
PHYSICAL REVIEW FLUIDS 9, 094002 (2024)

Bubble entrapment by drop impact: Combined effect
of surface tension and viscosity

Vincent Gourmandie,1 Juliette Pierre ,2 Valentin Leroy ,1 and Caroline Derec 1,*

1Université Paris Cité, CNRS, UMR 7057, Matière et Systèmes Complexes, 75013 Paris, France
2Sorbonne Université, CNRS, UMR 7190, Institut Jean Le Rond �’Alembert, F-75005 Paris, France

(Received 28 February 2024; accepted 31 July 2024; published 12 September 2024)

In this study, we systematically investigate the effect of surface tension on bubble
entrapment after drop impact in the pinching regime. Experiments are conducted using
three different systems: pure water, aqueous solutions with ethanol, or with surfactant
molecules, both at various concentrations. Results are compiled for a large set of values of
the surface tension γ and the drop impact velocity U . Across all solutions, the cavity de-
velopment dynamics exhibit similarity and are effectively characterized by dimensionless
gravito-capillary parameters. Whatever the surface tension, our measurements indicate that
only 40% of the impact energy is converted into potential energy of the cavity. However, a
notable distinction arises when considering bubble entrapment. We have constructed a bub-
bling diagram in the (U ,γ ) plane, and observed that the conditions for bubble entrapment
are altered with changing surface tension in water-ethanol mixtures. More intriguingly,
these conditions are modified in a distinctly different manner for surfactant solutions. To
interpret our experimental findings, we compile a comprehensive set of experimental and
numerical results from the literature. We demonstrate the possibility of unifying results
across all systems and our water-ethanol mixtures through an empirical law including the
influence of surface tension and viscosity. Although no physical justification exists at this
stage, this empirical law suggests the significant role of capillary waves traveling along the
cavity interface in bubble entrapment. Within this context, the behavior of surfactant-laden
solutions aligns with other homogeneous solutions by considering the elastic properties
conferred upon the interfaces by surfactant molecules.

DOI: 10.1103/PhysRevFluids.9.094002

I. INTRODUCTION

The impact of droplets on a liquid bath has been studied for over a century [1,2], first with the
development of photography, and more recently with the rise of fast imaging techniques. The study
of drop impact on a deep liquid pool is a highly significant subject from a fundamental perspective,
given the numerous associated phenomena. These include the analysis of the velocity field during
the cavity development and the collapse of the cavity resulting in the generation of a jet (so-called
Worthington jet), which breaks down into droplets. Under specific conditions of drop size and
impact velocity, there is also the pinching of a bubble at the cavity’s bottom. Such mechanisms play
a role in various scenarios, such as the development of Rayleigh-Taylor instability during cavity
development and the mixing of liquid drop and pool [3]. In addition, these mechanisms are involved
in ocean-atmosphere exchange through droplet ejection [4,5], as well as in the underwater sound
produced by rain, capable of interfering with sonar systems [6]. This last situation is produced by
the tiny bubble pinched at the bottom of the cavity and is what we are interested in.
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FIG. 1. Sequences of cavities formed after drops impact on liquid interface, for U = 1.8 m/s. First row:
distilled water γ = 74 mN/m, D = 3 mm. Second row: ethanol-water mixture γ = 55 mN/m, D = 2.6 mm.
Third row: SDS solution γ = 55 mN/m, D = 2.6 mm. The third image of each sequence corresponds to the
maximum development of the cavity.

The first extensive experimental study is the one of Pumphrey et al. [7]. By dropping drops of
water in a water bath with various drop diameters D and impact velocities U , they identified distinct
zones with different mechanisms leading to bubble entrapment. Among them, they distinguish a
regime they called regular entrainment regime as it was particularly reproducible. Other mechanisms
exist that are also very reproducible [8]. In the following we focus on this regime, with droplets and
liquid baths of the same liquid. We call it pinching regime as it is characterized by this mechanism
of entrapment.

