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Odd viscosity is a transport coefficient that can occur when fluids experience breaking
of parity and time-reversal symmetry. Previous knowledge indicates that cylinders in
incompressible odd viscous fluids, under no-slip boundary conditions, do not exhibit lift
force, a phenomenon that poses challenges for the experimental detection of odd viscosity.
This study investigates the impact of slip in Stokes flow, employing the odd generalization
of the Lorentz reciprocal theorem. Our findings reveal that, at linear order in slip length,
lift does not manifest. Subsequently, we explore the scenario involving a thin sheet with
momentum decay as well as that of a finite system size, demonstrating that for Stokes
flow lift does occur for the second-order slip length contribution. We address cylinder
flow beyond the Stokes approximation by solving the Oseen equation to obtain a fluid
profile that shows an interplay between odd viscosity and inertia, and acquire an explicit
expression for Oseen lift at leading order in slip length.
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I. INTRODUCTION

A question that has concerned fluid physicists for more than a century is how much drag force an
object moving in a fluid experiences [1]. The origin of drag force lies with dissipative effects, which
can be characterized by phenomenological transport coefficients such as shear viscosity. Over the
last decade, there has been a notable focus on a different transport coefficient known as odd viscosity
[2–4]. This transport coefficient is nondissipative and appears when microscopic two-dimensional
chiral effects break parity and time-reversal symmetry, and is important in biological physics [5–7],
electron fluids [8–10], and topological waves [11–13]. Furthermore, odd viscous flow in general has
also been a source of many novel fluid mechanical problems [14–24].

When an obstacle moves with respect to the fluid that it is embedded in, it is possible that it
experiences a force that is orthogonal to this movement. Such an orthogonal force is called lift
force. The inherent parity-breaking nature of odd viscosity suggests that in its presence, lift force
can arise even when the geometry of the fluid system is rotationally symmetric. For odd viscous flow
past spheres, where the flow is along the preferred plane of odd viscosity [7,18,25], lift is indeed
found to be nonvanishing [26–28]. For two-dimensional fluid systems such as flow past infinite
cylinders, it was found that this does not generally happen, because the integral that gives the odd
viscous force on an obstacle is a closed contour [17]. Furthermore, when the flow past the cylinder
is incompressible, odd viscosity can be absorbed into the pressure so that odd viscosity effectively
drops out of the Navier-Stokes equation. Lastly, no-slip boundary conditions prevent odd viscosity
from affecting the fluid profile through stress-dependent slip effects. Because of this, odd viscosity
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FIG. 1. Picture of Oseen flow past a cylinder with odd viscosity for (a) vanishing slip length and (b) a slip
length λ̂ = 1. We took γo = 1 and k̂ = 0.2. The arrows and coloring respectively denote the orientation and
magnitude of the dimensionless velocity v̂i = vi/U .

is entirely unobservable and lift force vanishes in symmetric geometries for flow past cylinders if
both incompressibility and no-slip boundary conditions hold.

For fluids that are compressible, it was found that lift force can arise [29,30]. In a similar way, one
can ask what happens when the no-slip boundary condition is lifted. This is not merely a theoretical
exercise, because although the assumption of no-slip boundary condition is common, many fluid
systems violate this condition and instead are characterized by obstacles that display a slip length
that can be of micrometer scale [31–34]. In this work, we consider the effect of a nonzero slip length
at the boundary of a two-dimensional disk or three-dimensional cylinder on odd viscous flow and
lift force.

The structure of this work is as follows: In Sec. II, we repeat the derivation of Ref. [17], stating
that incompressible odd fluids with no-slip boundary conditions exhibit a flow independent of odd
viscosity, and the absence of lift force. In Sec. III, we show how through the odd generalization
of the Lorentz reciprocal theorem [26], we can obtain a simple formula for the cylinder forces at
first order in slip length, which applies for general Stokesian fluids. It tells us that slip-induced lift
vanishes linearly in slip length. For cylinder flow, Stokesian fluids suffer from the Stokes paradox
[1], indicating that inertial contributions persist far from the cylinders unless an additional element
is introduced to curtail this far-field flow. In Sec. IV, we exactly solve for the cylinder flow when
the Stokes paradox is circumvented by considering a thin sheet such as a membrane, which relaxes
momentum to a neighboring fluid with much lower viscosity. We obtain a formula for the cylinder
forces which depends nonperturbatively on slip length. We find that lift force does arise at quadratic
order in slip length. Similarly, we compute the nonvanishing lift coefficient at quadratic order in
slip length for the case of Stokes flow with a finite system size in Sec. V. In Sec. VI, we go beyond
the Stokes approximation by solving the Oseen equation in a harmonic expansion. Imposing the
boundary conditions up to the first harmonic leads to six equations which can be solved analytically
to obtain the slip-induced odd viscous Oseen flow given in Fig. 1. We also compute lift force and
find that at leading order it also appears quadratically in slip length.

