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Anti-plane segregation and diffusion in dense, bidisperse granular shear flow
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Many dense granular systems are non-monodisperse, consisting of particles of different
sizes, and will segregate based on size during flow. This phenomenon is an important aspect
of many industrial and geophysical processes, necessitating predictive continuum models.
This paper systematically studies a key aspect of the three-dimensional nature of segre-
gation and diffusion in flowing, dense, bidisperse granular mixtures—namely, segregation
and diffusion acting along the direction perpendicular to the plane of shearing, which we
refer to as the anti-plane modes of segregation and diffusion. To this end, we consider
discrete-element method (DEM) simulations of flows of dense, bidisperse mixtures of
frictional spheres in an idealized configuration that isolates anti-plane segregation and
diffusion. We find that previously developed constitutive equations, calibrated to DEM
simulation results from flows in which both the segregation and diffusion processes occur
within the plane of shearing, do not capture aspects of the anti-plane segregation dynam-
ics. Accordingly, we utilize DEM simulation results to inform and calibrate constitutive
equations for the segregation and diffusion fluxes in their anti-plane modes. Predictions of
the resulting continuum model for the anti-plane segregation dynamics are tested against
additional DEM simulation results across different cases, while parameters such as the
shear strain rate and mixture composition are varied, and we find that the calibrated
model predictions match well with the DEM simulation results. Finally, we suggest a
strategy for generalizing the constitutive forms for the segregation and diffusion fluxes
to obtain three-dimensional constitutive equations that account for both the in-plane and
the anti-plane modes of the segregation and diffusion processes.

DOI: 10.1103/PhysRevFluids.9.094301

I. INTRODUCTION

Dense granular mixtures consisting of particles of different sizes tend to segregate, or demix,
based on size during shear flow. This phenomena is an important aspect of geophysical flows as
well as industrial processes involving blending of granular mixtures. Continuum models capable
of predicting the evolution of the spatially inhomogeneous composition of a granular mixture
are valuable in understanding or designing processes involving size segregation. Consequently,
substantial effort has gone into developing continuum constitutive equations for segregation and
diffusion fluxes in flowing, dense granular mixtures based on both simulated and experimental
granular systems (e.g., [1–13]), primarily focusing on bidisperse mixtures made up of grains of
two different sizes.

The vast majority of works on continuum modeling of size segregation in dense, bidisperse gran-
ular flows—including all of those cited in the previous paragraph—have dealt with two-dimensional
flow and segregation scenarios. More precisely, denoting the plane of shearing as the x-y plane,
the components of the velocity field are of the form vx(x, y), vy(x, y), and vz = 0, and the vector
describing the relative flux of large and small grains—which accounts for both the segregation and
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diffusion processes—lies entirely within the x-y plane. Throughout this paper, we refer to the segre-
gation and diffusion processes in this scenario as their “in-plane” modes. Common examples from
the literature include flow down an inclined plane (e.g., [1,2,4,7,8,13]), two-dimensional bounded
heap flow (e.g., [6,9,14]), and flow in a rotating drum (e.g., [5,15–17]). However, segregation and
diffusion in many bidisperse shear flows (e.g., split-bottom flow [18,19]) are not in their in-plane
modes. It has not been established whether flux constitutive equations proposed and calibrated
based on measurements from discrete simulations or experiments involving the in-plane modes
of segregation and diffusion remain predictive in more general, three-dimensional scenarios, which
serves as the motivation for this work.

The purpose of this paper is to systematically study the three-dimensional nature of the contin-
uum constitutive equations for the segregation and diffusion fluxes in flowing, dense, bidisperse
granular mixtures, using discrete-element method (DEM) simulations of frictional spheres. In
particular, we consider an idealized flow configuration consisting of a layer of dense granular
material that is infinite along the x and y directions and finite along the z direction. The layer is
sheared within the x-y plane but gravity and composition gradients act along the z direction, so
that the segregation and diffusion fluxes act along the direction perpendicular to the plane of shear.
Throughout this paper, we refer to the segregation and diffusion processes in this scenario as their
“anti-plane” modes. We then test whether a continuum model for the in-plane modes of segregation
and diffusion in a dense, bidisperse mixture is capable of capturing the evolution of the spatially
inhomogeneous composition of the granular mixture in this anti-plane scenario. We focus on the
continuum model proposed in our prior work [13], which can predict the dynamics of segregation
across different cases of flow down an inclined plane as well as planar shear flow with gravity.
Observations of size segregation in both of these flow configurations are examples of the in-plane
mode of segregation. We find that the in-plane segregation model fails to capture several features
of the segregation dynamics in the anti-plane mode—namely, the rate of diffusion and segregation
at sufficiently low shear strain rates (quantified through the inertial number) and the scaling of
the segregation flux with pressure. To remedy these points, we first isolate the anti-plane mode of
diffusion by removing segregation due to gravity to motivate a modified constitutive equation for
the diffusion flux. Second, we return to the anti-plane mode of segregation driven by a gravitational
pressure gradient perpendicular to the plane of shearing to inform a modified constitutive equation
for the segregation flux. When combined, the modified continuum model is capable of capturing
the anti-plane segregation dynamics across different combinations of shear strain rate, mixture
composition, and layer thickness.

This paper is organized as follows. We first discuss the continuum framework used to describe
dense, bidisperse granular systems in Sec. II. Then, we introduce the configuration for anti-plane
segregation in simple shear flow in Sec. III and illustrate the deficiencies of the planar model of
Singh et al. [13]. Next, based on DEM simulation data, we propose continuum constitutive equations
for the anti-plane modes of the diffusion and segregation fluxes in Secs. IV A and IV B, respectively.
The proposed continuum model is solved to predict the transient evolution of the concentration field
in anti-plane segregation in simple shear flow, and continuum model predictions are tested against
DEM simulation results in Sec. V. Revisiting anti-plane diffusion, in Sec. VI A, we characterize the
diffusion flux through the mean square displacement (MSD) of the granular mixture and contrast the
result with the diffusion flux characterized through the dynamics of mixing of an initially segregated
granular mixture from Sec. IV A. Lastly, we describe a strategy for generalizing the constitutive
equations for the segregation and diffusion fluxes to obtain three-dimensional constitutive forms
that are capable of switching between the respective in-plane and anti-plane modes in Sec. VI B.
We conclude the paper with some closing remarks in Sec. VII.

II. CONTINUUM FRAMEWORK

In this section, we discuss the continuum framework used to describe segregation and diffusion in
dense, bidisperse granular mixtures. Regarding notation, we use component notation, in which the

094301-2



ANTI-PLANE SEGREGATION AND DIFFUSION IN …

components of vectors, v, and tensors, σ, relative to a set of Cartesian basis vectors {ei|i = 1, 2, 3}
are denoted by vi and σi j , respectively, and the Einstein summation convention is employed.

We consider bidisperse granular mixtures consisting of grains of two different sizes: large grains
with diameter d l and small grains with diameter d s. All grains are made of same material with
mass density ρs, thereby eliminating density-based segregation and isolating size-based segregation.
To describe the dynamics of segregation in dense, bidisperse granular systems at the continuum
level, we utilize a mixture-theory approach, which is common in the literature (e.g., [20,21]). The
solid volume fractions of each species are denoted as φl and φs for the large and small grains,
respectively. For the dense shear flows considered in the present work, volume changes are minimal,
and any volume change at flow initiation occurs over a much shorter timescale than the process of
segregation. Accordingly, we adopt the idealization that the total solid volume fraction φ = φl + φs

is constant and, based on observations from DEM simulations, approximately equal to φ = 0.6 for
dense spheres. The concentrations of each species are cl = φl/φ and cs = φs/φ, so that cl + cs = 1.
The average grain size of the mixture is then defined as d̄ = cld l + csd s.

The mixture velocity vi is defined through the partial velocities of each species, vl
i and vs

i , as
vi = clvl

i + csvs
i . Then, the strain-rate tensor for the mixture is Di j = (1/2)(∂vi/∂x j + ∂v j/∂xi ),

and the equivalent shear strain rate is γ̇ = (2Di jDi j )1/2. Due to the constant-volume idealization,
the mixture velocity is divergence-free, ∂vi/∂xi = 0, and the mixture strain-rate tensor is deviatoric,
Dkk = 0. The relevant stress-related fields for the mixture are the symmetric Cauchy stress tensor
σi j = σ ji and the pressure P = −(1/3)σkk . The inertial number for a bidisperse system is defined in
terms of the average grain size as I = γ̇ d̄

√
ρs/P [22,23].

The relative volume flux of species ν = l, s is defined as wν
i = cν (vν

i − vi ), so that wl + ws = 0.
We utilize cl as the field variable that describes the segregation dynamics, and under the constant-
volume idealization, the mass conservation equation for the large grains governs the evolution of cl

as follows:

Dcl

Dt
+ ∂wl

i

∂xi
= 0, (1)

where D(·)/Dt is the material time derivative. To close the segregation model, a constitutive
equation for the relative volume flux of large particles wl

i is needed. We take the flux to be comprised
of two contributions:

wl
i = wdiff

i + wP
i , (2)

where wdiff
i is the diffusion flux that acts to remix the species and wP

i is the pressure-gradient-driven
segregation flux that acts to demix the species. In this paper, we focus on simple shear flows, in
which the equivalent shear strain rate γ̇ is spatially uniform, so the shear-strain-rate-gradient-driven
segregation of Liu et al. [12] does not appear in (2).