Typical images of this mechanism of bubble pinching are shown in the first row of Fig. 1 (the two
other rows will be discussed later). A pure water droplet (diameter D = 3 mm) impacts the surface
of a pure water bath with a velocity U = 1.8 m/s. The deformation of the interface is visualized by
a high-speed camera. In the first image (2.15 ms after the impact), the droplet has already entirely
collapsed with the bath, and an air pocket (dark region) has started to develop. The second image
(6.45 ms) shows the cavity during its expansion. It is roughly semispherical, with a wavy surface.
The expansion is maximal at the third image (12.9 ms). Then the cavity starts to retract, taking a
conical shape (fourth image, at 18.3 ms) and finally pinching a bubble (19.15 ms) that is clearly
detached in the last picture (20.16 ms). It is important to note that this pinching scenario is quite
sensitive to the experimental parameters: for a given drop diameter, there is a narrow range of
velocities that leads to bubble entrapment. For our example of a 3-mm-diameter drop, a bubble is
obtained for 1.2 < U < 2.2 m/s. If the drop velocity is smaller or higher, the cavity collapse fails
at pinching a bubble. Pumphrey et al. [7] identified a delimited bubbling zone in the space of the
parameters D, U . As the main forces involved in the process are gravity and surface tension, they
proposed to replot the boundary of the bubbling region in terms of the Froude number Fr = U 2/gD,
and the Weber number We = U 2ρD/γ , where ρ is the liquid density, γ the surface tension, and g
the acceleration of gravity. With these numbers, the bubbling zone is well captured by two simple
scaling laws [9]:

We = 48.3 Fr0.247 for the upper limit, (1)

We = 41.3 Fr0.179 for the lower one. (2)
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Establishing a physical scenario that rationalizes these boundaries has attracted much attention.
In their seminal work, Pumphrey and Elmore [7] suggested that the capillary wave that travels
down the sides of the crater may be the key of the mechanism. But they confess that “this is a
speculative idea; attempts to use it to calculate when entrainment should occur have had only limited
success.” Og̃uz and Prosperetti [9] proposed that the upper limit was given by a balance between
a spreading radius Rsp and the crater radius R: if Rsp > R, the cavity grows radially and no bubble
is entrapped. By estimating that Rsp ∼ D We and R ∼ D Fr1/4, they found an upper limit with an
exponent remarkably close to the observations: We ∼ Fr0.25. For the lower limit, they invoked a
timing argument, between the period of the capillary wave, tw, and the time to maximum growth
of the crater, tmax. Their reasoning leads to a We ∼ Fr0.2, with an exponent 0.2 not far from the
0.179 observed. However, in their approach, they used a tmax ∼ DU 1/3 scaling law (based on a
private communication by Pumphrey) that, we shall see later, is not correct. It therefore appears
that, more than 30 years after the law for bubble boundaries was empirically established, there is
still no convincing physical scenario that accounts for it.

Many numerical studies have succeeded in reproducing the different stages of the cavity fairly
accurately, from the droplet coalescence [10] to the cavity development [11], which can lead to
the bubble detachment [12,13]. Based on experiments and numerical simulation, different studies
used an energy balance to obtain a differential equation for the cavity radius [11,14,15]. In a recent
numerical study, Blanco-Rodriguez and Gordillo try to established a link between the collapse of
the cavity formed by a capillary bubble floating at the surface of a liquid and the cavity collapse
formed by drop impact [16]. They explore the role of the converging capillary waves toward the
axis of symmetry in the succeeding jet. With an analytical approach, Longuet-Higgins noted that
the pinch-off of the bubble can arise from a circular ripple converging on the vertex of a cone at a
critical angle [17].

From an experimental standpoint, the properties of the liquid can strongly influence bubble pro-
duction. In this context, the effect of viscosity has been studied both experimentally and numerically,
comparing droplets and a liquid bath with the same liquid [13,18,19]. These studies have shown that
at higher viscosity, the bubbling regime shifts to higher impact velocities, up to disappearing. Recent
research has also examined the behavior of drops falling into different liquids, such as viscous oil
droplets and viscoplastic droplets falling onto water [20,21]. However, in this paper, we have chosen
not to focus on this particular configuration.

Our interest in the subject arose from the observation that the role of surface tension in bubble
production had been little studied. When Pumphrey and Elmore proposed the Froude and Weber
numbers to study the bubbling region, they wrote: “It would be very useful to know if the same
effect occurred for other liquids and if the boundaries fell at the same values of We and Fr.” It seems
that this recommendation has been only partially followed up because to our knowledge very few
authors looked into the role of surface tension. Pumphrey and Elmore [22] and recently Phillips
et al. [23] mentioned an observation that adding washing-up liquid made the bubbling pinching
regime disappear. Deng et al. [18] conducted experiments using a silicon oil with a low surface
tension (γ = 17.4 mN/m) and found a good agreement with the We-Fr relation.

In this study, we investigate systematically the effect of surface tension on bubble trapping in the
pinching regime when a drop falls into a bath filled with the same liquid. We carried out experiments
with two different systems for varying the surface tension of the solution: water-ethanol mixtures
and surfactant-laden solutions.