II. NO-SLIP BOUNDARY CONDITIONS

We first describe the fluid equations and explain the result of Ref. [17] that in general, odd
viscosity fluids cannot produce a lift force on cylinders in the case of incompressiblity and no-slip
boundary conditions. Because we exclusively consider cylinder flow, the third dimension plays no
role, and we thus start from the two-dimensional Navier-Stokes equation for steady flow

ρ0v j∂ jvi = ∂ jσi j, ∂iv j = 0, (1)
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where ρ0 is the density, vi is the two-dimensional fluid velocity, and a summation over repeated
indices is implied. σi j is the stress tensor, which is constituted by

σi j = −pδi j + ηs(∂iv j + ∂ jvi ) + ηo(∂iv
∗
j + ∂∗

i v j ). (2)

Here, p is the pressure, and ηs and ηo are the shear and odd viscosity. We furthermore used the
notation a∗

i = εi ja j for a general vector a j . As was noted in Ref. [17], incompressibility allows one
to absorb the odd stress contribution into the pressure so that Eq. (1) turns into

ρ0v j∂ jvi = −∂i p̃ + ηs
vi, (3)

where we have introduced the modified pressure p̃ = p − ηo∂ jv
∗
j and 
 = ∂2. For incompressible

fluids, the only role of pressure is to guarantee the satisfaction of incompressibility, and this role can
now be played by the modified pressure, so that odd viscosity drops out of the fluid equations. When
the boundary conditions do not depend on stress, as is the case for no-slip boundary conditions, it
thus follows that odd viscosity cannot affect the fluid profile.

We then consider a fluid system where a cylinder with no-slip boundary conditions is placed in
a fluid described by Eq. (3) and which moves with a velocity Ui. Even though the effect of odd
viscosity is not observable in the fluid, there may still be an odd lift force for this fluid system
because the force that this fluid exerts on the boundary is determined by the stress tensor which
contains an odd viscous contribution. To check this, we first rewrite Eq. (2) as

σi j = −p̃δi j + ηs(∂iv j + ∂ jvi ) + 2ηo∂
∗
i v j . (4)

Only the rightmost term in Eq. (4) can produce lift force as it depends on odd viscosity, but this
contribution always vanishes [17]. Specifically, using that only the ηo term in Eq. (4) can produce a
lift force FL, closedness of the contour � around the cylinder boundary leads to

FL = Û ∗
j

∮
�

ds niσi j = 2ηoÛ
∗
j

∮
�

ds ni∂
∗
i v j = 0, (5)

where ni is the normal vector for the cylinder boundary. Note that Eq. (5) does not merely apply to
circular cylinders, although that is the case that is considered in the rest of this work.

III. LORENTZ RECIPROCAL THEOREM

We now show that we can use the odd generalization of the Lorentz reciprocal theorem [26]
to prove that, for incompressible odd Stokes flow past a cylinder, lift force vanishes not only at
vanishing slip length but also at linear order in slip length. Stokesian fluids are characterized by the
Stokes approximation, which assumes that the inertial contribution in Eq. (3) is negligible, so that
the fluid profile can be accurately described by

∂ jσi j = 0, ∂ivi = 0. (6)

We consider two fluid systems for which Eq. (6) applies which will be connected through the
Lorentz reciprocal theorem. The first fluid system is one where the no-slip boundary conditions
hold and the fluid profile is thus completely even and the only force on the cylinder is drag force.
The second fluid system we consider is identical except for three things:

(1) We consider for the second fluid system a cylinder velocity U ′
i which is not necessarily

parallel to Ui, as a parallel U ′
i would not allow one to extract lift force using the Lorentz reciprocal

theorem.
(2) For the second fluid system, we impose slip boundary conditions [35,36]. Working in the

frame where the fluid velocity vanishes far away from the cylinder, we have at the cylinder interface

v′S
i

∣∣
r=a = U ′

i + λ

ηs
(δi j − nin j )nkσ

′S
k j , (7)
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FIG. 2. Schematic picture of two fluid systems that are being connected through the Lorentz reciprocal
theorem generalized for odd viscosity. We connect (a) incompressible flow past a cylinder moving with velocity
Ui with no-slip boundary conditions giving rise to only drag and (b) incompressible flow past a cylinder moving
with velocity U ′

i , which, to probe odd phenomena, should not generally be taken parallel to Ui. Because of the
slip boundary conditions represented by the magenta strip, the second fluid system is not subject to the no-lift
argument of Eq. (5) [17].

where r =
√

x2 + y2, a is the cylinder radius, and λ is the slip length. σ ′S
k j is the stress corresponding

to the fluid profile with slip.
(3) In order for the Lorentz reciprocal theorem to work for odd fluids, we require that odd

viscosity of the second fluid system is given by η′
o = −ηo [26].

The two distinct fluid systems are schematically shown in Fig. 2. Because both fluid systems
obey the Stokes equation and the first fluid system obeys no-slip boundary conditions, there is the
reciprocal relation [37] ∮

�

ds niσ
′S
i j Uj =

∮
�

ds niσi jv
′S
j . (8)

We plug in Eq. (7) to find

F ′S
i Ui = FiU

′
i + λ

ηs

∮
�

ds f ′S
i (δi j − nin j ) f j, (9)

where we introduced the force densities f j = niσi j and f ′S
j = niσ

′S
i j and we defined the total forces

Fi = ∮
�

ds fi and F ′S
i = ∮

�
ds f ′S

i . We then assume λ̂ = λa−1 to be small, so that we can introduce

v′
i = v′S

i + O(λ̂) (10)

where v′
i is a fluid profile that obeys no-slip boundary conditions but still has the same far-field

velocity U ′
i and odd viscosity η′

o. This fluid profile has a corresponding stress σ ′
i j and force f ′

i .
Equation (9) can then be expanded as [35]

F ′S
i Ui = FiU

′
i + λ

ηs

∮
�

ds f ′
i (δi j − nin j ) f j + O(λ̂2). (11)

Note that the modified pressure p̃ does not contribute to either slip-induced drag force or lift force.
We now consider two cases, namely, the case where Ui = U ′

i and where Ui = U ′∗
i . These cases allow

one to extract the slip-generalized drag and lift coefficients CD and CL, which are defined as

F ′S
i = (−CDδi j + CLεi j )U

′
j . (12)
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Taking U ′
i = Ui for Eq. (11) yields

CD = C(0)
D + λ̂C(1)

D + O(λ̂2), (13)

where

C(1)
D = − a

ηs|U |2
∮

�

ds fi(δi j − nin j ) f j (14a)

and C(0)
D is the drag force corresponding to the fluid system with no-slip boundary condition. Taking

U ′
i = U ∗

i for Eq. (11) yields C(0)
L = 0 and

C(1)
L = a

ηs|U |2
∮

�

ds f ∗
i (δi j − nin j ) f j . (14b)

For fluid systems described by incompressible Stokes flow and no-slip boundary conditions, ana-
lytical expressions for vi and C(0)

D are often readily available, so that these solutions can be plugged
into Eq. (14) to obtain slip-induced forces. Furthermore, the rotational symmetry and linearity of
the Stokes equation makes it so that fluid profiles for a geometry with cylindrical symmetry and
cylinder velocity orthogonal to the cylinder axis can generally be written as vi = ∂∗

i ψ with [38,39]

ψ = −U ∗
i xi

r
g(r), (15)

where g(r) is some function that can be obtained by solving the Stokes equation. When Eq. (15)
holds, Eq. (14b) turns into

