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This paper investigates the evolution of the Euler equations near a potential blow-up
solution. We employ an approach where this solution exhibits second-type self-similarity,
characterized by an undetermined exponent ν. This exponent can be seen as a nonlin-
ear eigenvalue, determined by the solution of a self-similar partial differential equation
with appropriate boundary conditions. Specifically, we demonstrate the existence of an
axisymmetric solution of the Euler equations by expanding the axial vorticity using
associated Legendre polynomials as a basis. This expansion results in an infinite hierarchy
of ordinary differential equations, which, when truncated up to a certain order N∗, allows
for the numerical resolution of a finite set of ordinary differential equations. Through this
numerical analysis, we obtain a solution that satisfies the appropriate boundary conditions
for a specific value of the exponent ν. By exploring various truncations, we establish
a sequence in N∗ for the parameter νN∗ , providing evidence of the convergence of the
exponent ν. Our findings suggest a self-similar exponent ν ≈ 2, presenting a promising
path for a numerical or analytical approach indicating that ν may indeed be exactly 2.
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I. INTRODUCTION

The Euler equations for an inviscid and incompressible fluid aimed of motion with velocity
v(x, t ) are as follows:

∂

∂t
v + v · ∇ v = −∇p, (1)

∇ · v = 0, (2)

where the scalar field p(x, t ) stands for the pressure, that takes into account the internal forces
acting on a fluid element. From a taxonomic point of view, Euler equations are a set of nonlinear
and nonlocal partial differential equations. The nonlocality comes precisely from the pressure term,
p(x, t ), which, after taking the divergence of Eq. (1), follows as a solution to a Poisson equation.

Among other conserved quantities [1], the Euler equations preserve kinetic energy:

d

dt

∫
|v(x, t )|2dx = 0. (3)

The Euler equations (1) and (2), along with the conservation law (3), necessitate smoothness
of the velocity field and its derivatives, as well as appropriate boundary conditions at infinity.
In an unbounded domain, we require the velocity field to diminish at infinity in such a way
that limr→∞ |v|2r3 → 0, ensuring that the flow maintains finite energy. Besides the equations
and boundary conditions, the initial condition must be divergence-free and smooth or infinitely
differentiable: v(x, t = 0) = v0(x), with ∇ · v0 = 0.

Equations (1) and (2), written by Euler in 1757 [2], constitute the second partial differential
equation (PDE) ever recorded in history. Unlike other PDEs in physics, the Euler equations have
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yet to reveal all their secrets. Particularly, the regularity problem persists: For a given smooth initial
condition for the velocity field with finite energy, does the velocity field remain regular for all times,
or does a smooth initial velocity blow-up in finite time? This question has intrigued physicists and
mathematicians for about a century, since Lichtenstein and Gunter [3,4].

The hundred years of searching for finite-time singularities as solutions of the Euler equations
have seen significant progress in recent years. Numerical simulations by Luo and Hou [5] suggested
the possible existence of a finite-time singularity in the axisymmetric Euler equations near the
wall boundary. This finite-time singularity has been numerically verified by a completely different
approach, in Ref. [6], using physics-informed neural networks applied to the 2D Boussinesq
equations, which in the singularity limit are equivalent to the Euler axisymmetric equations. Last,
Chen and Hou advanced a formal mathematical proof of the existence of such a singularity [7].

However, Luo and Hou observed that the singularity arises on a rim at the boundary of a
finite radius domain, indicating that boundary conditions play a major role. Conversely, the idea
of the existence of a pointlike singularity has been circulating over the years [8,9], in particular
in connection with the anomalous dissipation in fully developed turbulence [10–13]. An explicit
approximation for an axisymmetric flow was proposed by Elgindi [14] recently; however, this
singularity sets up as a consequence of a nonsmooth initial condition. The question of a pointlike
finite-time singularity as a consequence of the evolution by Euler equations in an infinite domain
for a smooth and finite energy initial condition remains open. In this article, we focus on the search
for such a singularity in three-dimensional space.

We provide evidence for the existence of a self-similar blow-up solution to the axisymmetric
version of the Euler equations for an incompressible and inviscid fluid. By assuming a second type
of self-similarity with an unknown exponent, ν, we solve the Euler equations in an axisymmetric
configuration using spherical coordinates and by expanding the axial vorticity in a basis of asso-
ciated Legendre polynomials. This transforms the original problem into an infinite set of ordinary
differential equations (ODEs) governing the amplitudes of the final axial vorticity and the swirl
velocity. By truncating this set of ODEs up to a certain order N∗, the system is ultimately solved
numerically, suggesting a convergent scenario for the solutions and the nonlinear eigenvalue, ν.

II. LERAY’S SELF-SIMILAR SOLUTION

In the following, instead of searching for an arbitrary singularity, we focus on a special kind of
self-similar singularity that has been the center of research in the past 25 years [15]. Following Leray
[16], Pomeau [8–11] suggested a pointlike singularity solution of the equations of fluid dynamics
(1) and (2) in the form

v(x, t ) = 1

(tc − t )1−ν
V

(
x

(tc − t )ν

)
, (4)

p(x, t ) = 1

(tc − t )2(1−ν)
P

(
x

(tc − t )ν

)
. (5)

Here, V (ξ) and P (ξ) are the self-similar velocity profile and pressure, respectively, and ξ =
x/(tc − t )ν is a self-similar 3D space coordinate. The self-similar or Euler-Leray equations read
[8]:

(1 − ν)V (ξ) + ν(ξ · ∇ξ )V + (V · ∇ξ ) V = −∇ξP, (6)

∇ξ · V = 0. (7)

As discussed in Eggers and Fontelos [15] for any x �= 0, if the self-similar solutions are stable, and
thus related to the finite-time singularity of the original Euler equations, then it is expected that near
the singularity the velocity profile becomes stationary as t → tc, because the self-similar ansatz is
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asymptotic for tc fixed and finite [17]. Therefore, the boundary conditions must be

((1 − ν) + νξ · ∇ξ )V (ξ) → 0 as |ξ| → ∞. (8)

Moreover, the self-similar velocity V (ξ) is infinitely differentiable at |ξ| → 0.

Because of conserved quantities, the Leray type of self-similar solution imposes restrictions on
the value of ν. The energy of a pointlike singularity must not diverge as t → tc, thus

E = 1

2

∫
v2d3x = 1

2
(tc − t )2(ν−1)

∫ ∣∣∣∣V
(

x
(tc − t )ν

)∣∣∣∣
2

d3x = 1

2
(tc − t )5ν−2

∫
|V (ξ)|2 d3ξ (9)

imposes ν � 2/5 as t → tc [18]. We emphasize the fact that the integral in the self-similar variable,∫ |V (ξ)|2 d3ξ, diverges accordingly with the boundary condition (8). Contrary to Schonbek’s [19],
who imposes ν < 3/5, values for ν � 3/5 cannot be ruled out, as the asymptotic behavior described
by Eq. (8) is only the inner asymptotic limit as t → tc. This phenomena has been already noticed in
different self-similarities as it is the case of the Nonlinear Schrödinger equation (see [12] for details
and references).

Equivalent to the Euler equations (1) is the equation for the vorticity field:

ω = ∇ × v. (10)

The pressure is eliminated, and the dynamics of the vorticity reads

∂tω + ∇ × (ω × v) = 0. (11)

Similarly, the Helmholtz equation (11) is also a nonlinear and nonlocal partial differential equation:
the velocity in Eq. (11) is a nonlocal functional of vorticity (10), as follows from the Biot-Savart
law.