The second and third rows in Fig. 1 show how the cavity development is modified when the
surface tension of the liquid is lowered (from 74 to 55 mN/m), in the case of a homogeneous
solution (water-ethanol, row 2), and a surfactant-laden solution [sodium dodecyl sulfate (SDS),
row 3]. Note that the drops have the same impact velocity (U = 1.8 m/s), but are slightly smaller
than in the pure water case (D = 2.6 mm instead of 3 mm), because they detach earlier from the
capillary used to produce them. For the water-ethanol mixture, the general sequence is similar to the
one for water: the cavity expansion reaches its maximum at the same time and with approximately
the same depth, there is a conical shape, and a bubble is pinched at the end of the collapse. There
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FIG. 2. (a) Sketch of the experimental setup. (b) Surface tension as a function of the mass fraction of
ethanol for ethanol mixtures. Colored circles: present study. Colors from blue to green code for the ethanol
concentration. “+”: data from Khattab et al. [28]. Inset: viscosity from Khattab et al. [28]. (c) Surface tension
as a function of the SDS concentration in pure water. Colored circles and diamonds from red to yellow code
for the SDS concentration. Diamond markers code for concentrations where no bubbles are trapped. “×”: data
from Vollhardt and Emrich [26]. “+”: data from Thominet et al. [25]. “*”: data from Tian et al. [24]. Note that
the color code for the ethanol solutions and the SDS solutions will be the same in the following figures.

are, however, some notable differences: the waves on the cavity are less pronounced at the beginning
(second image), the time of the pinching is increased, and the trapped bubble is smaller. For the SDS
solution, the sequence is strikingly different: the surface of the cavity is smoother (no waves), there
is no conical shape, and the final pinching fails at trapping a bubble. These observations suggest that
the capillary waves are one of the key features driving the bubbling process.

After describing the experimental setup as a whole (Sec. II), we first explore the influence of the
properties of the different liquids on the development of the cavity (Sec. III). Next we will focus
on the conditions under which the bubble detaches, looking at the effects of surface tension and
viscosity (Secs. IV and V). This study will lead us, in the final section, to examine the role of the
damping of the capillary wave on the bubbling regime (Sec. VI).

II. EXPERIMENTAL SETUP

The experiment consists in dropping a single droplet at heights ranging from 5 to 60 cm into a
tank filled with the same liquid. The objective is to record the shape of the submerged cavity formed
upon impact and the underwater noise generated during the collapse of the cavity. Figure 2(a)
illustrates the experimental setup. The droplet falls in a plexiglas tank (15 cm × 15 cm section,
6 cm depth) filled with either pure water, an aqueous ethanol solution, or an aqueous solution of
SDS surfactant (Sigma Aldrich). In the aqueous ethanol solutions, the weight fraction of ethanol
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TABLE I. Range of variations of the properties for the liquids used in this study.

Liquid γ (mN/m) η (mPa/s) ρ (kg/m3) D (mm)

Distilled water 74–69 1 1000 3
Ethanol-water mixture 60–24 1–3 780–1000 2–3
SDS solution 70–35 1 998 2.4–3

varies from 5% to 100%. In the aqueous SDS solutions, the mass concentration ranges from
0.1 to 15 mM. For SDS at the ambient temperature, the critical micellar concentration (CMC) is
around 8.1 mM [24–26]. Droplets are generated using a syringe with a 22-gauge needle (external
diameter 2a = 0.72 mm), attached to a syringe pump itself mounted on a translation stage for
precise variation of the drop height H . The impact velocity U is related to the height through the
relation U = √

2gH , where g is the acceleration of gravity. This equation introduces a maximum
error of 4% for our specific range of drop diameters and heights. For each solution, the drop
diameter D is calculated by weighting approximately 100 drops, assuming they are spherical. Since
we maintain a constant needle size, the effect of the surface tension in ethanol and SDS solutions
causes D to vary within the range of 2–3 mm. By knowing the drop diameter and the external
needle diameter, the surface tension of the solution is calculated using an approximate balance
that relates the gravitational force pulling the drop down to the surface tension force at the instant of
drop detachment: β2πγ a = (4/3)gπρ(D/2)3, with β = 3.60/(2π )[(π/6)1/3D/a]

0.19
[27]. Figure 2

displays the surface tension as a function of concentration for ethanol and SDS aqueous solutions.
Our measurements are in good agreement with the literature. In the inset of Fig. 2(a) we provide
the values of the viscosity for the ethanol-water mixture, extracted from [28]. It is also important to
note that the viscosity varies from 1 to 3 mPa s. Table I reports the range of liquid properties and
drop sizes used in this work.

After the impact, the cavity undergoes expansion before collapsing, occasionally resulting in the
entrapment of a small bubble, as shown in Fig. 1. These complex interfacial reconfigurations are
analyzed through close-up high-speed imagery using a macro lens mounted on a digital high-speed
camera (Phantom V9.1) at 3720 frames per second.