C(1)
L = 4πηo

a2
(g − aġ)(a2g̈ − aġ + g), (16)

where g is shorthand for g(a). Furthermore, ġ = ∂rg(r)|r=a and g̈ = ∂2
r g(r)|r=a. The no-slip bound-

ary condition implies g = aġ, so that Eq. (16) reduces to

C(1)
L = 0. (17a)

Similarly, C(1)
D is given by the simple expression

C(1)
D = −πa2ηsg̈

2. (17b)

Note that C(1)
D is nonpositive, which can be understood by considering that slip will always serve

to ease flow past an obstacle and thus lower drag force [35]. Equation (17a) does not mean that lift
force remains zero when turning on finite slip length, but only that for fluids for which Eq. (8) holds
and one has a fluid velocity of the form of Eq. (15), there is no contribution linear in slip length. In
the following sections we consider specific fluid systems where we indeed find a nonvanishing lift
force which at leading order is quadratic in slip length.

IV. STOKES FLOW IN A THIN SHEET

As an example of a fluid system with an obstacle for which the Stokes approximation holds, we
consider the case in which the fluid lies in a thin sheet which is connected to a bulk fluid with
a much lower viscosity to which it relaxes momentum [40–42]. The thin sheet should be seen
as two-dimensional and the obstacle that lies inside of the thin sheet as a disk. We assume that
the relaxational effects to the bulk fluid dominate over the inertial effects.1 When there is a leak

1Interestingly, such an overdamped setup is mathematically consistent with that of a droplet of “spinner fluid”
lying on a glass plate [6]. The spinner fluid is a suspension of magnetically driven chiral colloids. The spinner
fluid is the first experimental system for which odd viscosity was measured at the micrometer scale.
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of momentum to a three-dimensional bulk, the Stokes equation modifies to the Stokes-Brinkman
equation [43], which is given by

∂ jσi j = ρ0

τ
vi, (18)

where τ is the momentum relaxation time and ρ0 is the density. This relaxation term will allow for
the Stokes paradox to be circumvented. Note that this modification of the Stokes equation does not
invalidate the formula based on the Lorentz reciprocal theorem, as this momentum relaxation term
would cancel out in Eq. (8). The solutions to Eq. (18) can be decomposed into even and odd ones as

ψ = −xi

r
[U ∗

i ge(r) + Uigo(r)]. (19)

To obtain the solutions, we take the curl of Eq. (18) to find


[
 − κ2]ψ = 0, κ2 = ρ0/(τηs). (20)

Solving Eq. (20) and requiring convergence to zero at infinity leads to

ge,o(r) = Ae,oa2r−1 + Be,oaK1(κr), (21)

where Kn(x) is the nth modified Bessel function of the second kind. We impose the slip boundary
conditions

vi|r=a = Ui + λ

ηs
(δi j − nin j )nkσk j, (22)

which leads to constraint equations for Ae,o and Be,o given by

M4×4
[
Ae Be Ao Bo

]T = [
1 −1 0 0

]T
, (23)

with

M4×4 =

⎡
⎢⎢⎣

1 K1(κ̂ ) 0 0
4λ̂ + 1 �(κ̂, λ̂) −4γoλ̂ γoλ̂�(κ̂ )

0 0 1 K1(κ̂ )
−4γoλ̂ γoλ̂�(κ̂ ) −4λ̂ − 1 −�(κ̂, λ̂)

⎤
⎥⎥⎦, (24)

where κ̂ = κa, γo = ηo/ηs, and

�(κ̂, λ̂) = (λ̂κ̂2 + 4λ̂ + 1)K1(κ̂ ) + κ̂ (2λ̂ + 1)K0(κ̂ ), �(κ̂ ) = −2κ̂K2(κ̂ ). (25)

Having found the coefficients of Eq. (21), we compute the cylinder forces

FD = a
∫ 2π

0
dθ [σrr cos(θ ) − σrθ sin(θ )], (26a)

FL = a
∫ 2π

0
dθ [σrr sin(θ ) + σrθ cos(θ )], (26b)

where

σrr = −p̃ + 2ηs∂rvr + 2ηor−1(∂θvr − vθ ), (27a)

