments of different types of eddies

It is now well recognized that the wall-attached eddies only describe a part of the turbulent
fluctuations in wall-bounded flows. Specifically, they correspond to moderate scales, while the larger
and smaller scales are wall-detached and Kolmogorov eddies, respectively [23]. The theoretical
and numerical results in the previous sections are all on the attached eddies. Here we will also
consider other types of eddies and calculate the velocity gradient moments respectively. We select
the DNS data of turbulent channel flow at Reτ = 1000 as an example. The attached eddies (AEs) are
extracted by using Eqs. (30) and (31), resulting in larger-scale detached eddies (DEs) and small-scale
Kolmogorov eddies (SEs). The moments of longitudinal velocity gradients of these different types
of eddies are calculated respectively in Fig. 4. For comparison, the moments of all-scale longitudinal
velocity gradients are also plotted (the “All” curves in Fig. 4).

In Fig. 4, the contributions of different types of eddies to the moments of velocity gradients are
compared. In the logarithmic region (i.e., x+

3 = 100–200), the DE part always contributes the least.
This can be easily understood since the DE part corresponds to large-scale structures with a small
magnitude of velocity gradients. We remark that differing from the moments of velocity [23], the
AE part is no longer the dominant contribution to the moments of velocity gradients. Focusing on
the logarithmic region: in Figs. 4(c)–4(f) the contribution of the AE part is approximately the same
magnitude as the SE part; in Figs. 4(a) and 4(b), the SE part is the dominant contribution. These facts
are also reasonable since the velocity gradients are small-scale quantities. Therefore, the velocity
gradient statistics contain significant contributions from small-scale eddies. However, it indicates
that second- and third-order moments of velocity gradients, or physically, the dissipation rate and
energy transfer, respectively, are not dominated by attached eddies but by small-scale eddies.

Interestingly, SE dominates velocity gradients in the streamwise direction [Figs. 4(a) and 4(b)]
while not in wall-normal and spanwise directions [Figs. 4(c)–4(f)]. This fact might indicate that
the small-scale structures in the streamwise direction are very close to homogeneous isotropic
turbulence without being affected by mean shear. It then explains and supports Ref. [48], where
the dynamics of velocity gradient skewness is derived in homogeneous isotropic turbulence but
can be used analogically to the streamwise velocity component. Another interesting observation is
that in all subfigures of Fig. 4, the moments of full-scale longitudinal velocity gradients (i.e., the
“All” curves) satisfy new scalings in the logarithmic region: all second-order moments satisfy an
x−1

3 scaling, while all third-order moments satisfy an x−1.5
3 scaling. Clearly, these scalings are not

predicted by using the theories of attached eddies in Sec. II, implying the limitation of AEM in
describing the wall-normal scalings of the moments of velocity gradients.

IV. SCALINGS OF MOMENTS OF HIGHER-ORDER VELOCITY DERIVATIVES

Considering the attached eddies, it is also possible to expand the theoretical derivations to higher-
order velocity derivatives. For example, according to Eq. (14), we can derive the velocity Hessian
of an attached eddy as a third-order tensor:

∂2ui

∂x j∂xk
= 1

h2

∂2Qi

∂Xj∂Xk
, (32)

and an nth-order partial derivative of velocity is a (n + 1)th-order tensor (n � 3), as

∂nui

∂x j1∂x j2 · · · ∂x jn

= 1

hn

∂nQi

∂Xj1∂Xj2 · · · ∂Xjn

, (33)

with i, j, k, j1, j2, . . . , jn ∈ (1, 2, 3).
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FIG. 4. Scalings of second- and third-order moments of longitudinal (a), (b) streamwise, (c), (d) spanwise,
and (e), (f) wall-normal velocity gradients from all eddies (All), the attached eddies (AEs), the detached eddies
(DEs), and small-scale eddies (SEs). The vertical dashed lines indicate the upper bound of the logarithmic
region at Reτ = 1000.
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To simplify the derivation of arbitrary moments of velocity Hessian, here we focus on 3
components of the total 27 velocity Hessian components:

∂2u1

∂x2
1

= 1

h2

∂2Q1

∂X 2
1

,
∂2u2

∂x2
2

= 1

h2

∂2Q2

∂X 2
2

,
∂2u3

∂x2
3

= 1

h2

∂2Q3

∂X 2
3

. (34)

Similar to Eq. (21), we have assumptions

∂2Q1

∂X 2
1

≈ 0,
∂2Q2

∂X 2
2

≈ 0,
∂2Q3

∂X 2
3

≈ 0, for x3 > h, (35)

and can define the velocity Hessian contribution function of attached eddies as

Lk,l,m(X3)
def= 1

h2k+2l+2m

∫∫ +∞

−∞

(
∂2Q1

∂X 2
1

)k(
∂2Q2

∂X 2
2

)l(
∂2Q3

∂X 2
3

)m

dX1dX2

= 1

h2k+2l+2m
Jk,l,m(X3). (36)

Additionally, we can define the cumulants of velocity Hessian as

μk,l,m(x3)
def= n0

∫ hmax

hmin

Lk,l,m(X3)p(h)dh

= β

∫ hmax

hmin

1

h2k+2l+2m+1
Jk,l,m(X3)dh. (37)

After a similar derivation as in Sec. II, we obtain

μk,l,m(x3) ∝ 1

x2k+2l+2m
3

. (38)