A hydrophone (Bruel & Kjær 8103, flat bandwidth [2–20] kHz) is placed in the tank. It is
connected to a homemade amplifier and a digital oscilloscope (TiePie). When a bubble is entrapped,
it resonates at its fundamental mode, the so-called Minnaert resonance [29], and a strong acoustic
signature is recorded. We use this acoustic signal to determine whether the impact entrapped a
bubble or not.

III. CAVITY EXPANSION: EFFECT OF SURFACE TENSION

In this first part, we focus on the expansion of the cavity. Our aim is to determine whether the
experiments with liquids of different surface tensions lead to differences in the cavities.

Figure 3(a) shows typical images of the cavities, here for pure water drops at two different impact
velocities: U = 2 and 3.4 m/s. Given the axial symmetry of the cavities, we can easily extract three
quantities from the image analysis at each time: the equivalent radius defined from the polar angle
θ [see Fig. 3(a)]

R = 1

π

∫ θ=π/2

θ=−π/2
R(θ )dθ, (3)

the surface energy

Es = γ

(∫ zmax

z=0
2πr(z)dz − πr(0)2

)
, (4)
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FIG. 3. (a) Snapshots of cavities, at their maximal development, for water drops (D = 3 mm) with two
different impact velocities: 2 and 3.4 m/s. From image analysis, we can estimate the potential energies (black)
and equivalent radius (green) of the cavities, as functions of time. (b) Maximum potential energy of the cavity
Emax as a function of the impact energy Ei. The line represents a ratio of 40%.

and the gravitational energy

Eg =
∫ zmax

z=0
ρgπr2(z)z dz, (5)

where z = R cos θ and r = R sin θ .
Figure 3(a) reports these quantities as functions of time for the two examples. Note that the two

potential energies are of the same order of magnitude: one cannot neglect one compared to the other.
The total potential energy (thick black lines) goes through a clear maximum, which we will use to
define tmax, the maximal expansion of the cavity. We note Rmax is the equivalent radius of the cavity
at that time and Emax is its total potential energy.

An interesting parameter, which combines the effect of surface tension, size, and velocity, is the
impact energy

Ei = πρD3U 2/12 + πγ D2. (6)

Ei is the sum of the kinetic and surface energy of the impacting drop. It ranges from a few
microjoules to almost 100 µJ in our experiments. We see on the two examples of Fig. 3(a) that
all the impact energy is not converted into potential energy: Emax is always less than Ei. This is
confirmed in Fig. 3(b) which reports Emax as a function of Ei for all our experiments, with different
impact velocities and liquids. We find that all the data reasonably collapse on a straight line with a
slope of 0.4. It means that only 40% of the impact energy is stored as potential energy in the cavity.
The rest of the energy is probably under the form of kinetic energy of the displaced fluid in the
volume and surface wave energy at the surface of the liquid bath. Note that viscous dissipation is
probably low because the ethanol solutions follow the same law, even if their viscosity varies over a
factor of 3 when the concentration varies. We also note that previous studies in the literature reported
different ratios of Emax/Ei, typically from 60% to 80% [9,14,19,30,31]. But they approximated the
cavity by a cylinder or a hemisphere, whereas we analyzed its exact shape. A recent article by Lherm
and Deguen [15] finds the same ratio of 40% using the same approach as us.
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γ /(ρg) as a function of Ei/Egc, with Egc = πγ 2/(ρg). The solid line represents Eq. (8) using φ = 0.4.

(b) Time at the maximum energy tmax rescaled by the time tgc = [γ /(ρg3)]1/4 as a function of Ei/Egc. The solid
line represents a numerical resolution of Eq. (7) using ξ = 0.3 and φ = 0.4. Dashed line corresponds to the
best fitting power law.

We can try to model the dynamics of the cavity by making the crude assumption that it behaves
as a hemisphere with radius R(t ). We can write that the total energy is conserved:

φEi = γπR(t )2 + 1
4ρgπR(t )4 + ξρπR(t )3Ṙ(t )2. (7)

Parameter φ accounts for the fraction of the impact energy that is effectively converted into the
expansion of the cavity. Parameter ξ was proposed by Lherm and Deguen [15] to account for the
fact that the true velocity field is not purely radial. A true hemisphere expansion would be with
φ = ξ = 1. In our case, we have seen that φ = 0.4 and we will use ξ as a fitting parameter.