As a consequence of the vorticity (10), the self-similar vorticity reads

ω(x, t ) = 1

(tc − t )
�

(
x

(tc − t )ν

)
. (12)

The singular dependence 1/(tc − t ), comes essentially by a dimensional analysis, more important,
it does not depend on the exponent ν, thus, the Beale-Kato-Magda theorem [20] does not contradict
the singular character of the solution. The self-similar vorticity equation satisfies

� + νξ · ∇ξ� + ∇ξ × (� × V ) = 0, (13)

together with

� = ∇ξ × V , & ∇ξ · V = 0,

and the boundary condition

(1 + νξ · ∇ξ )�(ξ) → 0 as |ξ| → ∞, (14)

and �(ξ) is smooth at ξ → 0.
The main findings of this paper pertain to the solutions of the self-similar Euler-Leray equations

in the forms given by Eqs. (6) and (7), as well as the equivalent Helmholtz-Leray equation (13),
subject to appropriate boundary conditions. These equations are solved in an axisymmetric con-
figuration using spherical coordinates, and by expanding the relevant fields (axial vorticity, swirl
velocity, and stream function) in a base of Legendre polynomials. The solutions lead to a self-similar
exponent of ν ≈ 2.03, and the corresponding self-similar field patterns are illustrated in Fig. 1.

In the case of Luo and Hou [5], the singular solutions (4), (5), and (12) are different. First, the
singularity arises at a rim and not at a point, as in the case presented here. The specific self-similar
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FIG. 1. Patterns of the self-similar flows in the plane (ξr = ξ sin θ, ξz = ξ cos θ ), for N∗ = 4. The plots
include (a) �φ (ξr, ξz ), (b) V 2

φ (ξr, ξz ), and (c) �(ξr, ξz ), and the flow lines represents the velocity field (Vξr ,Vξz ).

ansatz of Luo and Hou is of the form

vφ (r, z, t ) = (tc − t )γuU

(
R − r

(tc − t )γl
,

z

(tc − t )γl

)
,

ωφ (r, z, t ) = (tc − t )γω�

(
R − r

(tc − t )γl
,

z

(tc − t )γl

)
,

and they numerically obtained the following exponents:

γl ≈ 2.91, γu ≈ 0.46, γω ≈ −1.

In the ansatz, R represents the radius of the cylindrical domain, set to unity in Ref. [5]. The exponent
γl , in Luo and Hou’s original notations, is analog to our current exponent ν. We underline, that the
problem of a pointlike singularity discussed here, is intrinsically different, from the one of a rimlike
singularity considered previously by Luo and Hou [5].

III. AXISYMMETRIC SELF-SIMILAR FLOW WITH SWIRL IN SPHERICAL COORDINATES

Special attention is devoted to axisymmetric flows because they are simpler than the general case
[5–7,14,21]. The axisymmetric geometry is typically described in cylindrical coordinates; however,
in this context, we employ spherical coordinates (ξ = |x|/(tc − t )ν, θ, φ), where the self-similar
velocity flow, V = Vξ ξ̂ + Vφφ̂ + Vθ θ̂, the vorticity � = ∇ξ × V , and the pressure P do not explicitly
depend on the axial angular variable φ.

The pressure cancels out in the Euler-Leray equation (6) for the axial (or swirl) velocity Vφ

leading to

(1 − ν)Vφ + (νξ + Vξ )
∂Vφ

∂ξ
+ Vθ

ξ

∂Vφ

∂θ
+ (Vξ + cot θ Vθ )

ξ
Vφ = 0. (15)

By using the following characteristics: dξ

ds = (νξ + Vξ ) and dθ
ds = Vθ

ξ
, Eq. (15) transforms into

d (ξ sin θ Vφ )

ds
= (2ν − 1)(ξ sin θ Vφ ).

Remarkably, if ν > 1/2, and if ξ sin θ Vφ � 0 on a boundary of the domain, then ξ sin θ Vφ is
nonnegative along the characteristics. In the following, we restrict ourselves to the situation of a non
negative swirl velocity (Vφ > 0 for 0 < θ < π/2) with an odd flow: Vφ (ξ, θ ) = −Vφ (ξ, π − θ ).
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In this particular scenario, it follows from Eq. (15) that

2(1 − ν)V 2
φ + (νξ + Vξ )

∂V 2
φ

∂ξ
+ Vθ

ξ

∂V 2
φ

∂θ
= −2

(Vξ + cot θ Vθ )

ξ
V 2

φ . (16)

So far, Vξ and Vθ have not been determined yet. The incompressibility condition (7) introduces
naturally a stream function, �:

Vξ = 1

ξ 2 sin θ

∂�

∂θ
, Vθ = − 1

ξ sin θ

∂�

∂ξ
, (17)

such that the velocity flow remains incompressible. Finally, instead of writing equations for the
components Vξ and Vθ , an equation for the axial component of vorticity in spherical coordinates is
considered:

�φ = 1

ξ

(
∂ (ξVθ )

∂ξ
− ∂Vξ

∂θ

)
. (18)

It is easy to see that the vorticity field, �φ (ξ, θ ), and the stream function, �(ξ, θ ), possess the
same symmetry as the swirl velocity, i.e. �φ (ξ, θ ) = −�φ (ξ, π − θ ) and �(ξ, θ ) = −�(ξ, π − θ ).
Therefore, we confine our analysis to the quadrant 0 � ξ < ∞ and 0 � θ � π/2.

The equation for �φ is derived after Eq. (13):

�φ + (νξ + Vξ )
∂�φ

∂ξ
+ Vθ

ξ

∂�φ

∂θ
= (Vξ + cot θ Vθ )

ξ
�φ + 1

ξ

(
cot θ

∂V 2
φ

∂ξ
− 1

ξ

∂V 2
φ

∂θ

)
. (19)

Finally, the stream function, �, is related to axial vorticity component by

∂2�

∂ξ 2
+ 1

ξ 2

(
∂2�

∂θ2
− cot θ

∂�

∂θ

)
= −ξ sin θ �φ (ξ, θ ). (20)

Equations (16), (17), (19), and (20) form a self-contained coupled partial differential system for the
axisymmetric perfect fluid. An interesting aspect of this system is that it is “linear” in �φ and V 2

φ .
The nonlinearities come from � = �[�φ] via Vξ and Vθ in Eq. (17).

The boundary conditions for the relevant fields are such that at θ = 0:

�φ (ξ, θ = 0) = V 2
φ (ξ, θ = 0) = �(ξ, θ = 0) = 0, (21)

to ensure regularity at the axis, and, because of the odd symmetry regarding the plane (θ = π/2):

�φ (ξ, θ = π/2) = V 2
φ (ξ, θ = π/2) = �(ξ, θ = π/2) = 0, (22)

while

�φ + νξ
∂�φ

∂ξ
→ 0 and 2(1 − ν)V 2

φ + νξ
∂V 2

φ

∂ξ
→ 0, (23)

as ξ → ∞ and 0 � θ � π/2.
Last, at the origin, ξ = 0, it is imposed that all variables are smooth; i.e., the fields are devel-

opable in a Taylor expansion near ξ = 0.