σrθ = ηs[r
−1∂θvr + r∂r (vθ r−1)] − 2ηo∂rvr . (27b)

p̃ can be obtained up to an unimportant constant c by θ integrating the θ component of the Stokes
equation, i.e.,

p̃ − c = ηs

∫
dθ

[
r−1∂r (rvθ ) + 1

r2

(
∂2
θ + 2∂θ

)
vr − (r−2 + κ2)vθ

]
. (28)
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The formulas for the drag and lift coefficients are then given by

CD,L = πηs

a
[a(κ2a2 + 3)ġe,o − 3ge,o − a3˙̇ġ e,o], (29)

where ˙̇ġ = ∂3
r g(r)|r=a. One can see there are no odd viscosity terms in Eq. (29), which is due to

the argument in Eq. (5) that ruled out lift for fluid flows that do not see odd viscosity. Instead, odd
viscosity only enters indirectly in the drag and lift formulas through ge,o. Plugging the solutions
for ge,o into Eq. (29), we obtain for the drag coefficient at leading and subleading order in slip
length

C(0)
D = πηsκ̂

[
κ̂ + 4K1(κ̂ )

K0(κ̂ )

]
, (30a)

C(1)
D = −4πηsκ̂

2K2
1 (κ̂ )

K2
0 (κ̂ )

. (30b)

As was predicted using the Lorentz reciprocal theorem, we find C(1)
L = 0. However, at second order

in slip length there is lift given by

C(2)
L = 32πηoκ̂

4K2
1 (κ̂ )

κ̂2
[
3K2

0 (κ̂ ) + K2
2 (κ̂ )

] − 4K1(κ̂ )[κ̂K0(κ̂ ) + K1(κ̂ )
. (31)

We learn from Eq. (31) that although lift force vanishes entirely with no-slip boundary conditions
and the generalized Lorentz reciprocal theorem tells us that the lift force contribution linear in
slip length vanishes, nonvanishing contributions to lift force do appear at quadratic order in slip
length. Note that although we did not expand in small odd viscosity, Eq. (31) does not display
any nonlinear odd viscous contributions as odd viscosity can only enter through the slip boundary
condition, making it so that any result for drag or lift we find is still indirectly suppressed in odd
viscosity. The results of this section can be mapped to the problem of drag and lift for oscillating
cylinders in a fluid which is otherwise stationary. When a cylinder is oscillating with frequency ω,
the fluid motion will display the same oscillation provided that the equation which the fluid obeys is
linear. Using complex notation, the fluid velocity is therefore ∼ exp(iωt ), where i = √−1, and the
Navier-Stokes equation reduces to [38,44–47]

∂ jσi j = iωρ0vi. (32)

Comparing Eq. (32) to (18), one finds that all one must do to obtain an expression for drag and lift
of oscillating cylinders in the frequency domain is replace τ−1 by iω.

V. FINITE SYSTEM SIZE

Another fluid system for which the drag and lift coefficient formulas, Eq. (17), could be applied
is that of Stokes flow confined by an outer cylinder [39,48], provided that one only considers slip
for the inner cylinder and assumes no-slip boundary conditions for the outer cylinder that sets the
system size. The curl of the Stokes equation is given by 
2φ = 0 so that, using again Eq. (19), we
can solve the Stokes equation with the ansatz

ge,o(r) = Ae,o
a2

r
+ Be,or + Ce,or log

( r

a

)
+ De,o

r3

a2
. (33)

One can acquire the expressions for the coefficients of Eq. (33) by imposing the boundary conditions
of Eq. (22) as well as the boundary condition of the outer cylinder at radius b given by

vi|r=b = 0. (34)
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We then obtain the drag coefficients

C(0)
D = 4πηs(a2 + b2)

(a2 + b2) log
(

b
a

) + a2 − b2
, (35a)

C(1)
D = − 4πηs(a2 − b2)2

[
(a2 + b2) log

(
b
a

) + a2 − b2
]2 , (35b)

as well as leading order lift coefficient

C(2)
L = 8πηo(a2 − b2)2

[
(a2 + b2) log

(
b
a

) + a2 − b2
]2 . (36)