The maximum expansion of the cavity is given by Eq. (7) for Ṙ = 0, which leads to

Rmax =
√

2�c

√√√√√
1 + φEi

Egc
− 1, (8)

where �c = √
γ /(ρg) is the capillary length and Egc = πρg�4

c is a gravito-capillary energy. Fig-
ure 4(a) confirms that plotting Rmax/�c as a function of Ei/Egc collapses all the experimental data
on a master curve, which is well captured by Eq. (8) with φ = 0.4 (black line). Note that Eq. (8)
suggests that Rmax depends on the surface tension, via �c and Egc. Yet, interestingly, at the limit of
high impact energy, this dependency disappears:

Rmax �
(

4φEi

πρg

)1/4

= D(φ Fr/3)1/4 for

√
φEi

Egc
� 1. (9)

In practice, this limit of high impact energy is easily reached, which justifies the R/D ∼ Fr1/4 law
often used in the literature [9,15,31,32] for estimating the size of the cavity.

From Eq. (7) we can also estimate the time of maximum energy, tmax. Dimension analysis
suggests that gravito-capillary time tgc = [γ /(ρg3)]1/4 is involved. Indeed, as shown in Fig. 4(b),
all the data collapse reasonably well when tmax/tgc is plotted as a function of Ei/Egc. Numerical
resolution of the equation with φ = 0.4 and ξ = 0.3 leads to a good master curve for all the results.
Lherm et al. [3,15] recently found similar results with a slightly larger value of ξ = 0.35. Note that
this master curve may be fitted by the power law tmax/tgc = 0.28(Ei/Egc)1/3 [see the dashed line
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FIG. 5. (a) Bubble pinch-off diagram U-γ . Up triangles indicate the beginning of the bubbling zone and
down triangles its end (when increasing the impact velocity U). The light-blue and the light-orange areas
are guides for the eye to highlight the bubbling zones. (b) Bubbling line (i.e., the center of the bubbling
zone considering the velocity) in a Weber-Froude representation. The straight black line We = 45 Fr0.2 is the
bubbling line extracted from the data of Pumphrey and Elmore [22] for pure water. Colored curved lines are
guides for the eye following the increasing concentration in ethanol and SDS.

in Fig. 4(b)]. This leads to the relation tmax ∝ DU 2/3, which is in contradiction with the power law
DU 1/3 invoked by Og̃uz and Prosperetti to justify the Fr-We law, as mentioned in Sec. I.

As a conclusion on this first part, we have found that 40% of the impact energy was converted into
potential energy, and we confirmed that a simple model of an hemi-spherical cavity was sufficient
to capture the maximum size, and the time at which this size was reached. Interestingly, there is no
distinction between the water-ethanol mixtures and the SDS solutions. We shall see that the situation
is different for the bubbling region.

IV. EFFECT OF SURFACE TENSION ON THE BUBBLING ZONE

As the entrapped bubbles make a loud noise, we used the acoustic signal recorded by the
hydrophone to determine whether an impact led to a bubble or not. For each solution, multiple
impacts (at least 20) were performed at each height, and we considered that we were in the bubbling
zone when at least 50% of the impacts resulted in a clear acoustic signal. Figure 5(a) shows the
resulting diagram of bubbling in the (U, γ ) space, for the two kinds of solutions we used. In
water-ethanol mixtures, the upper limit of the bubbling regime decreases when the surface tension
decreases, while the lower limit remains roughly flat. For SDS solutions, the picture is very different.
As soon as a small amount of SDS (≈CMC/10) is added to water, the bubbling zone is strongly
shifted towards larger impact velocities. Remarkably, there is an area between γ = 42 mN/m and
γ = 55 mN/m where no bubbles are pinched. This empty zone corresponds to concentrations in
surfactant between 0.5 and 1 CMC. At the CMC and above, the bubble entrapment regime reappears,
with a width similar to that of ethanol for the same surface tension, but for higher impact velocities.
As already evidenced in Fig. 1, it means that the surface tension is clearly not sufficient to predict
the entrapment of a bubble by the cavity collapse.

The diagram in 5(a) is not a perfect slice in the (U, D, γ ) space, because D is not constant. As all
the drops were obtained with the same needle, the drop size decreases when γ decreases (D varies
in γ 0.36). To consider the combined effect of U, D, and γ , we look at our measurements in a We-Fr
diagram. In the following, instead of plotting the lower and upper boundaries, we will consider only
the middle of the bubbling zone (defined as the mean velocity between the low and high velocity
frontiers), which we will call the bubbling line. Physically, the bubbling line has a particular role, as
it corresponds to the points where the size of the trapped bubbles is maximal [13,22]. Furthermore,
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TABLE II. Liquid properties and drop diameters for the data extracted from literature (see Fig. 6). The
second column indicates whether the reference is an experimental (expt.) or numerical (num.) study.