IV. ASYMPTOTIC EXPANSION USING ASSOCIATED LEGENDRE POLYNOMIALS

Equations (16), (17), (19), and (20) along with the boundary conditions (21), (22), and (23),
and the regularity condition at the origin, are solved as follows. First, all functions of interest are
expanded in associated Legendre polynomials:

�φ (ξ, θ ) =
∞∑

n=1

Fn(ξ )yn(θ ), V 2
φ (ξ, θ ) = ξ 2

∞∑
n=1

Gn(ξ )yn(θ ), �(ξ, θ ) =
∞∑

n=1

�n(ξ )yn(θ ). (24)
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Here, the ξ 2 prefactor for V 2
φ is for convenience. In these expansions, the functions yn(θ ) =

−cn sin θ P1
2n(cos θ ) are related to the associated Legendre polynomials. The yn(θ )’s satisfy the

boundary conditions because yn(0) = yn(π/2) = 0. Moreover, with the adequate value of cn the
set yn is orthonormal and diagonalizes the elliptic operator in the left-hand side of Eq. (20). The
explicit dependence of cn is given in Eq. (A3) in Appendix A.

The amplitudes Fn(ξ ) and Gn(ξ ) satisfy the boundary conditions, that follows from Eq. (23):

Fn(ξ ) + νξF ′
n (ξ ) → 0 and 2Gn(ξ ) + νξG′

n(ξ ) → 0, (25)

as ξ → ∞. In the addition, the amplitudes Fn(ξ ) and Gn(ξ ) are differentiable at ξ = 0.
By substituting Eq. (24) into Eq. (20), we obtain using the standard method of Green functions

(See Appendix A):

�(ξ, θ ) = ξ 3
∞∑

n=1

(Nn(ξ ) + Ln(ξ ))yn(θ ), (26)

with

Nn(ξ ) = ξ−2n−3
∞∑

m=1

βnm

∫ ξ

0
Fm(u) u2n+2 du and Ln(ξ ) = ξ 2n−2

∞∑
m=1

βnm

∫ ∞

ξ

Fm(u) u−2n+1 du.

(27)

Here, βnm are pure numbers that arise from the inner product in the projection process (see Eq. (A8)
in Appendix A). The function L1(ξ ) corresponds exactly to the approximation used by Elgindi [14],
who neglected other radial components such as Nn(ξ ) and Ln(ξ ) with n > 1 near the singularity’s
origin. Although all these functions appear to be negligible, the function N1(ξ ) appears to be relevant
for numerical computations. Nevertheless, in the analytics, we retain all amplitudes for the sake of
generality.

Finally, by replacing �φ and V 2
φ into Eqs. (16) and (19), and projecting into the basis yn(θ ) it

is shown that the amplitudes Fn(ξ ) and Gn(ξ ) satisfy an infinite coupled set of ordinary differen-
tial equations, constituting an autonomous dynamical system with s = log ξ as the variable (see
Appendix B for the derivation). This dynamical system can be formally expressed as

F ′
n (s) = UF ({Fn}, {Gn}, {Nn}, {Ln}, ν),

G′
n(s) = UG({Gn}, {Nn}, {Ln}, ν),

N ′
n(s) = −(2n + 3)Nn +

∑
m

βnmFm,

L′
n(s) = 2(n − 1)Ln −

∑
m

βnmFm. (28)

The functionals UF (·) and UG(·) (the last one is independent of the amplitudes {Fn}’s) are formally
linear in the amplitudes Fn and Gn. As already said, nonlinearities arise from the couplings with Nn

and Ln. As these equations result from the projection of the original PDE, various matrix elements,
such as βnm, appear as pure numbers. The only unknown parameter involved in the dynamical
system is ν, which is a kind of nonlinear eigenvalue, and must be determined by the solution of
the ODE system and the right boundary conditions. The full set of equations is explicitly written in
Appendix B.

V. NONLINEAR EIGENVALUE SOLUTION VIA A DYNAMICAL SYSTEM APPROACH

It follows that the solution to the original problem is mapped into the search for a heteroclinic
orbit of the dynamical system (28). This heteroclinic orbit connects two distinct fixed points
corresponding to the boundary conditions of the original problem (see Ref. [15] for generalities). In
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the current case, the fixed points of the dynamical system (28) correspond to the boundary conditions
(21), (22) (s → −∞), and (23) (s → ∞) for the axisymmetric Euler-Leray equations and are as
follows:

FP1 : Fn = Gn = Nn = Ln = 0, s → ∞, (29)

FP2 : L1 = L(0)
1 �= 0, Fn = Gn = Nn = Ln>1 = 0, s → −∞. (30)

The heteroclinic orbit starts at FP2 as s → −∞, following a precise unstable manifold, and should
reach the stable manifold of the other fixed point FP1 as s → ∞. To determine such a trajectory,
one must study the local stability near both fixed points.

The behavior around FP1 arises from the stationary condition of the asymptotic self-similarity as
t → tc and is determined by Eq. (25):

Fn = F (∞)
n e−s/ν, Gn = G(∞)

n e−2s/ν,

Nn = N (∞)
n e−(2n+3)s + n

2n + 3 − 1/ν
e−s/ν,

Ln = L(∞)
n e2(n−1)s + n

2n − 2 + 1/ν
e−s/ν, as s → ∞. (31)

Here

n =
∞∑

m=1

βnmF (∞)
m .

The constants F (∞)
n and G(∞)

n cannot be determined through the asymptotic analysis. The coeffi-
cients N (∞)

n and L(∞)
n are found to vanish (i.e., N (∞)

n = L(∞)
n = 0), as demonstrated by the integral

expressions in Eq. (27). However, the linear behavior of Ln(s) in Eq. (28) suggests that FP1 is an
unstable fixed point. Consequently, the matching conditions strictly enforce that L(∞)

n = 0 for all
n � 1, ensuring FP1 avoids the unstable manifold.

The local analysis of the other fixed point, FP2, is characterized also by an unstable behavior:

Gn(s) = δgneσ s, Fn(s) = δ fneσ s, Ln(s) = L(0)
1 δn,1 + δLneσ s, Nn(s) = δNneσ s, s → −∞.

(32)

The fixed point FP2 corresponds to the boundary condition where axial vorticity, swirl velocity,
and stream function must vanish as ξ → 0. Therefore, the exponent σ has to be positive, moreover
because of the regularity of the solution at the origin, ξ = 0 (s → −∞), σ must be an integer, hence
σ ∈ {1, 2, 3 . . . }. We provide solutions for σ = 2 in Table I in Appendix F. Furthermore, because
we use the variable V 2

φ , only even powers are suitable. Although solutions with odd values of σ do
exist, they make Vφ not smooth at the origin. Nevertheless, we provide some solutions for σ = 3 in
Table II in Appendix F. The coefficients from the unstable behavior (32) can be investigated to first
order, at which the only function that survives from all Ln(s) and Nn(s) is L1(s) through the coupling
of L(0)

1 with δ fn and δgn, and the ODEs (28) are transformed into the algebraic system:[
(1 + νσ )δl p + L(0)

1 (al1p − el1p + σbl1p)
]
δ fp = −[cl p + (2 + σ )dl p]δgp, (33)[

(2 + νσ )δl p + L(0)
1 (al1p + 2el1p + (σ + 2)bl1p)

]
δgp = 0, (34)

δNn = 1

σ + 2n + 3
βnmδ fm, (35)

δLn = 1

2n − 2 − σ
βnmδ fm. (36)
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A nonzero solution of Eq. (34) implies that δgn is an eigenvector of the matrix

(al1p + 2el1p + (σ + 2)bl1p), (37)

with the eigenvalue φ(σ ) = −(2 + νσ )/L(0)
1 . In particular, for a truncation of order N∗ the ma-

trix (37) becomes an N∗ × N∗ square matrix with one real eigenvalue for N∗ odd and two real
eigenvalues for N∗ even, from which the unique negative eigenvalue provides a condition such that
L(0)