III. ANTI-PLANE SEGREGATION IN SIMPLE SHEAR FLOW

A. Discrete-element method simulations

In this section, we examine the anti-plane mode of segregation by considering simple shear flow
of a layer of a dense, bidisperse granular mixture within the x-y plane. The layer has a finite thickness
H along the z direction, which is perpendicular to the plane of shearing, and gravity G acts along the
z direction. We consider simple shear flows of dense, bidisperse spheres with an interparticle friction
coefficient of μsurf = 0.4 using DEM simulations. Further details of the simulated granular system
are given in Appendix A. The DEM setup for the case of a well-mixed system of bidisperse spheres
and H = 30d̄0 is shown in Fig. 1(a), where d̄0 is the system-wide average grain size. Shearing in
the x-y plane is achieved through Lees-Edwards boundary conditions [24]. The dimensions of the
DEM simulation domain are taken to be L = 20d̄0 along the x direction and W = 10d̄0 along the y
direction. The bottom boundary is a flat and frictionless wall that does not impart any shear traction
within its plane, and the top surface is traction-free. This setup achieves a homogeneous state of
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FIG. 1. Representative base case for anti-plane segregation in simple shear flow. (a) Initial well-mixed
configuration for three-dimensional DEM simulation of bidisperese spheres. (b) Segregated state and
(c) nondimensionalized velocity field vx/γ̇W after a simulation time of t̃ = γ̇ t = 1200. In (c), the z coordinate
is measured from the top free surface, and the y coordinate is measured from the center of the simulation
domain. (d) Spatiotemporal evolution of the large-grain concentration field cl. (e) Spatial profiles of the cl field
and the solid volume fraction field φ (inset) at three different time instants (t̃ = 60, 300, and 1200) as indicated
by the three vertical lines in (d).

strain rate, in which the only nonzero components of the strain-rate tensor are Dxy = Dyx = γ̇ /2,
and eliminates segregation due to strain-rate gradients (e.g., [12]), isolating pressure-gradient-driven
segregation in its anti-plane mode. As discussed in Sec. I, we use the term anti-plane to designate
that pressure-gradient-driven size segregation acts along the direction (the z direction) perpendicular
to the plane of shearing (the x-y plane), which contrasts with the in-plane mode examined in our
prior work [13], where segregation acts along a direction that is within the plane of shearing.

The important dimensionless parameters that characterize anti-plane segregation in simple shear
flow are (1) the dimensionless layer thickness H/d̄0, (2) the dimensionless strain rate γ̇

√
d̄0/G,

(3) the initial large-grain concentration field cl
0(z), and (4) the bidisperse grain-size ratio d l/d s.

DEM simulation results for a representative base case corresponding to the parameter set {H/d̄0 =
30, γ̇

√
d̄0/G = 0.06, cl

0 = 0.50, d l/d s = 1.5} are summarized in Fig. 1. The segregated state after
a simulation time of t̃ = γ̇ t = 1200 is shown in Fig. 1(b), showing that the large grains (dark
gray) indeed segregate to the top free surface, leaving small grains (light gray) on the bottom of
the layer. Velocity and concentration fields may then be obtained from the DEM data using the
coarse-graining procedures described in Appendix A. Contours of the nondimensionalized velocity
field vx(y, z)/γ̇W at t̃ = 1200 are shown in Fig. 1(c), demonstrating that a uniform simple shear
flow is attained with vx depending linearly on the y coordinate and independent of the z coordinate.
The velocity field does not evolve in time, so only a single snapshot is illustrated. Spatiotemporal
contours of the evolution of the large-grain concentration field cl are plotted in Fig. 1(d). The
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growing width of the dark region indicates the accumulation of large grains at the top of the layer.
To further illustrate the evolution of the concentration field, in Fig. 1(e), we plot spatial profiles of
the cl field along the z direction at three snapshots in time, associated with short, moderate, and long
times (t̃ = 60, 300, and 1200) with respect to the process of segregation, indicated by the vertical
lines in Fig. 1(d). Finally, spatial profiles of the total solid volume fraction field φ are plotted along
the z direction at the same three snapshots in time in the inset of Fig. 1(e), illustrating that the solid
volume fraction indeed remains spatially and temporally uniform and approximately equal to 0.6.

B. Continuum modeling based on in-plane constitutive equations

Next, we test the segregation model described in Singh et al. [13] for the in-plane modes of
segregation and diffusion in a bidisperse mixture in the context of anti-plane segregation and
diffusion. First, we briefly recap the constitutive equation for the relative volume flux wl

i , which
comprises contributions due to diffusion and segregation. The diffusion flux wdiff

i acts to remix the
two species and is taken to be driven by concentration gradients as wdiff

i = −D(∂cl/∂xi ), where D
is the binary diffusion coefficient which scales with the mean grain size d̄ and the shear strain rate
γ̇ as D ∼ d̄2γ̇ [12,25–27]. Accordingly, the diffusion flux is

wdiff
i = −Cin

diff d̄
2γ̇

∂cl

∂xi
, (3)

where Cin
diff is a dimensionless, constant material parameter that characterizes the in-plane diffusion

flux. Regarding the segregation flux, in the present work, we consider homogeneous shear flows, in
which the shear strain rate γ̇ is spatially uniform. Therefore, shear-strain-rate gradients (e.g., [12])
do not drive the segregation process, and we only consider segregation driven by pressure gradients
(e.g., [13]) and adopt the following constitutive equation for the segregation flux wP

i :

wP
i = −CP,in

seg
d̄2γ̇

P
cl (1 − cl )(1 − α + αcl )

∂P

∂xi
, (4)

where CP,in
seg and α are dimensionless, constant parameters that characterize the in-plane segregation

flux. The scaling of the prefactor in (4) with d̄2γ̇ /P follows prior works in the literature [11,13,16]
and ensures dimensional consistency. Moreover, this scaling captures the requirement that the
segregation flux is zero when there is no flow (γ̇ = 0) as well as the attenuation of segregation
with increasing pressure [10,28]. The dependence of the prefactor in (4) on cl through the function
f (cl ) = cl (1 − cl )(1 − α + αcl ) follows from Gajjar and Gray [7] and captures the asymmetric
dependence of the flux on cl, quantified by the dimensionless parameter α ∈ [0, 1]. For α = 0,
the dependence of f (cl ) is symmetric about its maximum at cl = 0.5, but for α ∈ (0, 1], the
maximum of f (cl ) skews from cl = 0.5 towards cl = 1, while maintaining that segregation ceases
when the bidisperse mixture becomes either all large (cl = 1) or all small (cl = 0) grains. While
it is well established in the literature that the pressure-gradient-driven segregation flux depends
on the grain-size ratio d l/d s (e.g., [9,11,14]), we focus on a single grain-size ratio of d l/d s = 1.5
throughout this work, and therefore, this dependence does not appear in (4). The relative volume
flux wl

i is then taken to be the sum of (3) and (4): wl
i = wdiff

i + wP
i , where the material parameters

associated with the in-plane segregation model for a given d l/d s are {Cin
diff ,CP,in

seg , α}.
Utilizing the flux constitutive equations (3) and (4) in the balance of mass equation (1), we obtain

a governing equation for the cl field in the absence of shear-strain-rate gradients. In the context of
anti-plane segregation in simple shear flow [Fig. 1(a)], in which the concentration and pressure
fields only vary along the z direction, the large-grain concentration field cl (z, t ) is governed by the
following partial differential equation (PDE):

∂cl

∂t
+ ∂

∂z

(
−Cin

diff d̄
2γ̇

∂cl

∂z
− CP,in

seg
d̄2γ̇

P
cl (1 − cl )(1 − α + αcl )

∂P

∂z

)
= 0. (5)
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In this configuration, the strain rate γ̇ is prescribed and is spatially and temporally uniform.
Moreover, the stress field does not vary in time, and the out-of-plane normal stress component
σzz(z) may be determined from a static force balance along the z direction to be σzz(z) = −φρsGz.
The in-plane normal stresses σxx(z) and σyy(z) are equal and, in coarse-grained DEM data, are
observed to also be linearly proportional to z; however, due to the normal stress differences that
arise in dense flows of spheres [29,30], the magnitude of the slope of this linear dependence is
observed to be slightly higher than φρsG. As a result, the pressure field P(z) varies linearly in z but
with a constant slope ∂P/∂z that is slightly higher than the nominal value of φρsG. To control for
this effect, when obtaining continuum solutions, we utilize the value of the slope of the pressure
field ∂P/∂z obtained from the coarse-grained stress fields in the DEM data, rather than the nominal
value of φρsG. Furthermore, to avoid a singularity in the pressure-gradient-driven segregation flux
at the free surface where z = 0, we add a small constant to the pressure field corresponding to the
weight of a layer of (1/4)d̄0 thickness, i.e., (1/4)(∂P/∂z)d̄0. Without regularization, the predicted
concentration cl at the top surface where z = 0 would instantaneously jump from its initial condition
to 1. The addition of a small constant to the pressure field ensures that the concentration at the top
surface evolves to one over a timescale that is finite, enabling numerical solutions to be obtained, but
still short compared to the bulk segregation dynamics. We have verified that the continuum model
predictions presented in this work are insensitive to the exact choice of this constant, so long as it
is sufficiently small, and that a pressure of (1/4)(∂P/∂z)d̄0 is indeed sufficiently small. Therefore,
with P(z) = (∂P/∂z)z + (1/4)(∂P/∂z)d̄0, we have that (1/P)∂P/∂z = 1/[z + (1/4)d̄0] in the last
term of (5).