Reference expt./num. γ (mN/m) η (mPa/s) ρ (103 kg/m3) D (mm)

Pumphrey et al. [7,22] expt. 72 1 1 1–5
Deng et al. [18] expt. [69.2,67.2,63.9] [5.9,10.2,14.7 ] [1.126,1.153,1.172] [1.5–3.29]
Michon et al. [19] expt. [70,70,67,64,64,64] [1.12,1.18,2.5, [1,1.03,1.06,1.14, 2.7

6,12.5,15] 1.17,1.2]
Chen and Guo [13] num. 72 [0.1,0.5,1,2.5,5, 1 [1.8,2.36,2.8]

7.5,10,14.7]

this choice will allow a comparison with data from the literature (see the next section) where the
definition of the width of the bubbling zone is not specified. Figure 5(b) reports our data in such
a representation. For comparison, we also plot We = 45 Fr0.2 (solid line), which is a reasonable
law for the bubbling line we extracted from the experimental data found by Pumphrey et al. for
water drops falling in a water bath [7,22]. It means that, if We and Fr were the only parameters
involved in the problem, one would expect all the data to collapse on this line. Clearly, there are
strong deviations for SDS solutions. But, more surprisingly, water-ethanol mixtures also deviate
from what is expected: the low and high concentrations remain close to the Pumphrey bubbling
line, but intermediate ones are quite far. As water-ethanol mixtures are known to exhibit a peak in
viscosity for intermediate concentrations (see the inset of Fig. 2), this observation led us to consider
a possible effect of viscosity.

V. EFFECT OF VISCOSITY ON THE BUBBLING REGION

Several studies have been conducted to understand the effect of viscosity on the bubbling zone
[13,18,19]. We extracted experimental and numerical data from the literature (see Table II) to obtain
the bubbling lines in the We-Fr space. Figure 6(a) depicts all of these data. It clearly shows that
measurements with identical drop sizes deviate from the We-Fr law and instead form straight lines
that appear parallel to our data.

(a)

100

50

200

300

400
500

0.2

102 103101

Fr

W
e

pure water
ethanol
SDS

Chen 2014
Pumphrey 1989
Deng 2007
Michon 2017

30

40

50

60

70W
e/

Fr
0.

2

(b)

10-3 10010-110-2

Ca

80

90

100

110

120

FIG. 6. Dimensionless bubbling line. (a) Weber number We = U 2ρD/γ as a function of the Froude number
Fr = U 2/(gD). The black line represents the empirical law We = 45 Fr0.2. The dotted lines connect points from
experiments with the same drop diameters and different viscosities. (b) Ratio We/Fr0.2 as a function of the
capillary number of the droplet Ca = ηU/γ . The black dashed line represents the empirical law We/Fr0.2 =
43 exp(1.8 Ca). In (a) and (b) when possible, data were extracted from the literature [7,13,18,19] (see Table II).
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To incorporate viscosity in the space of parameters, several dimensionless numbers can be
considered: Reynolds number Re = DUρ/η, Laplace number La = γ ρR/η2, or capillary number
Ca = Uη/γ . Relying on the scaling law We ∝ Fr0.2 which well depicts the water case, we have
tested a large number of combinations and we found that the capillary number was the best
quantity allowing all the data collected from the literature and our experimental measurements with
ethanol to collapse [see Fig. 6(b)]. If we do not consider the measurements with the surfactant-laden
solutions, one can define a purely empirical law describing the bubbling line:

We

Fr0.2 = 43 exp(1.8 Ca). (10)

Note we do not have a physical explanation to date for the presence of the exponential. However, this
empirical law has the advantage of accounting for the observation of a limiting viscosity, beyond
which bubbling is never observed for a given drop diameter, whatever the impact velocity. For
instance, Deng et al. [18] reported that no bubbles were detached for drops with diameter varying
between 1.5 and 3.29 mm using water-glycerin mixtures with ρ = 1.2 g/cm3, γ = 64 mN/m, and
η = 15 mPa s. Michon et al. [19] confirmed this observation with 2.7-mm drops. With this set of
parameters D, ρ, γ , and η one can check that there is no solution in U that satisfies Eq. (10) (see
the Appendix).

At this stage, we have obtained a first conclusion concerning the effect of surface tension and
viscosity on the bubbling regime: for homogeneous solutions, such as water-ethanol mixtures and
water-glycerin mixtures, it appears that We-Fr law works, providing that the effect of viscosity is
also taken into account, via empirical law (10).