VI. OSEEN FLOW

In the previous sections we have relied on the Stokes approximation. We now wish to explore
the effect of slip and odd viscosity for the case where the Stokes approximation is not used, i.e.,
where the inertial term in Eq. (1) is taken into account. This inertial term makes sure that the Stokes
paradox no longer arises. Furthermore, we can no longer use the drag and lift coefficient formulas
of Eq. (17), as they follow from a result which is only valid for Stokes flow. In Ref. [49], the drag
force for even cylinder flow with inertia is computed by generalizing the computation by Kaplun
[50] to one with slip boundary conditions. This computation uses asymptotic matching [1,51–53],
which is a method where the fluid equations are solved near to and away from the cylinder by
systematically matching the solution in the transition region. In the Appendix, we rederive this
result with the method described below. This method is essentially equivalent to the near-cylinder
harmonic expansion performed by Lamb [54]. However, to generalize the computation of Oseen
flow to the case where there is a nonvanishing odd viscosity is not straightforward, and therefore it
helps to perform a more systematic harmonic expansion for obtaining the near-cylinder flow similar
to how it is done in the computation of the even Oseen flow by Tomotika and Aoi [55].

We start by performing the Oseen approximation [54,56] on Eq. (1). For this, we move to the
frame that is comoving with the cylinder, i.e., it holds that limr→∞ vi = −Ui. We then define a fluid
velocity v′

i = Ui + vi. As v′
i vanishes for r → ∞, v′

i can be viewed as a small correction to Ui when
one is sufficiently far from the cylinder. We thus linearize Eq. (1), which leads to

2ηsk∂xv
′
i − ∂ j p̃ + ηs
v′

i = 0, ∂iv
′
i = 0, (37)

with k = 1
2ρ0U/ηs. We can solve Eq. (37) for

p̃ = −2kηs∂xφ, (38a)

v′
x = −∂xφ + 1

2k
∂xχ + χ, (38b)

v′
y = −∂yφ + 1

2k
∂yχ, (38c)

where φ and χ are functions that satisfy the equations


φ = 0, (
 + 2k∂x )χ = 0. (39)

The families of solutions to Eq. (39) are given by the even functions

φe = aUA0 log(r) + U
∑
n=1

An
an+1

rn
cos(nθ ), (40a)

χe = Ue−kr cos(θ )
∑
m=0

BmKm(kr) cos(mθ ), (40b)
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as well as the odd functions

φo = U
∑
n=1

Ãn
an+1

rn
sin(nθ ), (41a)

χo = Ue−kr cos(θ )
∑
m=1

B̃mKm(kr) sin(mθ ). (41b)

In Ref. [55], Tomotika and Aoi impose no-slip boundary conditions for all harmonics to obtain
equations that completely fix An and Bn up to arbitrarily high orders, after which they perform
a truncation to obtain analytic expression for the fluid profile and drag. Due to the nature of the
solutions which carry the constant k inside the Bessel function, such a truncation of the harmonic
expansion is simultaneously a truncation of a small Reynolds number expansion. Therefore, the
obtained drag is found at leading order in Reynolds number to coincide with the result found by
Kaplun using asymptotic matching [50]. We avoid working out the slip boundary conditions for
the infinite harmonic series and instead first perform the truncation. Specifically, we expand up to
the first harmonic, which means that there are three boundary conditions that constrain the even
flow and three boundary conditions that constrain the odd flow. It is then sensible to work with an
ansatz that is composed of three even solutions and three odd solutions given in Eqs. (40) and (41),
respectively. For the even part of the ansatz, we make the default choice [54,55,57] which involves
expanding Eq. (40) up to n = 1 and m = 0.2 For the odd solutions, one could either expand Eq. (41)
up to n = 2 and m = 1 or expand up to n = 1 and m = 2. Only the latter option can satisfy the
boundary conditions as the Ã2 solution does not affect the boundary conditions up to first order in
a harmonic expansion. Having narrowed down the options for the ansatz to one, we formulate the
constraints (

M (0)
6×6 + λ̂M (1)

6×6

) �V = [
0 1 −1 0 0 0

]T
, (42)

where �V = [A0 B0 A1 Ã1 B̃1 B̃2]
T

. Because the matrix M (1)
6×6 is large, we decompose as

M (1)
6×6 = [M (1,a)