When accompanied by boundary and initial conditions, (5) may then be used to obtain pre-
dictions for the transient evolution of the large-grain concentration field cl (z, t ) during anti-plane
segregation in simple shear flow. Regarding boundary conditions, we impose no-flux bound-
ary conditions at the top free surface as well as at the bottom frictionless wall, i.e., wl

z =
−Cin

diff d̄
2γ̇ (∂cl/∂z) − CP,in

seg (d̄2γ̇ /P)cl (1 − cl )(1 − α + αcl )(∂P/∂z) = 0 at z = 0 and H . For the
initial condition for the large-grain concentration field cl

0(z) = cl (z, t = 0), we obtain the coarse-
grained field from the initial DEM configuration at t = 0 and use this field as the initial condition
cl

0(z) in the corresponding continuum simulation. This is done to control for spatial concentration
fluctuations in the initial DEM state. Then, for a given case of anti-plane segregation in simple
shear flow, described by the parameter set {H/d̄0, γ̇

√
d̄0/G, cl

0, d l/d s}, we obtain numerical solu-
tions using finite differences. Central differences are used to discretize the spatial derivatives in
(5). The Euler method is used for temporal discretization, in which the spatial derivative of cl

appearing in the diffusion flux term in (5) is treated implicitly for improved numerical stability
while the prefactors of both flux terms in (5) are treated explicitly. We use sufficiently small
spatial and temporal resolutions in the finite-difference scheme to ensure stable and accurate
results.

We compare predictions of the in-plane-based continuum model (5) against DEM data for
the representative base case of anti-plane segregation in simple shear flow from Fig. 1, {H/d̄0 =
30, γ̇

√
d̄0/G = 0.06, cl

0 = 0.50, d l/d s = 1.5}, using the in-plane parameters from Singh et al.
[13], i.e., {Cin

diff = 0.045,CP,in
seg = 0.34, α = 0.4}. Comparisons of the continuum model predictions

(dashed gray lines) with the DEM simulations (solid black lines) are summarized in Fig. 2 at four
different time instants during the segregation process: t̃ = 60, 300, 600, and 1200. The in-plane
model falls short in capturing the transient evolution of the segregation dynamics in the anti-plane
mode of segregation. First, predictions of the segregation dynamics lag behind the DEM simulation
results in time, and second, a sharp transition zone near the top is predicted by the continuum
model at early times (t̃ � 300), which is contrary to DEM simulation observations that show a
comparatively wider transition zone. The main objective of this paper is to adapt the constitutive
equations for diffusion and pressure-gradient-driven segregation to capture segregation dynamics in
the anti-plane mode. To do so, we examine the anti-plane mode of diffusion in Sec. IV A and the
anti-plane mode of pressure-gradient-driven segregation in Sec. IV B.
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FIG. 2. Comparisons of predictions of the in-plane continuum model of Singh et al. [13] with corre-
sponding DEM simulation results for the transient evolution of the segregation dynamics for the base case
of anti-plane segregation in simple shear flow {H/d̄0 = 30, γ̇

√
d̄0/G = 0.06, cl

0 = 0.50, d l/d s = 1.5}. On the
left are spatiotemporal contours of the evolution of cl measured in the DEM simulation, and on the right are
comparisons of DEM simulation results (solid black lines) and continuum model predictions (dashed gray
lines) for the cl field at four different time instants during the segregation process: t̃ = 60, 300, 600, and 1200
in the sequence of top left, top right, bottom left, and bottom right and indicated by the vertical lines on the
contour plot.

IV. CONSTITUTIVE EQUATIONS FOR ANTI-PLANE DIFFUSION AND SEGREGATION

A. Anti-plane diffusion flux

In this section, we characterize the anti-plane mode of diffusion, i.e., when the diffusion process
occurs along the direction perpendicular to the plane of shearing. To isolate the anti-plane diffusion
flux, steady simple shear flow at a uniform strain rate γ̇ is prescribed within the x-y plane at a
constant pressure P, while the system is initially segregated along the z direction (the anti-plane
direction). This is in contrast to the situation in Sec. III, where the pressure field was not uniform
but hydrostatic. A snapshot of the initial DEM configuration is shown in Fig. 3(a), where large grains
(dark gray) are on the top and small grains (light gray) are on the bottom, and the grain-size ratio
is d l/d s = 1.5. We employ Lees-Edwards boundary conditions within the x-y plane to prescribe a
uniform strain rate γ̇ , and the dimensions of the simulation domain along the x and y directions are
L = 20d̄0 and W = 10d̄0, respectively. The size of the simulation domain along the z direction is
H = 60d̄0, and periodic boundary conditions are not employed along this direction. Instead, the
bottom boundary consists of a flat, frictionless wall, and a constant compressive normal stress
is applied to the top through a mass of large grains [not pictured in Fig. 3(a)] subjected to a
gravitational body force along the z direction. The grains in the region shown in Fig. 3(a) are
not subjected to any body forces. The result of these boundary conditions along the anti-plane
direction is that the normal stress component σzz is spatially and temporally constant and equal
to −Ptop. Moreover, the normal stresses σxx and σyy are also uniform and compressive but of
slightly higher magnitude due to normal stress differences that arise in dense flows of spheres.
The spatially uniform pressure field is then P = −(1/3)(σxx + σyy + σzz ) and is slightly greater
than Ptop.

Since the strain rate and pressure are uniform in this flow configuration, no size segregation takes
place, and only diffusive mixing occurs. A DEM snapshot of an intermediate state after a simulation
time of t̃ = γ̇ t = 590 is shown in Fig. 3(b), illustrating that the initially sharp transition between
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FIG. 3. Representation of the anti-plane mode of diffusive mixing in simple shear flow. (a) Initially
segregated configuration for three-dimensional DEM simulation of bidisperse spheres with ∼20 000 grains.
(b) Intermediate remixed state after shearing for a simulation time of t̃ = γ̇ t = 590. (c) Spatiotemporal evolu-
tion of the large-grain concentration field for a nominal inertial number of γ̇ d̄0

√
ρs/P = 0.02. (d) Estimated

dependence of the anti-plane diffusion parameter Ĉanti
diff on the nominal inertial number γ̇ d̄0

√
ρs/P. Symbols are

estimates based on fitting the continuum model (7) to DEM data for different values of the nominal inertial
number; the solid black curve represents the best fit of (8) with {C0 = 0.104,C∞ = 0.057, Itr = 0.007 44,

m = 3.23}.

large and small grains in Fig. 3(a) becomes diffuse due to mixing. To further quantify the diffusion
process, we coarse-grain the cl field from the DEM simulations, and the spatiotemporal contours
of the evolution of the cl field are plotted in Fig. 3(c) for the case of a nominal inertial number of
γ̇ d̄0

√
ρs/P = 0.02, where d̄0 = (d l + d s)/2 and P is the pressure obtained from the coarse-grained

DEM results to control for the normal stress differences. We observe that the width of the transition
region between large and small grains, which is initially sharp, grows in time as the diffusion process
proceeds and the grains mix.

In the continuum model for anti-plane diffusion, we continue to take the diffusion flux wdiff
i to

scale with the average grain size d̄ , the strain rate γ̇ , and the concentration gradient ∂cl/∂xi as in
(3), so that

wdiff
i = −Ĉanti

diff d̄2γ̇
∂cl

∂xi
. (6)

The key difference from (3) is that we allow the dimensionless parameter associated with dif-
fusion Ĉanti

diff to depend on additional dimensionless quantities—in particular, the inertial number
I = γ̇ d̄

√
ρs/P. Plugging (6) in the mass conservation equation (1) in the context of anti-plane

diffusion in which the concentration field only varies along the z direction, we obtain the following
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governing equation for the diffusion process:

∂cl

∂t
− ∂

∂z

(
Ĉanti

diff d̄2γ̇
∂cl

∂z

)
= 0. (7)

To estimate the parameter Ĉanti
diff and its functional dependence on I , we perform DEM simulations

of anti-plane diffusive mixing for 11 different values of the nominal inertial number γ̇ d̄0
√

ρs/P
spanning from approximately 0.001 to 0.1. We then calculate predictions of (7) for the concentration
field cl (z, t ) for different values of Ĉanti

diff over the range Ĉanti
diff ∈ (0.04, 0.12). By minimizing the dif-

ference between the continuum model predictions and the coarse-grained concentration field from
each DEM simulation, the best-fit value of Ĉanti

diff is determined for each value of the nominal inertial
number γ̇ d̄0

√
ρs/P. In the fitting process, we only consider sufficiently short dimensionless times t̃ ,

corresponding to a transition width that remains substantially smaller than the layer thickness H , so
that the diffusion process is unaffected by the boundaries. We note that this fitting process neglects
the spatial variation in the inertial number field I = γ̇ d̄

√
ρs/P that arises due to the spatial variation

of cl and hence d̄ . However, this simplification has a minimal effect on the estimates of Ĉanti
diff since,

for a given nominal inertial number, the inertial number field varies by a factor of d l/d s = 1.5
between the small grains at the bottom of the layer and the large grains on the top of the layer, while
the inertial-number range of interest spans two orders of magnitude. Moreover, this simplification
is only invoked during the fitting process, and, in all subsequent calculations, Ĉanti

diff is taken to be a
function of the spatially varying inertial number field and not a global, nominal value of the inertial
number.