One effect of the viscosity can be observed by comparing the second image of the first two lines
of Fig. 1, where the cavity appears smoother in the case of the water-ethanol solution. Still looking
at Fig. 1, if we now consider the case of surfactant-laden solutions, we can see that the cavity is
even smoother. This observation suggests that capillary waves play an important role.

VI. CAPILLARY-WAVE DAMPING WITH SURFACTANT MOLECULES

To quantify the effect of surfactant molecules in our experiments, we calculated the capillary
number that was needed to reconciliate the SDS bubbling line with the empirical law (10). In other
words, we projected the SDS data points on the empirical curve in Fig. 6(b). We thus obtained an
effective capillary number, which could be converted into an effective ratio between the viscosity
and surface tension η/γ . The result of this “projection” is shown in Fig. 7, which presents (η/γ )eff

as a function of the concentration in SDS (colored circles). We can go a step further, and compare
these results to independent measurements of capillary-wave attenuation in SDS solutions. Noskov
and Grigoriev [33] measured the attenuation α (inverse of the attenuation length) associated with
planar linear capillary waves propagating on a plane interface of SDS solution. We thus report in the
same figure the effective ratio (η/γ )eff and the attenuation α they measured for such planar waves
excited at a frequency ω/2π = 200 Hz, for various SDS concentrations (blue crosses).

The two curves show a remarkably similar pattern, with a sharp increase at a concentration about
CMC/10. To take a step further the comparison between the effective attenuation obtained from
the bubbling mechanisms and the damping of plane capillary waves measured by [33], numerical
values are compared. First let us note that the wavelength associated with plane waves excited at
200 Hz (around 2 mm) is close to the drop diameter in our experiment. Using the relation for planar
waves between attenuation and liquid viscosity in the case of viscous damping, α = (4/3)ωη/γ ,
the damping measured in [33] is converted into a measure of the quantity (η/γ )eff. We found only a
factor 3 of difference with our values, which is remarkably close although with completely different
experimental setup and geometry: in one case, there are plane waves propagating on a flat interface,
while in the other, there are converging circular waves propagating on a curved interface. These
observations reinforce the idea that capillary waves play a crucial role in bubbling mechanisms.
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FIG. 7. Capillary-waves attenuation. Left axis, full circles: effective ratio η/γ of SDS solution extracted
from Eq. (10) as a function of the SDS concentration CSDS divided by the concentration at the CMC. Right
axis, blue crosses: Attenuation α of planar capillary waves at 200 Hz measured at the surface of SDS solutions
as a function of the SDS concentration (data extracted from [33]).

This sharp increase in damping even at low concentration is consistent with the work of Lucassen
and Hansen [34,35] who demonstrated the role of surfactant dynamics in damping the surface waves,
thus acting as an effective viscosity. As waves locally stretch or compress the interface, they lead to
locally lower or higher surfactant concentration, and the resulting surface tension gradients induce
tangential shear forces, called Marangoni forces. These lead to an additional flow and thus to some
additional damping effect. With insoluble surfactants, the damping is directly related to the Gibbs-
Marangoni modulus which links the surfactant surface concentration and the interface compression.
The surfactant solubility becomes non-negligible when the characteristic times of the wave becomes
comparable to the characteristic times of surfactants exchange between the interface and the bulk,
and the resulting modification of the surface rheology influences in a complex manner the damping
of the capillary waves [33–36].

The manifestation of such strong effect of the presence of surfactants even at very low con-
centration is consistent with previous observations on complex hydrodynamic phenomena. In an
identical geometry, Constante-Amores et al. [37] studied numerically the effect of surfactants on
the dynamics of a bubble bursting. They observed how the circular capillary wave is covered with
surfactants, and how surfactant gradients are becoming larger and larger when the wave converges at
the bottom of the collapsing cavity. They showed that these gradients lead to Marangoni flows strong
enough to influence the Worthington jets emitted after the collapse. Erinin et al. [38] have studied the
effects of surfactants on a mechanically generated plunging breaker. The experiments have revealed
that the presence of surfactants can strongly alter the dynamics of the plunging breakers, with a
particularly strong effect at low concentrations of surfactants. The authors observed numerically
that the surface tension gradients are maximal at the wave crest, thus leading to strong Marangoni
stresses that alter the wave breaking process, especially at low surfactant concentration.