6×4 M (1,b)
6×2 ]. The content of the matrices is given by

M (0)
6×6 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−1 − 1
2k̂

0 0 0 0

0 I2K0 + I1
(K0

k̂
+ K1

)
1 0 0 0

0 − I1K0

k̂
1 0 0 0

0 0 0 0 − I1K1

k̂
2I2K2

k̂

0 0 0 1 I1K1−1
k̂2

2−2I2K2

k̂2

0 0 0 −1 (I1+2k̂I2 )K1

k̂2
2(5I2−2k̂I1 )K2

k̂2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (43a)

M (1,a)
6×4 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0

0 0 0 0

0 2I2K0 4 −4γo

2γo
γo

k̂
0 0

0 0 0 0

0 −2γo(I2K0 + I1K1) −4γo −4

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (43b)

2Choosing instead to expand up to n = 0 and m = 1 does not affect the Oseen flow qualitatively. At low
Reynolds number, it also does not affect the flow quantitatively. See the Appendix where it is found that the
contribution to Oseen drag with slip that is leading order for small Reynolds number is identical regardless of
the choice of ansatz.
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FIG. 3. Plot of Oseen lift coefficient as a function of slip length. We took k̂ = 0.2.

M (1,b)
6×2 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0

0 0
2γo[3k̂I0K1+I1(k̂K0−4K1 )]

k̂2 − 4γo{k̂I0[(k̂2−12)K1−6k̂K0]+I1[3k̂(k̂2+4)K0+4(k̂2+6)K1]}
k̂4

I1
(−K0 − 4K1

k̂

) + I0K1
2k̂I0[(k̂2+12)K1+6k̂K0]−2I1[k̂(k̂2+12)K0+4(k̂2+6)K1]

k̂3

0 0
2k̂I0(k̂K0+5K1 )−2I1[(k̂2+8)K1+k̂K0]

k̂2

4k̂I0[k̂(k̂2+18)K0+4(k̂2+9)K1]−4I1[4k̂(2k̂2+9)K0+(k̂4+20k̂2+72)K1]
k̂4

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

(43c)

where In(x) is the nth modified Bessel function of the first kind. Furthermore, we used the definition
k̂ = ka and the Bessel functions in Eq. (43a) should be understood as having k̂ in the argument.
The solution to Eq. (42) leads to the fluid profile up to first order in a harmonic expansion given in
Fig. 1. At low Reynolds number, the slip-induced lift force shows the same qualitative properties as
found for Stokes flow, namely, C(1)

L = O(k̂) and

C(2)
L = 96πηo

6
[
2 log

(
k̂
2

) + 2γEM
]2 + 2 log

(
k̂
2

) + 2γEM − 7
+ O(k̂), (44)

where γEM is the Euler-Mascheroni constant. The λ̂ dependence of the unexpanded lift coefficient
is plotted in Fig. 3. C(2)

L is nondimensionalized with the Oseen drag for zero slip, whose expression
is given by [54]

C(0)
D = 4πηs

1
2 − log

(
k̂
2

) − γEM

+ O(k̂). (45)

It can be seen in Fig. 3 that for the given values lift force is at least one order of magnitude smaller
than drag, which does not mean that this lift force cannot be measured as it is a distinct physical
effect which does not compete with drag force. To highlight the interplay between slip and odd
viscosity, we also provide Fig. 4, which shows the slip velocity around the boundary for different
values of odd viscosity. Looking at the vertical slip velocity, we see that it is up-down asymmetric
for nonzero odd viscosity. For vanishing odd viscosity, the slip velocity is up-down symmetric,
which is expected considering that the geometry of the fluid system is up-down symmetric. Lastly,
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FIG. 4. Picture of (a) the horizontal dimensionless slip velocity v̂x (r = a) and (b) the vertical dimensionless
slip velocity v̂y(r = a). We took λ̂ = 1 and k̂ = 0.2.

let us look at torque τ , which is given by

T =
∮

�

ds εi jxinkσk j . (46)

As shown in Ref. [17], a nonvanishing torque cannot arise from the odd viscous part of Eq. (4) due
to no-penetration boundary conditions of the obstacle. However, there may still be a torque which
enters the shear viscous part of Eq. (4) as this term depends on the odd viscous part of the fluid
profile. We find that up to second order in slip length, torque does not arise up to O(k̂). Similarly,
we find torque to vanish entirely in the previously considered cases of Stokes flow in a thin sheet
and Stokes flow for a finite system size.