The best-fit values of Ĉanti
diff are plotted as a function of the nominal inertial number γ̇ d̄0

√
ρs/P

as light-gray circles in Fig. 3(d). The estimated Ĉanti
diff plateaus to a lower value at high values of the

nominal inertial number and to a higher value at low values of the nominal inertial number, and
there is an intermediate range in which Ĉanti

diff transitions from the higher plateau to the lower plateau.
We use the following phenomenological functional form to fit the estimated values of the diffusion
parameter over the range 0.001 � I � 0.1:

Ĉanti
diff (I ) = C0 + C∞ − C0

(Itr/I )m + 1
, (8)

where C0 is the plateau value at low inertial numbers, C∞ is the plateau value at high inertial
numbers, Itr determines the position of the transition, and the exponent m determines the width
of the transition with greater values of m corresponding to sharper transitions. Fitting (8) to the
DEM-based estimates in Fig. 3(d) gives the parameter set associated with the anti-plane mode
of diffusion for frictional spheres to be {C0 = 0.104,C∞ = 0.057, Itr = 0.00744, m = 3.23}. The
fitted functional form is shown by the solid black line in Fig. 3(d). In the semilogarithmic plot of
Fig. 3(d), (8) corresponds to hyperbolic-tangent-type behavior.

The dependence of the anti-plane diffusion parameter Ĉanti
diff on the inertial number I is in

contrast to the in-plane diffusion parameter, which, in our experience [12,13], may be idealized
as independent of the inertial number, based on both mean square displacement DEM data and
continuum-model predictions of the evolution of the cl field. We note that the plateau value at
high inertial numbers of C∞ = 0.057 is similar to the in-plane diffusion parameter Cin

diff = 0.045
determined in Liu et al. [12] and used in Sec. III B, so that diffusion is nearly isotropic for I � 0.01.
However, we find that out-of-plane diffusion becomes comparatively stronger for low values of
the inertial number with Ĉanti

diff increasing to a plateau value of C0 = 0.104, indicating anisotropy in
diffusion at low values of the inertial number. The dependence of Ĉanti

diff on I is also in contrast to
the mean square displacement DEM data of Bancroft and Johnson [27], who found the diffusion
coefficient along the anti-plane direction to be nearly constant with Ĉanti

diff ≈ 0.04 over a range of
inertial numbers. We revisit this point in Sec. VI A.
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B. Anti-plane segregation flux

Next, we return to anti-plane segregation in simple shear flow as described in Sec. III to
characterize the anti-plane mode of segregation. We take the pressure-gradient-driven segregation
flux to be given in the following form:

wP
i = −ĈP,anti

seg
d̄2γ̇

P
cl (1 − cl )(1 − α + αcl )

∂P

∂xi
, (9)

where ĈP,anti
seg is a dimensionless quantity, which can depend on additional dimensionless parameters,

and the prefactor (d̄2γ̇ /P)cl (1 − cl )(1 − α + αcl ) has the same form as that used in the in-plane
model summarized in Sec. III B, wherein α is a constant parameter.

We hypothesize that the quantity ĈP,anti
seg depends on the inertial number I (as does Ĉanti

diff ) and an
additional dimensionless parameter J = P/(d̄|∂P/∂x|), which quantifies the ratio of the pressure
to the change in pressure over the mean grain size at a point. Inclusion of J dependence in
the constitutive equation for the pressure-gradient-driven segregation flux (9) allows for potential
nonlinear dependence of the flux on the magnitude of the pressure gradient. The procedure to
estimate the dimensionless parameter ĈP,anti

seg and its functional dependence is as follows. First,
we run a given DEM simulation of anti-plane segregation in simple shear flow to steady state,
so that the bidisperse mixture is fully segregated, and the total flux at each z position is zero, i.e.,
wl

z = wdiff
z + wP

z = 0. Therefore, the flux balance

−Ĉanti
diff (I )

∂cl

∂z
= ĈP,anti

seg (I, J )
1

P
cl (1 − cl )(1 − α + αcl )

∂P

∂z
(10)

is valid at every z position. We find that the steady-state concentration field, and hence the flux
balance (10), is independent of the dimensionless strain rate γ̇

√
d̄0/G when the other parameters

{H/d̄0, cl
0, d l/d s} are fixed. Therefore, (10) must be independent of the inertial number, and as a

result, the function ĈP,anti
seg (I, J ) should depend on the inertial number in the same manner as Ĉanti

diff (I ).
Accordingly, we take ĈP,anti

seg (I, J ) to be given by

ĈP,anti
seg (I, J ) = C̃(J )

[
1 −

(
C∞ − C0

C∞ + C0

)
(Itr/I )m − 1

(Itr/I )m + 1

]
, (11)

where C̃(J ) is a function of only J . The I-dependent function in brackets in (11) is the same as (8)
but normalized by (C∞ + C0)/2, and the parameters {C0,C∞, Itr, m} are the same as those estimated
in Sec. IV A.

Then, plugging (11) into (10) and rearranging, we have that, at steady state, C̃(J ) is given by

C̃(J ) = −(C0 + C∞)P ∂cl/∂z

2cl (1 − cl )(1 − α + αcl )∂P/∂z
. (12)

The field quantities appearing on the right-hand side of this expression may be obtained by coarse-
graining steady-state DEM data, which may be used to determine the function C̃(J ). For a given
case of anti-plane segregation in simple shear flow, we consider z positions within the intermediate
transition region of the steady-state concentration field where cl ∈ (0.2, 0.8) and calculate the
steady-state concentration and pressure fields and their gradients at a given z position from DEM
data as described in Appendix A. From the coarse-grained, steady-state DEM data, C̃, using (12),
and J = P/(d̄|∂P/∂z|) are calculated at each z position and plotted against one another in Fig. 4,
where each symbol represents a unique z position. We apply this procedure to steady-state DEM
data from 13 different cases of anti-plane segregation in simple shear flow by changing the size of
the system H/d̄0, the strain rate γ̇

√
d̄0/G, and the initial conditions cl

0, and the data from all cases
are included in Fig. 4. (The grain-size ratio is maintained at d l/d s = 1.5 throughout.) We consider
values of α within the range α ∈ (0, 0.8) and find that the best collapse is obtained for α = 0.4,
which is the same as the value determined for the in-plane mode of segregation in Singh et al. [13].
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FIG. 4. Steady-state collapse of the parameter C̃ (12) versus the dimensionless parameter J =
P/(d̄|∂P/∂z|) over 13 different DEM simulations of anti-plane segregation in simple shear flow. Symbols
represent coarse-grained, steady-state DEM field data. The solid black curve is the fit function C̃ = CJn

with {C = 0.22, n = 0.58}, and the dash-dotted black curve is the fit function C̃ = C1/(1 + C2/J ) with
{C1 = 3.2,C2 = 28.62}.

The resulting steady-state data collapse for α = 0.4 across all 13 cases is shown in Fig. 4. The
data can be fitted using a power-law function, i.e., C̃(J ) = CJn, so that the anti-plane segregation
parameter becomes

ĈP,anti
seg (I, J ) = CJn

[
1 −

(
C∞ − C0

C∞ + C0

)
(Itr/I )m − 1

(Itr/I )m + 1

]
, (13)

where the associated parameters are estimated to be {C = 0.22, n = 0.58}. The fitted power-law
function is shown by the solid black curve in Fig. 4. [An alternative fitting function C̃(J ) = C1/(1 +
C2/J ) with constants {C1,C2} based on the works of Trewhela et al. [11] and Barker et al. [16]
is discussed in Appendix B and shown by the dash-dotted black curve in Fig. 4.] The role of J
dependence in the segregation flux (9) and its effect on the predicted concentration fields is discussed
further in Sec. V.