These observations are consistent with the peak of attenuation detected in our experiments at low
concentration about CMC/10. In this context, we speculate that the disappearance of bubbling at
intermediate concentrations just before the CMC (colored area in Fig. 7) should correspond to the
emergence of another significant attenuation peak, which would not be detected in linear plane-wave
experiments. The existence of such an attenuation peak needs to be experimentally confirmed and
explained, which is beyond the scope of this paper. This observation is compatible with the remarks
of Philips et al. [23] and Prosperetti et al. [39] who reported seeing no bubbling when surfactant
is added to water. Our hypothesis is that the solutions they chose had a too high surface elasticity,
which is common with a washing-up liquid.
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VII. CONCLUSION

Drop impact experiments on a liquid bath were carried out by varying the surface tension γ

of the liquid, using pure water solutions, and water-ethanol and water-SDS mixtures at different
concentrations. The objective was to explore the influence of surface tension on bubble entrapment
in the pinch-off regime. Following the pioneering work by Pumphrey et al. [7] we constructed a
bubbling diagram in the plane (γ ,U ) (i.e., surface tension, drop impact velocity) and show that
the velocity range for bubble entrapment varies with surface tension in the water-ethanol solutions
at different concentrations. Notably, the conditions for bubbling in water-SDS solutions remain
distinctly different, even at the same surface tension values than for ethanol mixtures, indicating
that surface tension alone is not the sole relevant parameter.

To elucidate the solution properties that play a role in bubbling and understand the underlying
mechanisms, our initial focus centered on the cavity development phase, exhibiting a dependence
on both U and γ . Through analyses of cavity profiles, we measured the gravity and surface
potential energy of the cavity during its development. Notably, at maximum cavity development,
we found that only 40% of the drop impact energy is converted into potential cavity energy,
for all tested solutions, with surface tension from 24 to 72 mN/m and viscosity approximately
ranging from 1 to 3 mPa s. This suggests that the remaining energy is predominantly converted into
kinetic energy in the liquid bath. Furthermore, our findings revealed that the characteristic size and
development time of the cavity follow a master curve when plotted against drop impact energy, all
these quantities being rescaled by gravito-capillary quantities. Additionally, a naive model of cavity
growth considering only the impact energy and gravito-capillary parameters provided a satisfactory
description of the experimental observations. This validates the idea that the development phase
alone cannot explain the conditions leading to bubble pinch-off.

The measurements establishing the bubbling zones in the (U, γ ) plane were compared with
the scaling law We ∝ Frα frequently used in the literature for water. We also compiled a large
number of experimental and numerical data from the literature, including a wide range of viscosity
variations. It turns out that, as long as the viscosity of the solutions is close to that of water, the We-Fr
scaling law correctly describes the data as surface tension varies. However, as viscosity increases,
it must be considered and we have shown that the empirical law We ∝ Fr0.2 exp(1.8 Ca), with the
capillary number Ca = ηU/γ , satisfactorily describes bubbling conditions taking all parameters
(γ , ρ, η) into account. Considering that the capillary number is characteristic of the viscous damping
of a capillary wave, we have introduced an effective value for the quantity η/γ for water-SDS
solutions, thus reconciling their behavior with that of solutions without surfactant molecules. Our
hypothesis is that this effect arises from capillary-wave damping induced by Marangoni effects due
to the presence of surfactant molecules. This approach confirms the fundamental role of capillary
waves propagating along the cavity surface in bubble trapping mechanisms.

This work can be compared with bubble bursting experiments, revealing a striking similarity
with cavity retraction after drop impact. Both scenarios involve the propagation of a wave along the
cavity surface before retraction [16]. Recent investigations [37,40,41] have explored the influence
of interfacial molecules, for example on droplet production from the liquid jet expelled after cavity
retraction. Notably the presence of SDS has been linked to the generation of smaller and faster
droplets, while concentrations about CMC/2 result in their disappearance [41], again demonstrating
the complex effects of surfactant molecules in these fast hydrodynamic phenomena.
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APPENDIX: CRITICAL VISCOSITY PREDICTED BY THE BUBBLING LINE

Empirical law (10) can be used to determine a critical viscosity, above which no bubble can be
entrapped. Indeed, for a given liquid and droplet diameter, one can determine the speed for which
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gives the value of the velocity U for which bubbling is expected.

bubbling is obtained by rewriting (10) as

U 1.6 = f (U ) = 43γ

ρD1.2g0.2
exp(1.8Uη/γ ), (A1)

which can be solved graphically. Figure 8 shows two examples of graphical resolutions, related to
two experimental situations explored by Michon and co-workers [19]. For a viscosity of 1 mPa s,
there is a solution. But for 15 mPa s the two curves do not intersect, which is consistent with the
experimental observations: for this viscosity, no bubble was observed whatever the velocity of the
drop. Note here that while other empirical laws would also satisfactorily fit the experimental data in
Fig. 6(b), the exponential law has the advantage of being a simple law that additionally is consistent
with the existence of this critical viscosity, which is not the case, for example, with a linear law.
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