1 > 0. Therefore, we focus on the family of solutions such that L(0)
1 > 0, because solutions such

that L(0)
1 < 0 are impossible for odd values of N∗. Consequently, the other amplitudes, δ fn, δNn, and

δLn, are fixed only by the right eigenvector δḡn and the condition

L(0)(ν, σ ) = (2 + νσ )

−φ(σ )
, (38)

which depends on the self-similar exponent ν and the integer index σ .
When integrating the dynamical system in a forward way, FP2 becomes the starting point at

s → −∞, and the integration proceeds forward until reaching s → ∞ with the behavior of FP1
(31), following a heteroclinic orbit. Because in the current case, both fixed points are unstable, the
tuning of the free parameters becomes delicate. Moreover, we are confronted with an infinite ODE
dynamical system. Despite the general arguments outlined earlier, finding an analytical solution is
deemed impractical. Therefore, we have opted for a numerical-assisted approach, where the strategy
involves truncating the dynamical system up to an order N∗. In a previous attempt documented in
Ref. [21], we pursued such a program. However, due to the use of a Fourier basis instead of the more
fitting Legendre basis, a convergent scheme did not fully manifest. We attribute this to the natural
suitability of the Legendre basis for this problem, where a convergent scheme is promising.

VI. NUMERICAL ASSISTED SEARCH OF THE SELF-SIMILAR SOLUTIONS

A numerical approach is used after truncating the angular expansions (24) for a finite value
of N∗ to obtain numerical solutions of the truncated hierarchy of ODEs (28) with the boundary
conditions (29) and (30). A crucial step in the numerics deals with the selection mechanism of the
free parameter, ν. This problem is, indeed, a shooting methodology, the parameter ν is tuned up to
the solution reaches the right boundary condition. To accomplish this task, a differential evolution
algorithm [22] is implemented. The full differential evolution algorithm is explained in Appendix D.

Differential evolution is basically an optimization algorithm used to find the best value of a
set of parameters. In the current case, the algorithm selects ν for a given σ , such that the forward
integration of the dynamical system reaches the correct asymptotic behavior of the FP1 (29). Besides
ν, another parameter enters into game because the asymptotic behavior of FP2 (30) is known only
up to a constant prefactor. Let be γ this parameter.

This evolutionary algorithm was implemented for σ = 2, that provides the smooth solution of
lowest degree at the origin, such that axial vorticity and swirl velocity scale quadratically at the
origin: �φ ∼ ξ 2 and Vφ ∼ ξ 2. Initially, a set of parameters (ν, γ ) is randomly chosen, then the
algorithm searches iteratively for combinations of new sets of parameters which are compared, and
the best set is retained. The algorithm is repeated for a number of generations, after which the best
pair (ν, γ ) that solves the dynamical system, according to the accomplishment of the asymptotic
behavior (31), is selected. The selection of the parameters is done by minimizing the error function:

Error[ν, γ ] = 1

(sb − sa)N∗

N∗∑
n=1

∫ sb

sa

((Fn(s) + νF ′
n (s))2 + (2Gn(s) + νG′

n(s))2

+ (Nn(s) + νN ′
n(s))2)ds + 1

(sb − sa)

∫ sb

sa

(L1(s) + νL′
1(s))2ds, (39)
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FIG. 2. Numerical simulation for N∗ = 2 with L2(s) = 0 and all other amplitudes different from zero. The
parameters are ν = 1.15231 and L(0)

1 = 0.465872 from Table I. Plot (a) is in linear scale, whereas plot (b) is
in log-scale of the absolute value of the amplitudes; this plot allows us to distinguish that N1(s) is one order of
magnitude smaller than L1(s). Moreover, N2(s) is another order of magnitude smaller than N1(s). These facts
indicate the validity of the Elgindi approximation.

where the interval [sa, sb] ⊂ [smin, smax] is chosen with sa = 10 and sb = 13 < smax = 15. The error
function (39) is iteratively optimized until a condition is reached. Usually this condition concerns
an error threshold of 10−7, or a maximum number of iterations. (See Appendix D for more details.)

Figure 2 depicts a standard numerical integration using this algorithm for N∗ = 2. Figure 2(b)
in a semilog scale, reveals some interesting features. Particularly, the large s limit clearly demon-
strates that all amplitudes decay as a power law in ξ . Additionally, in the limit s → −∞, the eσ s

behavior with σ = 2 is observed. Finally, both N1(s) and N2(s) exhibit much smaller absolute values
compared to other amplitudes, justifying the Elgindi approximation.

In our earlier work [21], we explored the existence of a finite-time self-similar axisymmetric flow
using the Elgindi approximation. This approximation disregards the Nn(s) functions for n � 1 and
the functions Ln(s) for n > 1. Since, precisely, these functions are responsible for the instability of
FP1 (29), we omit them in the subsequent numerical computations. We plan to pursue the full study
using a different numerical scheme in a future publication to confirm the current scenario.

The numerical scheme is straightforward for small N∗, such as 2 or 4. The case N∗ = 4 is reported
in Fig. 6 in Appendix C. However, in practice, the situation becomes more intricate for N∗ � 8 (see
Fig. 3). This complexity arises because, as N∗ increases, the linear stability of the FP2 allows for
a large number of oscillatory unstable modes with a real part greater than σ . Consequently, the
trajectory oscillates around the heteroclinic orbit while correctly approaching the large s asymptotic
behavior. As an illustrative example, we present the numerical solution of a heteroclinic orbit in
Fig. 3(b). These fast oscillatory modes are also present in the case documented in Ref. [21].

We believe these oscillatory modes to be an artifact of the truncation process, because these
are a consequence of the large number of complex eigenvalues obtained from the spectrum of
the matrix (37) as N∗ increases. Nevertheless, as N∗ increases, increasingly complex unstable
eigenvalues become apparent, resulting in the numerically observed oscillatory behavior. This leads
to an increase in the absolute values of the amplitudes Fn(s) and Gn(s), while maintaining bounded
the sum:

∑
m βnmFm(s), on the right-hand side of the last two equations in Eq. (28). Therefore, we

focus our search on the convergent behavior of L1(s) and N1(s) for various truncations, ultimately
obtaining satisfactory convergent results with this criterium.

To extract the accurate profile for the function L1(s) and N1(s), we utilize an averaging technique
that combines the upper and lower envelopes of the oscillatory solution, defining the resultant
functions as L̄1(s) and N̄1(s) in Fig. 3. Figure 3(a) plots the amplitude L1(s), which is a rapidly
oscillating function. We constructed an average function L̄1(s) by averaging the upper and lower
envelopes of the original oscillating function L1(s). Figure 3(b) illustrates a two dimensional
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(a) (b)

FIG. 3. Numerical simulation for N∗ = 8 with the parameters ν = 1.87994 and L(0)
1 = 0.682561. Adopting

the Elgindi approximation, we set Nn>1(s) = 0 and Ln>1(s) = 0. (a) The plot shows the relevant amplitude
L1(s) in magenta. For simplicity, only L1(s) is plotted to avoid the complex behavior of the other amplitudes.
The amplitude L1(s) oscillates quickly around an average function L̄1(s) obtained as an iterative average of
the envelope functions of the original L1(s). (b) The 2D projection of the heteroclinic orbit displays a fast
oscillating behavior near the fixed point FP1 and the heteroclinic trajectory represented by the parametric
curve N̄1(s) vs L̄1(s).

projection of the heteroclinic orbit for N∗ = 8, depicting this phenomenon. In Appendix C, we
provide in detail how this averaging process operates.