VII. DISCUSSION

In this work we showed how slip can induce odd viscous flow past a cylinder for a variety of
fluid systems. For Stokes flow, the corresponding drag and lift can be computed with the Lorentz
reciprocal theorem up to first order in slip length; however, lift force only arises at second order in
slip length. We also went beyond the Stokes approximation by solving the Oseen equation up to
second order in a harmonic expansion to find the flow and that the slip dependence of lift force is
qualitatively identical to that of the Stokes approximation. Here the role of inertia is considered for
steady odd viscous flow past an obstacle.

There is a myriad of possible directions for future study. Firstly, one could study Janus particles
in the context of slip boundary conditions, i.e., to study cylinders for which the slip length is not
uniform around the cylinder. It is straightforward to generalize the results based on the Lorentz
reciprocal theorem to the case where slip length is nonuniform. Similarly, one could consider
cylinders which are not fully circular. Furthermore, there have been many recent works that study
odd viscous flow around spheres [7,18,19,23,25,27,28]. In this case, odd viscous flow can exist
even for no-slip boundary conditions as odd viscosity can no longer be absorbed into a modified
pressure. All previous works on odd viscous flow past a sphere have been concerned with Stokes
flow. It would be valuable to learn how inertia gives rise to an interplay with odd viscosity for flow
past a sphere, with or without slip. Lastly, for bubbles, i.e., particles which do not have a constant
volume, it is possible for odd viscosity to give rise to torque [17]. One could explore the effects of
slip on the torque for such a bubble.
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APPENDIX: OSEEN DRAG WITH SLIP

In this Appendix we consider the solution to the even Oseen equation in an expansion up to first
harmonics to obtain the Oseen drag. We can then start from the ansatz [54,55,57]

φ = aU
(

A0 log(r) + A1
a

r
cos(θ )

)
, χ = Ue−kr cos(θ )B0K0(kr). (A1)

The constraints on the coefficients coming from the boundary conditions are given by[
M (0)

3×3 + λ̂M (1)
3×3

][
A0 B0 A1

]T = [
0 1 −1

]T
, (A2)

with

M (0)
3×3 =

⎡
⎢⎢⎢⎣

−1 − 1
2k̂

0

0 I2(k̂)K0(k̂) + I1(k̂)
(K0(k̂)

k̂
+ K1(k̂)

)
1

0 − I1(k̂)K0(k̂)
k̂

1

⎤
⎥⎥⎥⎦, M (1)

3×3 =

⎡
⎢⎣

0 0 0

0 0 0
0 2I2(k̂)K0(k̂) 4

⎤
⎥⎦,

(A3)

where In(x) is the nth modified Bessel function of the first kind. Solving Eq. (A2) leads to the
solutions

A0 = − 2λ̂ + 1

k̂(4λ̂ + 1)I1(k̂)K1(k̂) + (2λ̂ + 1)k̂I0(k̂)K0(k̂)
, (A4a)

A1 = − (2λ̂ + 1)I2(k̂)K0(k̂) + I1(k̂)K1(k̂)

(2λ̂ + 1)I0(k̂)K0(k̂) + (4λ̂ + 1)I1(k̂)K1(k̂)
, (A4b)

B0 = 4λ̂ + 2

(2λ̂ + 1)I0(k̂)K0(k̂) + (4λ̂ + 1)I1(k̂)K1(k̂)
. (A4c)

The corresponding drag force is given by

CD = 2πηs(2λ̂ + 1)[2I1(k̂)K1(k̂) + 1]

(2λ̂ + 1)I0(k̂)K0(k̂) + (4λ̂ + 1)I1(k̂)K1(k̂)
. (A5)

For low Reynolds number, this reduces to

CD = 4πηs

1 − 1
2(2λ̂+1)

− log
(

k̂
2

) − γEM

+ O(k̂), (A6)

where γEM is the Euler-Mascheroni constant. Equation (A6) coincides with the result for drag force
found in Ref. [49] using asymptotic matching. Lastly, it turns out that if one swaps the A1 solution
with the B1 solution in the ansatz of Eq. (A1), this modifies Eq. (A5) but leaves Eq. (A6) invariant.
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