Specifically, we write〈(
∂2u1

∂x2
1

)2
〉

∝ 1

x4
3

,

〈(
∂2u2

∂x2
2

)2
〉

∝ 1

x4
3

,

〈(
∂2u3

∂x2
3

)2
〉

∝ 1

x4
3

, (39)〈(
∂2u1

∂x2
1

)3
〉

∝ 1

x6
3

,

〈(
∂2u2

∂x2
2

)3
〉

∝ 1

x6
3

,

〈(
∂2u3

∂x2
3

)3
〉

∝ 1

x6
3

. (40)

For the moments of nth-order partial derivatives of velocity (n � 3), we also assume

∂nQ1

∂X n
1

≈ 0,
∂nQ2

∂X n
2

≈ 0,
∂nQ3

∂X n
3

≈ 0, for x3 > h. (41)

Analogously, we can obtain the following scaling law:

μk,l,m,n(x3) ∝ 1

xn(k+l+m)
3

. (42)

Specifically, we write〈(
∂nu1

∂xn
1

)2
〉

∝ 1

x2n
1

,

〈(
∂nu2

∂xn
2

)2
〉

∝ 1

x2n
2

,

〈(
∂nu3

∂xn
3

)2
〉

∝ 1

x2n
3

, (43)〈(
∂nu1

∂xn
1

)3
〉

∝ 1

x3n
3

,

〈(
∂nu2

∂xn
2

)3
〉

∝ 1

x3n
3

,

〈(
∂nu3

∂xn
3

)3
〉

∝ 1

x3n
3

. (44)

We use the DNS data of turbulent channel flows at Reτ = 1000, 2000, and 5200 for validation.
The part of attached eddies is extracted by using Eqs. (30) and (31). The second- and third-order
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FIG. 5. Scalings of the second- and third-order moments of the three velocity Hessian components: (a), (b)
∂2u1/∂x2

1 , (c), (d) ∂2u2/∂x2
2 , and (e), (f) ∂2u3/∂x2

3 of the attached eddies, extracted by using Eqs. (30) and (31).
The vertical dashed lines indicate the upper bounds of the logarithmic region at different Reynolds numbers.

094602-13



X. X. LI, R. F. HU, AND L. FANG

moments of the three velocity Hessian components described in Eqs. (39) and (40) are then
calculated on the extracted fields. It can be observed that the predicted scalings (−4 and −6 for
second- and third-order moments, respectively) are only well satisfied in the streamwise direction,
i.e., Figs. 5(a) and 5(b). In the other directions, the scalings show departures from predictions. This
fact is perhaps also understandable since the present extraction method uses Fourier filters, but
perhaps it is too crude to consider attached eddies as a summation of some pure Fourier modes.
Therefore, these facts might call for future improvement of the methods for extracting the attached
eddies. Another possibility is that the AEM is inherently an inviscid theory, while the velocity
Hessian is sensitive to the viscous effect, thus the departure might be due to the incapability of the
AEM for the viscous effect.

V. CONCLUSIONS

The AEM has been considered as an effective framework for describing the energy-containing
part of the logarithmic region of wall-bounded turbulence. According to this model, the logarithmic
laws of velocity and second-order moments of velocity fluctuations have been deduced and verified
in the literature. However, the moments for velocity gradients, which correspond to interscale energy
transfer and dissipation, are not visited yet. In this work, we derive the scaling laws of arbitrary mo-
ments of velocity gradients analytically by using the AEM. Specifically, the second- and third-order
moments of velocity gradients of the attached eddies (corresponding to moderate-scale structures)
should exhibit power laws with exponents of −2 and −3, respectively. The decomposition scheme
proposed by Hu et al. [23] is then employed to extract the flow fields of attached eddies from the
DNS data of turbulent channel flows at Reτ = 1000, 2000, and 5200, showing good agreement.
The results illustrate that the decomposition scheme of Hu et al. [23] correctly extracts the attached
eddies. It also indicates that the AEM can correctly predict the scalings of interscale energy transfer
of moderate-scale structures, implying the forward energy cascade among the multiscale attached
eddies.

However, it is well known that velocity gradients are rather small-scale quantities. In fact, the wall
scalings of second- and third-order moments of all-scale velocity gradients are approximately −1
and −1.5, respectively, which are interestingly half of the scaling exponent of attached eddies. This
fact may be due to the non-negligible influence of small-scale Kolmogorov eddies, which contain
little kinetic energy but contribute a great amount to the moments of velocity gradients and cannot
be explained by the AEM. Therefore, we conclude that the AEM does not correctly describe the wall
behavior of moments of velocity gradients in all-scale (nonfiltered) velocity gradient fields. Also,
the −1 and −1.5 scalings call for the development of other models for explanation in the future.

In addition, we show that although the present extraction method of attached eddies yields
agreement with AEM predictions for the moments of velocity gradients, there exist obvious dis-
crepancies in the moments of spanwise and wall-normal velocity Hessian. This fact is perhaps also
understandable since the present extraction method uses Fourier filters, but perhaps it is too crude to
consider attached eddies as a summation of some Fourier modes. Future investigations are therefore
expected to be performed to improve the extraction method of attached eddies. Another possibility
is that the AEM is inherently an inviscid theory, while the velocity Hessian is sensitive to the viscous
effect, thus the departure might be due to the incapability of the AEM for the viscous effect.

Finally, we would like to mention that attached eddies are turbulent motions in the outer region,
thus the AEM cannot be directly used in the inner region, e.g., for near-wall modeling purposes in
wall-modeled large-eddy simulations.
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