The outcome of this process for various values of N∗ is presented in the master curves for
L1(s) and N1(s) in Fig. 4. Numerically and empirically, this approach demonstrates a satisfactory
convergence of solutions as N∗ increases, providing compelling evidence for a pointlike finite-time
singularity in the solutions of the Euler equations.

Furthermore, the numerical simulations of the heteroclinic orbit yield the value of ν for which
the solution exists. Figure 5 illustrates the dependence of ν as a function of 1/N∗ obtained by a
linear fit from the data of the Table I in Appendix F:

νN∗ = 2.07774 − 0.318548
1

N∗

(red segmented line (4) in Fig. 5). Additionally, applying the Shanks transformation [23] to enhance
convergence, the resulting linear fit of the corresponding data of the Table I in F, leads to

νN∗ = 2.0378 + 0.0949636
1

N∗ ,

FIG. 4. (a) Once the oscillatory behavior is mitigated, the absolute value of average function L̄1(s) is
overlaid for varying values of the truncation parameter N∗, as shown, illustrating favorable convergence.
(b) Same plot but for N̄1(s).
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FIG. 5. Plot of the numerically estimated “nonlinear eigenvalue,” ν, in relation to the inverse of the
truncation parameter N∗. (1) represents the values by circular red dots joined by lines indicating the numerically
estimated data of Table I; (2) represents the same data (in purple) iterated once by the Shanks transformation
[23]; (3) plot of the data using a Fourier basis of Table III as in Ref. [21] (in green). The segmented lines
represent simple linear fits indicating an estimated convergence of: (4) data using the Legendre basis; (5) data
using the Shanks transformation; (6) data using the Fourier basis; (7) data using the odd estimations; (8) data
using the even estimations. The complete dataset is compiled in Appendix F.

confirming a similar value, ν ≈ 2 (purple segmented line (5) in Fig. 5). Finally, armed with the
knowledge that ν ≈ 2, we find self-similar solutions using a Fourier basis (see Ref. [21]). These
results are summarized in Table III in Appendix F. An identical linear fit to this data yields similar
results (green segmented line (6) in Fig. 5):

νN∗ = 2.07549 − 0.330279
1

N∗ .

Additionally, we present the data for odd N∗: νN∗ = 2.01646 + 1.17256 1
N∗ (cyan segmented line (7)

in Fig. 5); the data for even N∗: νN∗ = 2.06544 − 1.41497 1
N∗ (orange segmented line (8) in Fig. 5).

These fits unveil a convergence rate towards a finite value, approximately ν → ν∗ ≈ 2.03 as
N∗ → ∞. Finally, after obtained the amplitudes solutions at a given order it is possible to recon-
struct the whole self-similar structure of the flow. This is shown in Fig. 1.

VII. DISCUSSION

Assuming that the Euler equations allow for a self-similar finite-time blow-up solution transforms
the problem into a search for a heteroclinic orbit within the dynamical system. This orbit connects
two distinct fixed points, representing the boundary conditions of the initial problem. The numerical
analysis exhibits a consistent convergence pattern in the scheme, resulting in a self-similarity
exponent of ν∗ ≈ 2.03. As expected, this differs from the exponent νLuo−Hou ≈ 2.91 obtained by
Luo and Hou, who studied a singularity emerging on a finite circular rim at the domain’s boundary.
We plan to tackle this case using the present method in a future publication.

In a similar context, an intriguing question arises regarding an anularlike singularity of finite
radius, say R∗, in an infinite domain. This assumption of a distance, R∗, fundamentally alters the
original problem [24] and may involve different families of self-similar parameters, potentially
transitioning from a dynamical system governed by ordinary differential equations to a nonlinear
PDE. How this scenario aligns with the current investigation of a pointlike singularity remains an
unresolved issue.
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The proximity of the obtained exponent to 2 prompts the conjecture that the true exponent might
be precisely ν = 2. This conjecture introduces the possibility of exploring solutions to the Euler-
Leray equations (6) and (7) for ν = 2, simplifying the analytical or numerical task. Assuming,
assuming ν = 2 implies the existence of a crucial parameter with units of acceleration (L/T 2),
denoted as g, which establishes the scaling relation |x| ∼ g(tc − t )2 and the scaling velocities by
|v| ∼ g(tc − t ). The parameter g is expected to explicitly depend on the global properties of the
initial flow, specifically the energy (3) and helicity [1] (with units E0 ∼ L5/T 2 and H0 ∼ L4/T 2

respectively), giving rise to g ∼ H4
0/E3

0 . Accordingly, we conjecture that whereas both the local
energy and helicity of the singular solution vanish at the singular time, because of Eq. (9) and
footnote [18], the quotient H4/E3 remains constant. Additionally, an initial helicity distinct from
zero may be a necessary condition for a solution of the Euler equation in an infinite domain to
manifest a finite-time blow-up.

Last, we emphasize that by taking the curl of the self-similar velocity (4), a self-similar vorticity
dependence is obtained, which hypothetically diverges as in Eq. (12). Consequently, the self-similar
ansatz implies that vorticity scales as |ω| ∼ 1/|tc − t |. According to the Beale-Kato-Magda theorem
[20], if the solution falls within the basin of attraction of this self-similar solution, then the vorticity
must necessarily blow-up in finite time.
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APPENDIX A: SOLUTION OF THE EQ. (20)

Inspired by the expansion of the Green functions in spherical coordinates, we solve the Poisson-
type equation (20) for the stream function. In spherical coordinates (ξ, θ ), the homogeneous part of
Eq. (20) is

∂2ϕ

∂ξ 2
+ 1

ξ 2

(
∂2ϕ

∂θ2
− cot θ

∂ϕ

∂θ

)
= 0.

Employing separation of variables for the radial and angular parts, respectively,

ϕ(ξ, θ ) = R(ξ )y(θ ), (A1)

we obtain that

y′′(θ ) − cot θ y′(θ ) = λy(θ ) and ξ 2R′′(ξ ) = −λR(ξ ). (A2)

The angular part is a Legendre-type differential equation. The boundary conditions (21) and (22):
y(0) = y(π/2) = 0, restrict the solution in terms of the associated Legendre polynomials of even
index:

yn(θ ) = −cn sin θP1
2n(cos θ ), λn = −2n(2n + 1), cn =

√
4n + 1

2n(2n + 1)
. (A3)

While the solution to the radial part is given by a power-law R(ξ ) ∝ ξ k with k = −2n or k = 2n + 1.
The eigenfunctions (A3) are orthonormal with respect to the inner product constructed from the
orthogonality of the associated Legendre polynomials Pm

l (cos θ ). In the case of l an even number:
l = 2n and m = 1, this can be restricted to the interval θ ∈ [0, π/2]. Therefore, the correct inner
product is

〈 f (·), g(·)〉 =
∫ π/2

0

dθ

sin θ
f (θ )g(θ ). (A4)
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Moreover, the set {yn(θ )} is orthonormal: 〈yn(·), ym(·)〉 = δnm, since∫ π/2

0
dθ sin θ P1

2n(cos θ )P1
2m(cos θ ) = 2n(2n + 1)

4n + 1
δnm.