V. VALIDATION TESTS IN THE TRANSIENT REGIME

In Sec. IV A, we studied anti-plane diffusion in simple shear flow by considering an initially seg-
regated mixture and introduced four parameters {C0,C∞, Itr, m} to characterize the rate dependence
of the anti-plane mode of diffusion. Then, in Sec. IV B, we used steady-state DEM data from simple
shear flow in the presence of an anti-plane gravitational pressure gradient to inform and assess a
constitutive equation for the pressure-gradient-driven segregation flux in the anti-plane mode. We
introduced three parameters {C, n, α} to characterize the anti-plane mode of the segregation flux. In
this section, we compare continuum model predictions of the transient evolution of the large-grain
concentration field against transient DEM data for several cases of anti-plane segregation in simple
shear flow. Throughout, we continue to use the following fixed set of parameters for frictional
spheres:

{C0 = 0.104,C∞ = 0.057, Itr = 0.00744, m = 3.23,C = 0.22, n = 0.58, α = 0.4}. (14)

First, we briefly recap how the continuum model is solved to obtain the transient evolution of
the cl field in anti-plane segregation in simple shear flow. The large-grain concentration field cl is
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governed by the following PDE:

∂cl

∂t
+ ∂

∂z

(
−Ĉanti

diff d̄2γ̇
∂cl

∂z
− ĈP,anti

seg
d̄2γ̇

P
cl (1 − cl )(1 − α + αcl )

∂P

∂z

)
= 0, (15)

where Ĉanti
diff (I ) is given by (8) and ĈP,anti

seg (I, J ) is the dimensionless function depending on I
and J given in (13), and d̄ = cld l + (1 − cl )d s. As discussed in Sec. III, the pressure field is
hydrostatic (varying linearly with z), so that ∂P/∂z is constant, and to avoid a singularity at the
top free surface, a small constant (1/4)(∂P/∂z)d̄0 is added to the pressure field. Therefore, we
have that (1/P)∂P/∂z = 1/[z + (1/4)d̄0] in the last term of (15), and moreover, the dimensionless
quantity J is J = [z + (1/4)d̄0]/d̄ . The pressure appearing in the inertial number I = γ̇ d̄

√
ρs/P is

obtained from the coarse-grained DEM data to control for the normal stress differences, and the
strain rate γ̇ is prescribed and spatially uniform. Regarding the boundary conditions, we impose
no-flux boundary conditions at the top free surface as well as on the bottom frictionless surface,
i.e., wl

z = −Ĉanti
diff d̄2γ̇ (∂cl/∂z) − ĈP,anti

seg (d̄2γ̇ /P)cl (1 − cl )(1 − α + αcl )(∂P/∂z) = 0 at z = 0 and
H . For the initial condition cl

0(z) = cl (z, t = 0), we use the coarse-grained field from the initial
DEM configuration for each case and use it as the initial condition in the corresponding continuum
simulation.

Next, we compare continuum model predictions of the transient evolution of the segregation
process against DEM data for different cases of anti-plane segregation in simple shear flow. In the
first set of comparisons, we vary the applied strain rate and consider (1) the base case {H/d̄0 = 30,
γ̇
√

d̄0/G = 0.06, cl
0 = 0.50, d l/d s = 1.5}, (2) lower strain-rate case I {H/d̄0 = 30, γ̇

√
d̄0/G =

0.03, cl
0 = 0.50, d l/d s = 1.5}, and (3) lower strain-rate case II {H/d̄0 = 30, γ̇

√
d̄0/G = 0.015,

cl
0 = 0.50, d l/d s = 1.5}, as shown in Figs. 5(a)–5(c), respectively. Spatiotemporal contours of the

evolution of the cl field measured in each DEM simulation are shown on the left, and comparisons
between continuum model predictions and DEM simulation data are plotted on the right for four
different snapshots in time corresponding to different stages of the segregation process (short time,
moderate time, long time, and steady state), as indicated by the vertical lines on the contour plots for
each case. The dimensionless times for each snapshot are given in the bottom right corner of each
plot in Fig. 5 and correspond to total shear strains of t̃ = γ̇ t = 60, 320, 640, and 1300 in all three
cases. The steady-state concentration fields at t̃ = 1300 across all three cases are nearly identical,
which is why it was enforced that the steady-state flux balance (10) should be independent of the
strain rate. While the overall segregation process proceeds faster with increasing strain rate, this
dependence is not simply linear. This may be seen by comparing the concentration fields across
all three cases at a fixed non-steady-state shear strain. It is clear that the lowest strain-rate case
[Fig. 5(c)] evolves fastest in shear strain to its steady state. This is indicative of the increased rate
of diffusion (and hence segregation) at low inertial number [Fig. 3(d)]. Since this effect has been
accounted for in the constitutive equations for the anti-plane modes of diffusion [through (8)] and
segregation [through (13)], the continuum model predicts this characteristic quite well, as can be
seen in the transient comparisons.

Next, we vary the initial concentration of large grains and compare continuum model predic-
tions against DEM simulation data. We consider the following three cases: (1) higher large-grain
concentration case {H/d̄0 = 30, γ̇

√
d̄0/G = 0.06, cl

0 = 0.60, d l/d s = 1.5}, (2) lower large-grain
concentration case I {H/d̄0 = 30, γ̇

√
d̄0/G = 0.06, cl

0 = 0.40, d l/d s = 1.5}, and (3) lower large-
grain concentration case II {H/d̄0 = 30, γ̇

√
d̄0/G = 0.06, cl

0 = 0.20, d l/d s = 1.5}, as shown in
Figs. 6(a)–6(c), respectively. Spatiotemporal contours of the evolution of the cl field measured in
each DEM simulation are shown on the left, and comparisons of the continuum model predictions
against DEM simulation data are plotted on the right for four time instants, as indicated by the
vertical lines on the contour plots for each case. Starting with the higher large-grain concentration
case, the steady-state transition zone between the large-grain region and the small-grain region is
pushed farther beneath the free surface, as can be seen on the bottom right of Fig. 6(a). As the initial

094301-12



ANTI-PLANE SEGREGATION AND DIFFUSION IN …

FIG. 5. Comparisons of continuum model predictions with corresponding DEM simulation results for the
transient evolution of the segregation dynamics for three cases of anti-plane segregation in simple shear flow
of bidisperse spheres: (a) base case {H/d̄0 = 30, γ̇

√
d̄0/G = 0.06, cl

0 = 0.50, d l/d s = 1.5}; (b) lower strain-
rate case I {H/d̄0 = 30, γ̇

√
d̄0/G = 0.03, cl

0 = 0.50, d l/d s = 1.5}; and (c) lower strain-rate case II {H/d̄0 =
30, γ̇

√
d̄0/G = 0.015, cl

0 = 0.50, d l/d s = 1.5}. For each case, spatiotemporal contours of the evolution of cl

measured in the DEM simulations are shown on the left. Comparisons of the DEM simulations (solid black
lines) and continuum model predictions (dashed gray lines) of the cl field are shown on the right at four time
snapshots representing different stages of the segregation process, indicated by the vertical lines on the contour
plots for each case.
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FIG. 6. Comparisons of continuum model predictions with corresponding DEM simulation results for
the transient evolution of the segregation dynamics for three additional cases of anti-plane segregation in
simple shear flow of bidisperse spheres: (a) higher large-grain concentration case {H/d̄0 = 30, γ̇

√
d̄0/G =

0.06, cl
0 = 0.60, d l/d s = 1.5}; (b) lower large-grain concentration case I {H/d̄0 = 30, γ̇

√
d̄0/G = 0.06, cl

0 =
0.40, d l/d s = 1.5}; and (c) lower large-grain concentration case II {H/d̄0 = 30, γ̇

√
d̄0/G = 0.06, cl

0 =
0.20, d l/d s = 1.5}. Results are organized as described in the caption of Fig. 5.
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FIG. 7. Comparisons of continuum model predictions with corresponding DEM simulation results for the
transient evolution of the segregation dynamics for two additional cases of anti-plane segregation in simple
shear flow of bidisperse spheres: (a) deeper layer case I {H/d̄0 = 40, γ̇

√
d̄0/G = 0.06, cl

0 = 0.50, d l/d s = 1.5}
and (b) deeper layer case II {H/d̄0 = 60, γ̇

√
d̄0/G = 0.06, cl

0 = 0.50, d l/d s = 1.5}. Results are organized as
described in the caption of Fig. 5.

concentration of large grains is reduced, the steady-state transition zone moves closer to the free
surface, as seen in the bottom right plots of Figs. 6(b) and 6(c). Finally, we vary the depth of the layer
and consider two additional cases: (1) deeper layer case I {H/d̄0 = 40, γ̇

√
d̄0/G = 0.06, cl

0 = 0.50,
d l/d s = 1.5} and (2) deeper layer case II {H/d̄0 = 60, γ̇

√
d̄0/G = 0.06, cl

0 = 0.50, d l/d s = 1.5},
as shown in Figs. 7(a) and 7(b). Spatiotemporal contours of the evolution of the cl field measured in
the DEM simulations are again shown on the left, and profiles of the continuum model predictions
compared against DEM simulation data at four time instants are shown on the right. For the deeper
layer cases, the steady-state transition zone is farther beneath the free surface compared to the base
case of Fig. 5(a), and it takes more time for the segregation process to reach its steady state. In
fact, for deeper layer case II, the steady state is not reached within the simulation time window
considered in Fig. 7(b). In sum, increasing the initial large-grain concentration or the thickness of
the layer both result in the steady-state transition zone being farther beneath the free surface, and
the continuum model can capture both the transient evolution of the cl field and its steady-state quite
well across all of these cases.
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A collective view of Figs. 6 and 7 reveals that the width of the steady-state transition region in-
creases slightly with its depth beneath the free surface. This is because the pressure-gradient-driven
segregation flux attenuates with pressure while the diffusion flux does not, so that the influence of
the diffusion flux is comparatively stronger than that of the segregation flux as the depth beneath the
free surface increases, leading to a wider transition width. The J dependence of the segregation flux
in (13) is crucial to capture this effect quantitatively and actually serves to make the segregation flux
less dependent on the pressure. Without J dependence, the segregation flux (4) scales as P−1 for a
fixed magnitude of the pressure gradient, while with the J-dependent prefactor (13), the segregation
flux scales as P−(1−n), where we have determined that n = 0.58 for frictional spheres based on
the steady-state DEM data of Fig. 4, so that the segregation flux scales as P−0.42. Neglecting J
dependence would lead to the segregation flux attenuating too strongly as the pressure increases
with depth beneath the free surface, resulting in predicted transition widths that are too sharp near
the free surface and too wide deep beneath the free surface. This effect is evident in the transient
evolution of the cl field predicted by the J-independent, in-plane version of the continuum model
in Fig. 2 for the base case, in which the predicted transition width is too sharp at early times when
the transition region is near the free surface and too wide at late times when the transition region
has moved deeper beneath the free surface. In conclusion, the proposed continuum model, which
incorporates I and J dependence in the constitutive equations for the anti-plane fluxes, is capable
of quantitatively capturing the segregation dynamics in anti-plane segregation in simple shear flow,
including the rate at which the concentration field approaches steady state and the width of the
transition region, across various cases subject to changes in strain rate, initial conditions, and layer
size.

