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This work deals with the stability of two-phase stratified air-water flows in horizontal
circular pipes. For this purpose, we performed a linear stability analysis, which considers
all possible three-dimensional infinitesimal disturbances and takes into account deforma-
tions of the air-water interface. The main results are presented in the form of stability
maps, which compare well with the available experimental data. The neutral stability
curves are accompanied by the corresponding wavenumbers and wave speeds of the critical
perturbations, as well as by spatial patterns of their velocity components. Accordingly,
several modes of the critical perturbation are revealed. Long waves are found to be the
critical perturbation over part of the stability boundary, and they are affected by the surface
tension due to the confinement effect of the lateral direction. Exploring the effect of pipe
diameter on the stability boundary and critical perturbations shows that for small water
holdups (i.e., thin water film) the scaling of the critical gas velocity by the gas Froude
number is valid for pipe diameters larger than about 0.1 m, where the surface tension effects
due to the lateral confinement become negligible. Comparing results obtained in pipe,
square-duct, and two-plate geometries, we show that there are cases where the simplified
geometry of two parallel plates can be employed to model the realistic geometry reasonably
well.

DOI: 10.1103/PhysRevFluids.9.093901

I. INTRODUCTION

In this paper, we extend our previous studies on stability of two-phase stratified flows be-
tween two infinite plates [1–3] and ducts with rectangular cross section [4,5] to flows in circular
pipes. Stratified flows are encountered in important industrial processes, such as gas-condensate
transport pipelines, heat exchangers, multilayer coating, and coextrusion of polymeric sheets (e.g.,
Refs. [6–8]). The main motivation of the present study is to find a stability boundary beyond which
the stratified flow with a smooth interface is unstable and transition to other flow patterns (e.g.,
stratified-wavy, annular, and intermittent flow) can take place. The stability diagrams are commonly
depicted in coordinates of superficial velocities of each phase (e.g., Refs. [9,10]). Although circular
pipes are of main practical interest and they are utilized in many experimental studies (e.g.,
Refs. [11–13]); the only attempt of rigorous theoretical study to treat the instability of two-phase
stratified pipe flows was done recently by Barmak et al. [14], where a general numerical framework
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FIG. 1. Schematics of stratified two-phase pipe flow (plane interface).

for performing such an analysis was presented and verified. In this study we apply this methodology
to perform a detailed parametric study of the stability of stratified air-water flows in circular pipes.

In theoretical studies, a widely used simplified approach to studying the stability of the two-phase
stratified flow is the so-called two-fluid (TF) mechanistic model (e.g., Refs. [15–19]). This approach
is critically dependent on the closure relations required to model the interaction of the base flow
with the interfacial disturbance (e.g., steady and wave-induced wall and interfacial shear stresses,
and velocity profile shape factors; see details in Refs. [19,20]). Moreover, an inherent assumption
of the stability analyses based on the TF model is the presence of long-wave perturbations, which
are not always the critical perturbations that trigger instability. Another approach is to refer to the
simpler two-plate (TP) geometry that allows to account for perturbations of all possible wavelengths
(e.g., Refs. [1,21–24]). This approach, nevertheless, cannot reveal how stability characteristics are
affected by the real geometry of a circular pipe, in particular by the presence of walls in the lateral
direction.

The effect of the lateral walls on the linear stability of single-phase flows was studied in
rectangular ducts (e.g., Refs. [25–27]). It was found that the critical Reynolds number is beyond 104

for ducts with a width/aspect ratio below approximately 3, whereas for single-phase Poiseuille flow
between two infinite plates, the critical Reynolds number is 5772 [28]. The stability of two-phase
flows, on the other hand, was only recently studied both numerically and experimentally for ducts of
a rectangular cross section [4,5,29]. The studies showed a good agreement between the numerical
results and experimental findings. However, results of a rigorous stability analysis of two-phase
stratified flows in circular pipes still remain unexplored.

Therefore, in this study, we adopt the numerical approach of Ref. [14] to explore the linear
stability of stratified air-water pipe flows with respect to arbitrary wavenumber disturbances. The
stability boundaries are plotted on the flow pattern maps. Along with the neutral stability curves,
we report the critical perturbation wavenumber and wave velocity. We also present cross-section
patterns of the critical perturbations that are responsible for the onset of the instability (i.e., the
most unstable perturbation modes). Furthermore, the effects of the pipe diameter and the conduit
geometry on the stability boundary and the critical perturbation are explored and discussed.

II. PROBLEM FORMULATION

We consider a two-phase stratified flow in a horizontal circular pipe of diameter D. The flow
is assumed to be isothermal. It is driven by a pressure gradient imposed in the direction of the
pipe axis. The flow configuration is sketched in Fig. 1. The volumetric flow rates of the heavy and
light fluids are Q1 and Q2, respectively. The superficial velocities of each phase are defined as the
corresponding flow rate divided by the pipe cross section, or U1S = Q1/A and U2S = Q2/A, where
A = πD2/4.
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FIG. 2. Stratified two-phase pipe flow with a plane interface (φ∗ = π ). Cross section of a circular pipe in
(a) Cartesian and (b) bipolar coordinates.