Here δnm is the Kronecker δ symbol. Furthermore, yn(θ ) is the natural angular basis for the stream
function �(ξ, θ ) and �φ (ξ, θ ), thus for the velocities Vξ and Vθ , as well as V 2

φ (ξ, θ ) can be expanded
in it. The negative sign in −cn in Eq. (A3) allows us to recover positive solutions in the domain.
The axisymmetric stream function and the axial vorticity expand in the basis (A3) as [see Eq. (24)
in Sec. IV]:

�(ξ, θ ) =
∞∑

n=1

�n(ξ )yn(θ ), �φ (ξ, θ ) =
∞∑

n=1

Fn(ξ )yn(θ ).

This expansion [or Eqs. (24)] is substituted into Eq. (20) of the stream function, and the resulting
PDE is projected onto the angular basis (A3) using the inner product (A4), yielding

−ξ

∞∑
m=1

β̃nmFm(ξ ) =
(

∂2

∂ξ 2
− 2n(2n + 1)

ξ 2

)
�n(ξ ), (A5)

where the coefficients of the symmetric tensor β̃nm are given by

β̃nm = 〈yn, sin θym〉,
and the symbol 〈. . . 〉 represents the inner product (A4). Finally, Eq. (A5) for the radial amplitudes
�n is solved by convolving the source −ξ

∑∞
m=1 β̃nmFm(ξ ) with the Green’s function of the differ-

ential operator, G(ξ, ξ ′), which satisfies an equation similar to the radial ODE in Eq. (A2):(
∂2

∂ξ 2
− 2n(2n + 1)

ξ 2

)
G(ξ, ξ ′) = δ(ξ − ξ ′). (A6)

Here, δ(·) is the one-dimensional Dirac-δ function.
The solution of Eq. (A6) is determined by regions avoiding divergent solutions. For ξ �= ξ ′, the

solution is Gξ<ξ ′ (ξ, ξ ′) = An(ξ ′)ξ 2n+1, and for ξ � ξ ′, the solution is Gξ>ξ ′ (ξ, ξ ′) = Bn(ξ ′)ξ−2n.
Imposing continuity and the jump of the derivative at ξ = ξ ′: Gξ<ξ ′ (ξ ′, ξ ′) = Gξ>ξ ′ (ξ ′, ξ ′) and
G′

ξ>ξ ′ (ξ ′, ξ ′) − G′
ξ<ξ ′ (ξ ′, ξ ′) = 1, these conditions provide the prefactors An(ξ ′) and Bn(ξ ′), and

the final solution of Eq. (A5) is

�n(ξ ) = β̃nm

4n + 1

(∫ ξ

0

(
ξ

ξ ′

)−2n

Fm(ξ ′)ξ ′2dξ ′ +
∫ ∞

ξ

(
ξ

ξ ′

)2n+1

Fm(ξ ′)ξ ′2dξ ′
)

. (A7)

From the exact expression (A7), two types of functions can be identified: external integrals Ln(ξ )
for ξ ′ > ξ and internal integrals, Nn(ξ ), for ξ ′ < ξ . Finally, the stream function is expressed through
the expansion (26) and the radial functions Ln(ξ ) and Nn(ξ ) are given by equations (27). Notice that
the matrix elements βnm are given explicitly by

βnm = β̃nm

4n + 1
= 〈yn, sin θym〉

4n + 1
. (A8)

In particular, the case of the first amplitude,

L1(ξ ) =
∞∑

m=1

β1m

∫ ∞

ξ

dξ ′ Fm(ξ ′)
ξ ′ = 3

4

√
2

15

∞∑
m=1

∫ π

0
dθ ′ sin2 θ ′ cos θ ′ ym(θ ′)

∫ ∞

ξ

dξ ′ Fm(ξ ′)
ξ ′ ,

(A9)
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corresponds to the Elgindi approximation [14]. In the current and general case (27), the vor-
ticity amplitudes in the Legendre basis, Fm in Eq. (27), combine with each Ln(ξ ) through the
coefficients βnm.

APPENDIX B: AXISYMMETRIC EULER EQUATIONS IN THE BASIS
OF ASSOCIATED LEGENDRE POLYNOMIALS

To find the axisymmetric Euler equations in the new basis, the axial velocity must also be
expressed in terms of the angular basis (A3):

V 2
φ (ξ, θ ) = ξ 2

∞∑
n=1

Gn(ξ )yn(θ ). (B1)

With Eq. (26) for the stream function, the radial and azimuthal velocities are calculated using
Eq. (17):

Vξ = 1

ξ 2 sin θ
ξ 3

∞∑
n=1

(Nn(ξ ) + Ln(ξ ))y′
n(θ ) = ξ

sin θ

∞∑
n=1

(Nn(ξ ) + Ln(ξ ))y′
n(θ ),

Vθ = − 1

ξ sin θ

∂�

∂ξ
= − ξ

sin θ

∞∑
n=1

(−2nNn(ξ ) + (2n + 1)Ln(ξ ))yn(θ ). (B2)

The transport operator in spherical coordinates becomes

Vξ

∂

∂ξ
+ Vθ

ξ

∂

∂θ
=

∑
n

y′
n(θ )

sin θ
(Nn(ξ ) + Ln(ξ ))ξ

∂

∂ξ
+

∑
n

yn(θ )

sin θ
(2nNn(ξ ) − (2n + 1)Ln(ξ ))

∂

∂θ
.

(B3)

The transport operator (B3) and the velocities (B2) expressed with the functions (27) allow rewriting
the vorticity equation (19), as

∞∑
p=1

(Fp(ξ ) + νξF ′
p(ξ ))yp(θ )

+
∑
n,p

[
yn(θ )y′

p(θ )

sin θ
(2nNn(ξ ) − (2n + 1)Ln(ξ )) + y′

n(θ )yp(θ )

sin θ
(Nn(ξ ) + Ln(ξ ))ξ

d

dξ

]
Fp(ξ )

=
∑
n,p

yp(θ )

sin θ
[(y′

n(θ ) + 2n cot θ yn(θ ))Nn(ξ ) + (y′
n(θ ) − (2n + 1) cot θ yn(θ ))Ln(ξ )]Fp(ξ )

+
∑

p

((2Gp(ξ ) + ξG′
p(ξ )) cot θ yp(θ ) − y′

p(θ )Gp(ξ )). (B4)

However, the swirl velocity equation (16) is as follows:∑
p

(2Gp(ξ ) + νξG′
p(ξ ))yp(θ )

+
∑
n,p

[
yn(θ )y′

p(θ )

sin θ
(2nNn(ξ ) − (2n + 1)Ln(ξ )) + y′

n(θ )yp(θ )

sin θ
(Nn(ξ ) + Ln(ξ ))ξ

d

dξ

]
Gp(ξ )
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= −2
∑
n,p

yp(θ )

sin θ
[(2y′

n(θ ) + 2n cot θ yn(θ ))Nn(ξ ) + (2y′
n(θ ) − (2n + 1) cot θ yn(θ ))Ln(ξ )]Gp.