VI. DISCUSSION

A. Diffusion flux based on mean square displacement data

In Sec. IV A, we characterized the diffusion flux by starting with a fully segregated granular
mixture and examining the dynamics of mixing under conditions in which diffusion is dominant.
However, it is common in the literature (e.g., [27]) to characterize the diffusion flux by calculating
the MSD of the granular mixture. In this section, we follow this process to characterize the diffusion
flux and assess whether the resulting flux constitutive equations can capture the dynamics of the cl

field in the anti-plane mode of diffusion and segregation.
To this end, we consider both the in-plane and the anti-plane modes of diffusion in DEM

simulations of simple shear. In our prior work [12], the in-plane MSD was calculated from DEM
data for steady, simple shear flows of the same dense granular system (Appendix A) to determine the
binary diffusion coefficient D for both bidisperse mixtures of spheres and for the monodisperse case.
We follow an analogous procedure here to calculate the diffusion coefficient in the anti-plane mode.
DEM simulations of simple shear flow are performed as described in Sec. IV A for a well-mixed
bidisperse granular system with d l/d s = 1.5 as well as for the monodisperse case. The MSD of a
system of N particles along the anti-plane direction (i.e., the z direction) is calculated as a function
of time (e.g., [25–27,31,32]) according to

MSD(t ) = 1

N

N∑
n=1

[zn(t ) − zn(0)]2 = 2Dt, (16)

where zn(t ) is the z coordinate of the nth grain at time t . The binary diffusion coefficient D may
then be inferred from the slope of the MSD in time. To avoid boundary effects in the calculation
of the MSD, grains that are initially within 10d̄0 of either the top or bottom boundary are excluded
from the system of N particles used to calculate the MSD, leaving a set of N ≈ 3000 grains. The
linear increase of the MSD in time is illustrated in the inset of Fig. 8(a) for cases of the anti-
plane mode of diffusion for both monodisperse systems (black symbols) and bidisperse systems
(blue symbols). The binary diffusion coefficient D is then plotted versus γ̇ d̄2 (with both quantities
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FIG. 8. (a) The binary diffusion coefficient D, calculated using the mean square displacement, plotted
versus γ̇ d̄2 in homogeneous, steady simple shear DEM simulations. Each symbol represents D calculated
from a distinct DEM simulation. Both axes are normalized by d s

√
Ptop/ρs. The solid line is the best fit of

a linear relation with a slope of Cdiff = 0.048. Inset: Normalized mean square displacement MSD/d̄2 versus
dimensionless time γ̇ t for the cases of the anti-plane mode of diffusion for both monodisperse systems (black
symbols) and bidisperse systems (blue symbols). The solid line corresponds to the linear relation MSD/d̄2 =
2Cdiff γ̇ t with Cdiff = 0.048. Comparisons between continuum model predictions (dashed gray lines) and DEM
simulation results (solid black lines) of the cl field at four time snapshots using a constitutive equation for
the diffusion flux based on mean square displacement data for (b) the base case of anti-plane segregation in
simple shear flow {H/d̄0 = 30, γ̇

√
d̄0/G = 0.06, cl

0 = 0.50, d l/d s = 1.5} and (c) the lower strain-rate case II
{H/d̄0 = 30, γ̇

√
d̄0/G = 0.015, cl

0 = 0.50, d l/d s = 1.5}.

normalized by d s
√

Ptop/ρs) for different strain rates in Fig. 8(a) for both modes of diffusion and
for both bidisperse and monodisperse granular systems. The DEM data for the in-plane mode of
diffusion in Fig. 8(a) is the data reported in Fig. 3(b) of Liu et al. [12]. The DEM data for the
binary diffusion coefficient collapses to a nearly linear relation with D ∼ γ̇ d̄2 across the range
of strain rates considered and for both monodisperse and bidisperse systems in both in-plane and
anti-plane modes of diffusion. The solid black line in Fig. 8(a) is a linear fit that estimates the
diffusion parameter as Cdiff = 0.048, which is very close to the estimated value of Cin

diff = 0.045
determined in Liu et al. [12]. Correspondingly, the solid black line in the inset of Fig. 8(a) is the
linear relation MSD/d̄2 = 2Cdiff γ̇ t with Cdiff = 0.048.
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The diffusion parameter Cdiff estimated via the MSD approach in Fig. 8(a) is approximately
rate independent, i.e, it is only weakly dependent upon the strain rate (or inertial number), which
contradicts the previously observed I dependence at the continuum scale discussed in Sec. IV A and
illustrated in Fig. 3(d). Therefore, we test this constant value of Cdiff = 0.048 in the segregation
dynamics equation (15). In doing so, I dependence is neglected in both the diffusion and the
segregation parameters, so that the segregation dynamics equation becomes

∂cl

∂t
+ ∂

∂z

(
−Cdiff d̄

2γ̇
∂cl

∂z
− CJn d̄2γ̇

P
cl (1 − cl )(1 − α + αcl )

∂P

∂z

)
= 0, (17)

with the reduced parameter set {Cdiff = 0.048,C = 0.22, n = 0.58, α = 0.4}. This approach main-
tains the steady-state collapse of Fig. 4. We then numerically calculate the evolution of the
large-grain concentration field using (17) accompanied by the same boundary and initial conditions
as in the preceding sections. First, we compare predictions of the continuum model with DEM
simulation data for the base case of anti-plane segregation in simple shear flow [Fig. 5(a)] as shown
in Fig. 8(b). The continuum model predictions using the constant diffusion parameter capture the
DEM simulation results reasonably well for this case. However, for the lower strain-rate case
II [Fig. 5(c)], as shown in Fig. 8(c), continuum model predictions using the constant diffusion
parameter lag behind the DEM data in time. This indicates that the diffusion parameter is indeed
rate dependent, and at low strain rates, its value is higher than what is inferred from MSD data.
This is consistent with the estimates of the diffusion parameter shown in Fig. 3(d). We leave this
discrepancy between the MSD-based estimate and the continuum-model-fitting-based estimate of
the diffusion parameter as an open problem for future work. However, we have established in this
study that the anti-plane diffusion parameter is rate dependent in contrast to the in-plane diffusion
parameter, which is nearly rate independent. This implies that the diffusion process in general is
mode dependent and to account for the mode dependence, we propose a strategy for generalizing
the diffusion parameter in the next section.

B. Generalized three-dimensional constitutive relations

In Sec. IV, we proposed constitutive equations for the anti-plane modes of the diffusion flux and
the pressure-gradient-driven segregation flux. Both the anti-plane diffusion and segregation fluxes
take different forms from the in-plane modes studied in our prior works [12,13] and described
in Sec. III B. In this section, we propose a strategy for generalizing the constitutive forms for
both fluxes, which takes into account both the in-plane and the anti-plane modes of diffusion and
pressure-gradient-driven segregation.

In order to propose a generalized constitutive form for the diffusion flux, we denote the unit
vector along the direction of the concentration gradient as nc

i = (∂cl/∂xi )/|∂cl/∂x| and the flow
direction tensor as Ni j = Di j/|D|. Next, we introduce a combined scalar invariant Kc = nc

i Ni jNjknc
k ,

which is used to quantify whether diffusion is in its in-plane or anti-plane mode. Straightforward
calculations described in Appendix C show that for the in-plane mode of diffusion, the scalar
invariant is Kc = 1/2, and for the anti-plane mode of diffusion, the scalar invariant is Kc = 0. This
feature indicates that Kc is a suitable invariant for capturing mode dependence, and we define a
generalized diffusion parameter through a linear combination of Ĉanti

diff and Cin
diff based on the invariant

Kc as follows:

Ĉdiff (I, Kc) = Ĉanti
diff (I ) + 2Kc

(
Cin

diff − Ĉanti
diff (I )

)
, (18)

where Cin
diff is the constant diffusion parameter for the in-plane mode of diffusion determined in

Liu et al. [12] for frictional spheres. In (18), Ĉdiff = Cin
diff for the in-plane mode when Kc = 1/2,

and Ĉdiff = Ĉanti
diff for the anti-plane mode when Kc = 0. The generalized diffusion flux may then be

written as wdiff
i = −Ĉdiff (I, Kc)d̄2γ̇ (∂cl/∂xi ).