(B5)

Note that the operator in the second term of Eqs. (B4) and (B5), the transport operator, remains
the same in both equations. To determine the amplitudes Fn(ξ ) and Gn(ξ ), Eqs. (B4) and (B5) are
projected onto the basis (A3) using the inner product (A4), 〈yl |·〉, and the following set of ODEs is
obtained:

(νδl p + blnpNn(s) + blnpLn(s))F ′
p(s) + (δl p + αlnpNn(s) + alnpLn(s))Fp

= (hlnpNn(s) + elnpLn(s))Fp − dl p(2Gp + G′
p(s)) − cl pGp, (B6)

(νδl p + blnpNn(s) + blnpLn(s))G′
p(s) + (2δl p + αlnpNn(s) + alnpLn(s))Gp(s)

= −2Nn(s)(hlnp + blnp)Gp − 2Ln(s)(elnp + blnp)Gp, (B7)

N ′
n(s) + (2n + 3)Nn = βnmFm, (B8)

L′
n(s) − 2(n − 1)Ln = −βnmFm. (B9)

Here, as before, we use the Einstein sum convention when indices are repeated. The equations (B6),
(B7), (B8), and (B9) form an infinite hierarchy of ODEs. The coefficients have unique values
because the angular basis yn(θ ) is fixed, and they are

blnp =
〈
yl ,

1

sin θ
y′

nyp

〉
, αlnp = 2nbl pn, alnp = −(2n + 1)bl pn,

klnp =
〈
yl ,

cos θ

sin2 θ
ynyp

〉
, hlnp = blnp + 2nklnp, elnp = blnp − (2n + 1)klnp,

cl p = 〈yl , y′
p〉, dl p = −

〈
yl ,

cos θ

sin θ
yp

〉
, βnm = 〈yn, sin θym〉

4n + 1
. (B10)

Contrary to Ref. [21], some tensors are of rank 3 because the swirl velocity and vorticity
amplitudes must couple with an infinite array of functions Nn(s) and Ln(s) instead of just one
function L1(s), as is the case of the approximation in Ref. [21]. The tensors b, e, and h are symmetric
with respect to the first and third indices, while k and d are completely symmetric. However, α, a,
and c do not have any symmetry.

The dynamical system (B6)–(B9) can be rewritten in the usual way, as in dynamical system (28).

APPENDIX C: NUMERICAL SIMULATIONS

For practical purposes, an additional parameter is included to measure the amplitude, γ , of the
eigenvector δḡ of the matrix (37). Although this is not relevant because two distinct amplitudes are
related by a simple translation in the s coordinate, it is relevant that the objective domain from the
asymptotics remains in the domain of integration, something done by adjusting γ δḡ. As already said
in Sec. VI, we reproduce here in Fig. 6 the numerical solutions for the case N∗ = 4.

As explained in the main text, as N∗ increases, the linear stability of the fixed point FP2 becomes
more complex because oscillatory modes appear, rendering the fixed point FP1 oscillatory and
damped around it.

The procedure for generating the average function L̄1(s) (or N̄1(s)) is as follows: The points
of maxima and minima of L1(s) (or N1(s)) are used to interpolate iteratively the upper and lower
envelope after calculating their average sets to the left and right. Then, for the two average sets,
another pair of averages is calculated, and this process is repeated until a pair of average sets
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FIG. 6. Numerical simulation for N∗ = 4 with L2(s) = L3(s) = L4(s) = 0 and all other amplitudes differ-
ent from zero. The parameters are ν = 2.03805 and L(0)

1 = 0.697295. (a) Linear plot for all amplitudes as a
function of the s variable. (b) The log-scale of the absolute value of the amplitudes allows us to distinguish that
N1(s), N2(s), N3(s), and N4(s) are up to four orders of magnitude smaller than L1(s).

is obtained such that both can form a sufficiently smooth quadratic fit. Generally, around four
averaging steps are required to obtain a suitable fitted curve. In Figure 7 we show the obtained
convergent patterns for average functions L̄1(s) and N̄1(s) in linear scale.

Figure 3 displays the numerical curve L1(s) from N∗ = 8, emphasizing its extreme points, along
with L̄1(s) corresponding to the quadratic fit of the multiple averages of the extreme points. Similar
average procedures are done in Figs. 4 and 7, for the L̄1(s) and N̄1(s) functions.

APPENDIX D: DIFFERENTIAL EVOLUTION ALGORITHM

In what follows, we briefly discuss the differential evolution (DE) algorithm [22] in the context
of finding solutions to the eigenvalue problem (28). The set of ODEs composing such a dynamical
system, (B6)–(B9), must be solved from a starting point, the fixed point (30), and ending at the fixed
point (29). The solution is found by adjusting two parameters: the main one, ν, which determines the
behavior (31) and a secondary one, the parameter γ , that multiplies all amplitudes in Eq. (32) as s →
−∞. The differential evolution algorithm finds the values of (ν, γ ) that best solve the dynamical
system with the fixed points through an iterative minimization process, repeated over Kmax iterations,
named generations by the creators of the scheme [22]. We note that DE can easily be applied to find
an arbitrary number of parameters, as we did in our early attempt using the Fourier basis [21]. The
algorithm is summarized by the following stages:

(1) Initialization: A range of values is set for each parameter, νlower � ν � νupper and γlower �
γ � γupper. For instance, we used 2 − �ν � ν � 2 + �ν with |�ν| < 1, and 1 − �γ � γ � 1 +
�γ with |�γ | < 5.

FIG. 7. (a) The average function L̄1(s) and (b) the average function N̄1(s) are overlaid for varying values of
the truncation parameter N∗, as shown, illustrating favorable convergence.
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Then, a number of NP parent tuples (ν, γ ) are randomly selected with the initial parameter values
randomly distributed within the previously defined intervals. This set of parameters forms the seed
of what we call the first generation, labeled with the generation index (K = 1).{

(ν, γ )(K=1)
1 , .., (ν, γ )(K=1)

NP

}
. (D1)

After the seed set is determined, the algorithm proceeds with a three stages cycle.
(2) Mutation: Starting from the original seed set, a second set of mutated tuples is generated

by sweeping the parameter space with linear combinations of the parent tuples according to the
following rule:

(v, ρ)(K+1)
i = (ν, γ )(K )

r1
+ F

(
(ν, γ )(K )

r2
− (ν, γ )(K )

r3

)
, i = 1, .., NP. (D2)

The three integer indices r1, r2, r3 take specific values for each ith mutated tuple, and they are
chosen randomly from the integer set {1, .., NP}, with the conditions that all r1, r2, r3 are different
themselves, and rk �= i. The constant F ∈ [0, 2] controls the dispersion of the evolution in the
parameters space. We set F = 0.5 for all simulations.

(3) Crossover: Next, a set of successor tuples is generated from the parent tuples (D1) and the
mutated tuples (D2). This occurs according to a crossover rate, CR ∈ [0, 1], which controls the
diversity of the evolution:

V (K+1)
i =

{
v

(K+1)
i with probability CR

ν
(K )
i otherwise

,

�
(K+1)
i =

{
ρ

(K+1)
i with probability CR

γ
(K )

i otherwise
, i = 1, .., NP. (D3)

For all simulations, we used CR = 0.85, which favors diversity.
(4) Selection: From the set of parent and successor tuples, it is selected those that will conform

the next generation of parameters by means of a minimization of the error function Error[(ν, γ )(K )
i ]

defined by Eq. (39):

(ν, γ )(K+1)
i =

{
(V, �)(K+1)

i Error
[
(V, �)(K+1)

i

]
� Error

[
(ν, γ )(K )

i

]
(ν, γ )(K )

i otherwise
, i = 1, .., NP. (D4)

The error (39) is computed after solving numerically forward the ODEs (B6)–(B9) with a given
truncature N∗ in the domain s ∈ [smin, smax], with the initial boundary condition at s = smin given
by Eqs. (32)–(36), determined by a fixed power σ ∈ Z+. The result of the numerical integration
are the functions of amplitudes Fn(s), Gn(s), L1(s), and Nn(s), n = 1, .., N∗, related to both the
parent tuple (ν, γ )(K )

i or successor tuple (V, �)(K+1)
i . At the end of the selection process (D4) the

next generation is obtained: {
(ν, γ )(K+1)

1 , .., (ν, γ )(K+1)
NP

}
.