Similarly, in order to propose a generalized constitutive equation for the pressure-gradient-
driven segregation flux, we denote the unit vector along the direction of the pressure gradient as
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nP
i = (∂P/∂xi )/|∂P/∂x|, and introduce another combined scalar invariant KP = nP

i Ni jNjknP
k . The

generalized pressure-gradient segregation parameter is then defined through a linear combination of
ĈP,anti

seg and CP,in
seg as

ĈP
seg(I, J, KP) = ĈP,anti

seg (I, J ) + 2KP(CP,in
seg − ĈP,anti

seg (I, J )
)
, (19)

where CP,in
seg is the constant in-plane segregation parameter, so that the generalized pressure-gradient-

driven segregation flux is

wP
i = −ĈP

seg(I, J, KP)
d̄2γ̇

P
cl (1 − cl )(1 − α + αcl )

∂P

∂xi
. (20)

Analogous to the discussion of the preceding paragraph, for the in-plane mode of segregation, KP =
1/2 and ĈP

seg = CP,in
seg , and for the anti-plane mode of segregation, KP = 0 and ĈP

seg = ĈP,anti
seg .

Putting the generalized flux constitutive equations together, the generalized form of the segrega-
tion dynamics equation can be written as

Dcl

Dt
+ ∂

∂xi

(
−Ĉdiff (I, Kc)d̄2γ̇

∂cl

∂xi
− ĈP

seg(I, J, KP)
d̄2γ̇

P
cl (1 − cl )(1 − α + αcl )

∂P

∂xi

)
= 0, (21)

where Ĉdiff and ĈP
seg are given by (18) and (19), respectively. The diffusion parameter Ĉdiff is

described by the parameter set {Cin
diff ,C0,C∞, Itr, m}, and the segregation parameter ĈP

seg is described
by the parameter set {CP,in

seg ,C, n}. In the limits of pure in-plane and pure anti-plane modes, the
generalized segregation dynamics equation (21) will reduce to the appropriate forms that have
been tested in their respective modes, and future work will test the generalized model (21) in
more complex flow configurations that involve mixed-mode diffusion and segregation, such as
split-bottom flow [18,19].

VII. CONCLUDING REMARKS

In this paper, we have studied diffusion and size segregation in their anti-plane modes in dense,
bidisperse granular mixtures of spheres. In DEM simulations, we observed that the diffusion and
pressure-gradient-driven segregation fluxes are mode dependent in nature, and the previously de-
veloped, in-plane size-segregation model of Singh et al. [13] is unable to capture the segregation
dynamics in the anti-plane mode of segregation. Guided by DEM simulations, we proposed
phenomenological constitutive equations for the anti-plane diffusion and segregation fluxes. We
found that the anti-plane diffusion parameter Ĉanti

diff is rate dependent and depends on the inertial
number I , and we proposed a phenomenological fitting function (8) to capture the I dependence.
Moreover, we found that the pressure-gradient-driven segregation flux depends on the magnitude
of the pressure gradient in a nonlinear fashion, and we proposed a constitutive equation for the
anti-plane segregation parameter ĈP,anti

seg (13) that captures this dependence using an additional
dimensionless parameter J = P/(d̄|∂P/∂x|). The newly developed phenomenological constitutive
equations predict the transient evolution of the segregation dynamics quite well across different
cases of anti-plane segregation in simple shear flow as the strain rate, initial conditions, and layer
size are varied. Finally, we have proposed a strategy for generalizing the constitutive equations for
the diffusion and pressure-gradient-driven segregation fluxes that synthesizes the anti-plane flux
constitutive equations proposed in this work with the in-plane flux constitutive equations of Singh
et al. [13], which is suitable for more complex, three-dimensional flows.

Although the proposed continuum model performs well in predicting the segregation dynamics
in anti-plane segregation in simple shear flow, several important questions remain. First, the present
work has focused on a single grain-size ratio of d l/d s = 1.5. It has been established that the
in-plane pressure-gradient-driven segregation flux should depend upon the grain-size ratio (e.g.,
[8,9,11,14]), and it remains to probe this dependence in the anti-plane mode. Second, future work
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is required to understand the mechanisms that underlie the mode dependence of the diffusion
and segregation fluxes and to investigate the discrepancy between the MSD-based estimate and
the continuum-model-fitting-based estimate of the diffusion parameter in the anti-plane mode of
diffusion, as discussed in Sec. VI A. Finally, the generalized constitutive equations that account
for both in-plane and anti-plane modes of diffusion and segregation still need to be tested in more
complex flow configurations (e.g., annular shear flow with gravity, split bottom flow [18,19], or
flow in a blade mixer [33]). To achieve this, it is necessary to integrate the proposed generalized
segregation model with rheological constitutive equations (e.g., the nonlocal granular fluidity model
[34,35]) to develop a coupled continuum model that is able to predict the flow and segregation
dynamics simultaneously and to develop a robust numerical formulation to solve the coupled system
of continuum equations in complex geometries. These points will be pursued in future work.
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APPENDIX A: SIMULATED GRANULAR SYSTEM AND AVERAGING METHODS

We consider granular systems consisting of dense, bidisperse mixtures of spheres. The mean
large-grain diameter is d l = 3 mm, and the mean small-grain diameter is ds = 2 mm, so that the
grain-size ratio d l/d s = 1.5 is held constant throughout. We impose a polydispersity of ±10%
to the mean diameter of each species to prevent crystallization. The grain-material density is
ρs = 2450 kg/m3. The grain-grain interaction force is given through a contact law that accounts
for Hookean elasticity, damping, and sliding friction [36]. The relevant interaction properties are
the normal contact stiffness kn, the tangential contact stiffness kt , the coefficient of restitution e,
and the interparticle friction coefficient μsurf . We restrict our attention to the nearly rigid particle
regime and set the normal contact stiffness to be sufficiently high compared to the confining
pressure throughout, i.e., kn/Pd̄0 > 104. The other parameters are set as kt/kn = 1/2, e = 0.1, and
μsurf = 0.4 throughout. Numerical integration of the equations of motion for each grain is performed
using the open-source software LAMMPS [37], and the time step of numerical integration is
specified to sufficiently small to ensure accuracy and stability of simulation results.

To extract coarse-grained fields from DEM simulations, we use a bin-based approach, as de-
scribed in our prior work [12]. Briefly, for the concentration and pressure fields, this approach
utilizes rectangular-cubiodal bins of width 	 that are centered at a z position and span the simulation
domain along the x and y directions, and for the velocity field, the bins are centered at a (y, z)
position and span the simulation domain along the x direction with a square cross section of side
length 	. For a snapshot at time t , each grain i intersected by a bin is given a weight Vi, which
is equal to the volume of grain i inside the bin. The sets of large and small grains intersected by
the bin are denoted as F l and F s, respectively [38]. The instantaneous solid volume fractions
for large and small grains are φl (z, t ) = (

∑
i∈F l Vi)/V and φs(z, t ) = (

∑
i∈F s Vi )/V , respectively,

where V is the volume of the bin. The concentration field for the large grains is calculated as
cl (z, t ) = φl (z, t )/[φl (z, t ) + φs(z, t )]. The instantaneous stress tensor associated with grain i is
σ i(t ) = (

∑
j �=i ri j ⊗ fi j )/(πd3

i /6), where ri j is the position vector from the center of grain i to the
center of grain j, fi j is the contact force applied on grain i by grain j, and di is the diameter of grain
i. The instantaneous stress field is σ(z, t ) = [

∑
i∈F Viσ i(t )]/V , where F = F l ∪ F s is the set of all

grains intersected by the bin, and the instantaneous pressure field is P(z, t ) = −(1/3)tr[σ(z, t )]. The
instantaneous velocity at position (y, z) and time t is v(y, z, t ) = [

∑
i∈F Vivi(t )]/(

∑
i∈F Vi ), where

vi(t ) is the instantaneous velocity of each grain i. Throughout, we take a bin width of 	 = 4d̄0 and
a spatial resolution of about 0.2d̄0. One exception is for the velocity field in Fig. 1(c), where we
use a line-based approach, i.e., 	 → 0. For the steady-state collapse of Fig. 4, we consider DEM
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data from the spatial region where cl ∈ (0.2, 0.8). When calculating the quantities appearing in the
collapse of Fig. 4, the instantaneous concentration and pressure fields are spatially smoothed and
differentiated using Lucy’s quartic kernel function [38] with a kernel width of 4d̄0. To obtain the
relevant steady-state field quantities in (12), we consider a time window within the steady-state
regime and generate N = 1000 snapshots of the instantaneous, smoothed fields and arithmetically
average these fields over all snapshots to obtain fields that only depend on the spatial coordinate.

APPENDIX B: ALTERNATIVE CONSTITUTIVE EQUATION FOR THE SEGREGATION FLUX

The works of Trewhela et al. [11] and Barker et al. [16] suggest a constitutive form for the
pressure-gradient-driven segregation flux that depends on J in an alternative manner, adapted to the
present work as follows:

wP
i = C1

1 + C2/J

[
1 −

(
C∞ − C0

C∞ + C0

)
(Itr/I )m − 1

(Itr/I )m + 1

]
d̄2γ̇

P
cl (1 − cl )(1 − α + αcl )

∂P

∂xi
, (B1)

where the flux depends on J through the factor C̃(J ) = C1/(1 + C2/J ) rather than C̃(J ) = CJn,
and {C1,C2} are constant fitting parameters. The prefactor [C1/(1 + C2/J )](d̄2γ̇ /P) in (B1) may
be rewritten as C1d̄2γ̇ /(P + C2d̄|∂P/∂x|), and the term in the denominator involving C2d̄|∂P/∂x|
was included by Trewhela et al. [11] and used by Barker et al. [16] to prevent a singularity when
the pressure equals zero, such as at a free surface. (The flux constitutive equation using the factor
CJn does exhibit a singularity when the pressure equals zero, and in Sec. V, we circumvented
this issue by adding a small top pressure equal to the weight of a layer of (1/4)d̄0 thickness, i.e.,
(1/4)(∂P/∂z)d̄0, to the pressure field.) Here, we consider the alternative segregation flux constitutive
equation (B1) and assess its ability to capture segregation dynamics in the anti-plane mode of
segregation.

With C̃(J ) = C1/(1 + C2/J ), the parameters {C1,C2} may be determined by fitting to the steady-
state DEM data from 13 different cases of anti-plane segregation in simple shear flow, and the best
fit is shown by the dash-dotted black line in Fig. 4. The estimated parameters are {C1 = 3.2,C2 =
28.62}. We note that the value of C2 = 28.62 is quite large compared to the value of 0.2712 used by
Trewhela et al. [11] for the purpose of preventing a singularity, so in the anti-plane context, this term
plays a key role in capturing the dynamics of segregation and is not simply included to regularize the
free-surface singularity. Then, we plug the alternative constitutive form for the pressure-gradient-
driven segregation flux (B1) in the segregation dynamics equation (15) and compare numerical
predictions of the dynamics of the cl field against the DEM simulation results. We consider four
different cases: (1) the base case, (2) lower strain-rate case II, (3) lower large-grain concentration
case II, and (4) deeper layer case II, as shown in Figs. 9(a)–9(d), respectively. The predictions
of the alternative constitutive form are shown using dash-dotted gray lines and are as capable of
capturing the segregation dynamics as predictions of the prior constitutive form, which are shown
using dashed gray lines.

APPENDIX C: GENERALIZED DIFFUSION AND SEGREGATION PARAMETERS

In this Appendix, we give additional context to the combined invariants used in Sec. VI B to
obtain the generalized diffusion parameter (18) and the generalized segregation parameter (19).
Here, we focus the discussion on the constitutive equation for the generalized diffusion parameter,
but an analogous process may be applied to the generalized segregation parameter. Between our
prior work [12] and Sec. IV A of the present work, we have observed that the diffusion process
depends on the mode of diffusion relative to the plane of shearing (in-plane or anti-plane) and
the inertial number I . To account for this dependence in a constitutive equation, we consider the
flow direction tensor N = D/|D|, which is deviatoric tr(N) = 0 and of unit magnitude |N| = 1,
and the unit vector along the concentration gradient nc = (∂cl/∂x)/|∂cl/∂x|. Assuming that the
diffusion flux and the concentration gradient act in opposite directions along the same line of action,
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FIG. 9. Comparisons of continuum model predictions with corresponding DEM simulation results for
the transient evolution of the segregation dynamics for four different cases of anti-plane segregation in
simple shear flow of bidisperse spheres: (a) base case {H/d̄0 = 30, γ̇

√
d̄0/g = 0.06, cl

0 = 0.50, d l/d s = 1.5};
(b) lower strain-rate case II {H/d̄0 = 30, γ̇

√
d̄0/g = 0.015, cl

0 = 0.50, d l/d s = 1.5}; (c) lower large-grain
concentration case II {H/d̄0 = 30, γ̇

√
d̄0/g = 0.06, cl

0 = 0.20, d l/d s = 1.5}; and (d) deeper layer case II
{H/d̄0 = 60, γ̇

√
d̄0/G = 0.06, cl

0 = 0.50, d l/d s = 1.5}. DEM simulation results are shown using solid black
lines. Theory-I, shown using dashed gray lines, corresponds to predictions of the continuum model using the
prior constitutive form for the anti-plane segregation flux (13). Theory-II, shown using dash-dotted gray lines,
corresponds to predictions of the continuum model using the alternative constitutive form (B1).

a generalized constitutive equation for the diffusion flux may then be written in terms of N and nc

as follows:

wdiff
i = −Čdiff (I, N, nc)d̄2γ̇

∂cl

∂xi
, (C1)

where Čdiff (I, N, nc) is a scalar function that accounts for the mode-dependent nature of diffusion.
The function Čdiff (I, N, nc) must be an isotropic function of its arguments, so it may be written in
terms of the combined invariants associated with the unit flow direction tensor N and the unit vector
nc as follows:

K1 = tr(N), K2 = tr(N2), K3 = tr(N3),

K4 = nc · nc, K5 = nc · Nnc, K6 = nc · N2nc, (C2)
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where the invariants K1 = 0, K2 = 1, and K4 = 1 are constants due to the properties of N
and nc, and the remaining invariant set reduces to {K3, K5, K6}. (The invariants are denoted as
{K1, K2, K3, K4, K5, K6} to avoid confusion with the inertial number I and the dimensionless quantity
J introduced in Sec. IV B.) An isotropic representation of Čdiff (I, N, nc) may then be written as
Ĉdiff (I, K3, K5, K6), and the flux constitutive equation (C1) reduces to

wdiff
i = −Ĉdiff (I, K3, K5, K6)d̄2γ̇

∂cl

∂xi
. (C3)

To further reduce (C3), we consider a situation, in which the concentration field only varies
along the z direction, so that [nc] = ±[0 0 1]�, and the velocity field corresponds to a steady,
viscometric flow of the following form: vx(y, z), vy = 0, and vz = 0. The velocity gradient tensor
L = grad v and the strain-rate tensor D = (1/2)(L + L�) are then

[L] =
⎡
⎣0 ∂vx/∂y ∂vx/∂z

0 0 0
0 0 0

⎤
⎦ and [D] = 1

2

⎡
⎣ 0 ∂vx/∂y ∂vx/∂z

∂vx/∂y 0 0
∂vx/∂z 0 0

⎤
⎦. (C4)

This steady, viscometric flow field involves shear within two planes: the x-y plane and the x-z plane.
The concentration gradient lies within the x-z plane, so we denote ∂vx/∂z = γ̇in. Similarly, the
concentration gradient is perpendicular to the x-y plane, so we denote ∂vx/∂y = γ̇anti. The equivalent

shear strain rate is γ̇ = √
2|D| =

√
(∂vx/∂y)2 + (∂vx/∂z)2 =

√
γ̇ 2

anti + γ̇ 2
in. The unit flow direction

tensor N = D/|D| may then be written as

[N] =
√

2[D]

γ̇
= 1√

2

⎡
⎣ 0 γ̇anti/γ̇ γ̇in/γ̇

γ̇anti/γ̇ 0 0
γ̇in/γ̇ 0 0

⎤
⎦, (C5)

and the tensor N2 becomes

[N2] = 1

2

⎡
⎢⎣

1 0 0

0 γ̇ 2
anti
γ̇ 2

γ̇antiγ̇in

γ̇ 2

0 γ̇antiγ̇in

γ̇ 2
γ̇ 2

in
γ̇ 2

⎤
⎥⎦, (C6)

so the reduced set of invariants is K3 = tr(N3) = 0, K5 = nc · Nnc = 0, and K6 = nc · N2nc =
γ̇ 2

in/2γ̇ 2. Therefore, the invariants K3 and K5 are always zero in this steady, viscometric flow scenario
and cannot differentiate between the in-plane and anti-plane modes of diffusion, so we neglect the
dependence of the scalar function Ĉdiff on K3 and K5. The remaining invariant K6 is bounded within
the range K6 ∈ [0, 1/2]. In the in-plane mode of diffusion, γ̇anti = 0, γ̇ = |γ̇in|, and K6 = 1/2, and
in the anti-plane mode of diffusion, γ̇in = 0, γ̇ = |γ̇anti|, and K6 = 0, so K6 is a suitable invariant for
capturing the mode dependence of the diffusion flux. Renaming this invariant K6 = nc · N2nc = Kc,
the flux equation (C3) may be written as

wdiff
i = −Ĉdiff (I, Kc)d̄2γ̇

∂cl

∂xi
, (C7)

and when a simple linear dependence of Ĉdiff on Kc is adopted, we recover (18) from Sec. VI B.
Following an analogous set of arguments, we denote the unit vector along the pressure gradient

as nP = (∂P/∂x)/|∂P/∂x| and introduce the combined scalar invariant KP = nP · N2nP. We then
write the generalized form for the pressure-gradient-driven segregation flux as follows:

wP
i = −ĈP

seg(I, J, KP)
d̄2γ̇

P
cl (1 − cl )(1 − α + αcl )

∂P

∂xi
, (C8)
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where J = P/(d̄|∂P/∂x|). In the in-plane mode of segregation, the scalar invariant is KP = 1/2, and
KP = 0 in the anti-plane mode of segregation. Adopting a linear dependence of ĈP

seg on KP gives
(19) from Sec. VI B.
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