This evolutionary cycle continues by repeating the stages of: 2. Mutation (D2), 3. Crossover (D3),
and 4. Selection (D4). As a general rule, the successor generation of the parameters {(ν, γ )(K+1)

i }
will have a lower error than the previous generation {(ν, γ )(K )

i }. This cycle is repeated until reaching
an error lower than a threshold Errormin or after reaching a maximum generation Kmax steps. For
all simulations, we used Errormin = 10−7, whereas Kmax is varied in the range ∈ [10, 100]. If the
evolution finishes in the last generation Kmax without crossing the threshold, or if more than one
tuple crossed it, one selects the tuple with the lowest error. Finally, if this error does not meet
expectations, that is, to be at least lower than 10−3, the tuple (ν̃, γ̃ )(K=Kmax ) is used as a reference
point to build a new range of parameters, and Differential Evolution is applied again.
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APPENDIX E: THE SHANKS TRANSFORMATION

The Shanks transformation is defined as [23]

S(νN∗ ) = νN∗+1νN∗−1 − (νN∗ )2

νN∗+1 + νN∗−1 − 2νN∗
.

Applying S(·) successively to the sequence of νN∗ results in an improvement sequence as it may be
seen in the Table I.

APPENDIX F: TABLES WITH THE CONVERGENCE SEQUENCES
OF ν FOR VARIOUS NUMBER OF MODES

TABLE I. Summary of the numerical solutions to Eq. (28) with L1(s) �= 0 and at least N1(s) �= 0 for σ =
2. The table compiles the values of νN∗ , the improvement convergence S(νN∗ ), the amplitude L(0)(σ, νN∗ ),
the Error(νN∗ , γ ) (calculated between sa = 10 and sb = 13), the parameter γ , and the starting point of the
integration interval smin. For all simulations, smax = 15.

N∗ σ # Nodes νN∗ S(νN∗ ) L(0)(σ, νN∗ ) Error(νN∗ , γ ) γ smin

2 2 0 1.15231 – 0.465872 8.77849 × 10−8 −1.55707 −4.0
3 2 – – – – – – –
4 2 1 2.03805 – 0.697295 1.3851 × 10−6 −1.62375 −4.0
5 2 17 1.91086 1.76923 0.763168 5.98668 × 10−7 0.098675 −7.0
6 2 12 1.84385 1.90431 0.666764 9.38614 × 10−6 3.05798 −7.0
7 2 14 2.46257 2.1625 0.88108 1.04847 × 10−3 3.77645 −7.0
8 2 29 1.87994 2.13078 0.682561 1.66852 × 10−6 3.85702 −7.0
9 2 44 2.32043 2.10764 0.833166 1.18286 × 10−5 1.20205 −7.0
10 2 44 1.90880 2.04785 0.693843 2.47026 × 10−4 4.20024 −7.0
11 2 44 2.11878 2.01946 0.776424 9.76532 × 10−7 3.51113 −7.0
12 2 51 1.9303 2.02344 0.70191 1.79167 × 10−5 2.12087 −7.0
13 2 27 2.11442 2.03276 0.771508 8.88566 × 10−5 3.95846 −7.0
14 2 53 1.96769 2.03814 0.712948 2.03255 × 10−4 3.37468 −7.0
15 2 53 2.10321 2.04262 0.766154 2.26803 × 10−6 3.29063 −7.0
16 2 69 1.99363 2.0357 0.720714 1.54934 × 10−4 2.86086 −4.0
17 2 94 2.06191 2.02777 0.754146 1.3032 × 10−4 3.23987 −7.0
18 2 128 2.02397 2.03353 0.729197 1.64111 × 10−2 2.74248 −7.0
19 2 98 2.08961 – 0.759612 1.7957 × 10−5 2.82809 −7.0
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TABLE II. Summary of the numerical solutions to Eq. (28) for various σ �= 2 with L1(s) �= 0 and all
Nn�N∗ (s) �= 0 if N∗ � 3, or just L1(s) and N1(s) �= 0 if N∗ > 3. The table compiles the values of σ , νN∗ , the
amplitude L(0)(σ, νN∗ ), the Error(νN∗ , γ ) which is calculated between sa = 10 and sb = 13, the parameter γ ,
and the starting point of the integration interval smin. For all simulations, smax = 15.

N∗ σ # Nodes νN∗ L(0)(σ, νN∗ ) Error(νN∗ , γ ) γ smin

1 1 0 1.0874 0.56368 3.09913 × 10−9 2.10499 −4.0
1 3 2 0.921274 1.21765 8.41735 × 10−5 6.86957 −7.0
2 3 0 0.81556 0.405925 1.92999 × 10−7 −4.53568 −4.0
2 4 0 0.684418 0.384183 1.12285 × 10−5 −1.13553 −4.0
3 4 1 1.6314 0.611404 2.12396 × 10−6 3.70325 −7.0
3 5 2 1.20285 0.487731 1.74334 × 10−5 3.31115 −4.0
5 3 9 1.77806 0.669516 1.94065 × 10−6 2.07253 −7.0
5 4 39 2.15347 0.772235 1.76294 × 10−3 2.98594 −6.0
6 3 13 1.81132 0.678624 6.38356 × 10−6 3.09318 −7.0
6 4 13 1.71446 0.648294 5.06123 × 10−6 2.21908 −7.0
7 3 20 1.68884 0.645082 7.91539 × 10−6 5.71461 −7.0
7 4 12 1.90463 0.701519 8.43189 × 10−6 3.75825 −6.0
9 3 32 1.87938 0.697264 7.53346 × 10−6 4.82398 −7.0
9 4 56 2.02616 0.737502 4.37623 × 10−5 3.80158 −6.0
10 3 32 1.94604 0.715518 3.12218 × 10−5 3.76612 −7.0
10 4 40 1.86536 0.691259 1.85541 × 10−5 6.11158 −6.0

TABLE III. Numerical solutions to dynamical system (28) with a Fourier angular base and Elgindi
approximation, only L1(s) �= 0 and all Nn(s) = 0, for σ = 2. Here smax = 30 while the error interval is between
sa = 26 and sb = 29. Solutions from N∗ = 2 to N∗ = 4 were presented in Ref. [21].

N∗ σ # Nodes νN∗ L(0)(σ, νN∗ ) Error(νN∗ , γ ) γ smin

2 2 0 1.10091 1.40061 3.10847 × 10−7 −1.14264 −7.0
2 2 1 1.31387 1.54258 4.76247 × 10−5 −1.0 −7.0
3 2 2 2.10121 2.06747 8.60559 × 10−2 −0.720427 −13.2
4 2 2 2.7186 2.47909 3.28488 × 10−1 −1.0 −10.0
6 2 1 2.00607 2.00405 1.29802 × 10−1 −1.28305 −7.0
7 2 8 2.01267 2.00845 5.74778 × 10−2 −1.40662 −7.0
9 2 56 2.08925 2.0595 2.61271 × 10−3 −0.717312 −5.0
11 2 30 2.05733 2.03822 4.12929 × 10−3 −1.64337 −7.0
15 2 2 2.04474 2.02983 6.04261 × 10−2 −1.2498 −7.0
16 2 169 2.03126 2.02084 1.1883 × 10−3 −1.86289 −7.0
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