The two-phase stratified flow is described by the velocity u(k) and pressure p(k) fields that satisfy
the dimensionless continuity and momentum equations defined in each layer k = 1, 2 (1, heavy
fluid; 2, light fluid):

∇ · u(k) = 0, (1)

∂u(k)

∂t
+ (u(k) · ∇)u(k) = − 1

ρ (k)
∇p(k) + 1

Re(k) �u(k) + 1

Fr
eg, (2)

where the velocity is scaled by the mixture velocity Um = U1S + U2S , while the time and pressure are
scaled by D/Um and ρ2U 2

m, respectively. The dimensionless governing parameters are the density
and viscosity ratios, ρ12 = ρ1/ρ2 and μ12 = μ1/μ2, respectively; the Reynolds number of each
phase, Re(k) = ρkDUm/μk ; and the Froude number Fr = U 2

m/(gD), where g is the gravitational
acceleration. In the equations below we use only Re(2) and denote it simply as Re. eg is a unit
vector in the direction of gravity. ρ (k) = ρ12ρk/ρ1 is introduced for brevity of the notation.

Due to the big difference in densities between air and water, air-water flows are gravity dominated
with large Eötvös number, Eo = (ρ1 − ρ2)gD2/σ � 1, where σ is the surface tension coefficient.
The smooth stratified flow in such systems has a plane interface [30]. As discussed in detail in
Ref. [14], the convenient coordinate system for this flow geometry is bipolar cylindrical coordinates
(ξ, φ, z) (e.g., Refs. [31,32]). In these coordinates, the pipe wall corresponds to an isoline of the
coordinate φ: φ0 for the upper section of the pipe wall, and φ0 + π for the bottom of the pipe. The
interface separating two fluids is a surface defined as φη = φ∗ + η(ξ, z), where φ∗ = π for the plane
interface. The cross-section geometry is shown in Fig. 2. The heavy fluid (shown in blue) occupies
an infinite strip of (−∞ < ξ < +∞, π < φ < φ0 + π ) and the corresponding cross-section area
is A1 = 0.25D2(φ0 − 0.5 sin 2φ0). The light fluid (shown in red) is located in an infinite strip of
(−∞ < ξ < +∞, φ0 < φ < π ) and occupies the area of A2 = A − A1. The heavy phase holdup
is then defined as h = A1/A = (φ0 − 0.5 sin 2φ0)/π , so that h = 0 corresponds to single-phase air
flow, while h = 1 corresponds to single-phase water flow. On the other hand, the relative height of
the lower water layer differs, in general, from the holdup and is defined as h1 = H1/D = 0.5(1 −
cos φ0), where H1 is the height of the water layer. The dimensionless interface length also varies
with the holdup and is equal to lint = sin φ0.

The governing equations for the velocity field are coupled with the no-slip conditions at the pipe
wall, including the triple points (ξ → ±∞),

u(1)(φ = φ0 + π ) = u(2)(φ = φ0) = 0, (3)

and the boundary conditions at the interface.
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The absence of mass transfer across the interface is accounted for by the kinematic boundary
condition

u(k)
φ (φ = φη ) = Hφ

∂η

∂t
+ u(k)

ξ (φ = φη )
Hφ

Hξ

∂η

∂ξ
+ u(k)

z (φ = φη )Hφ

∂η

∂z
, (4)

where the Lamé coefficients (scale factors) for the bipolar coordinates are defined as

Hξ = Hφ = 1

2

sin φ0

cosh ξ − cos φ
. (5)

The velocity field is continuous across the interface; therefore,

u(1)(φ = φη ) = u(2)(φ = φη ). (6)

The interfacial boundary conditions require continuity of the tangential components of the
viscous stress tensor, i.e., τξφ in the plane (ξ, φ) and τφz in the plane (φ, z), while the discontinuity
in the normal component, which is the sum of the normal viscous stress σn and the pressure, is
balanced by the surface tension

τ
(1)
ξφ (φ = φη ) = τ

(2)
ξφ (φ = φη ), (7a)

τ
(1)
φz (φ = φη ) = τ

(2)
φz (φ = φη ), (7b)

[[−p + σn]]φ=φη
= − 1

We
∇ · n, (7c)

where n is a unit normal vector to the interface and double square brackets denote a jump in the
corresponding quantity across the interface. The Weber number is defined as We = ρ2DU 2

m/σ .
Detailed description of the governing equations and boundary conditions can be found in Ref. [14].

III. BASE FLOW

In the stability analysis, the base flow is assumed to be steady, laminar, and fully developed. The
axial velocity is the only nonzero component, and it depends only on the cross-section coordinates,
U (k) = (0, 0,U (k)

z (ξ, φ)). Then the base flow is defined by the steady-state momentum equation in
the z direction that reads

1

HφHξ

[
∂

∂ξ

(
Hφ

Hξ

∂U (k)
z

∂ξ

)
+ ∂

∂φ

(
Hξ

Hφ

∂U (k)
z

∂φ

)]
= μ1

μ12μk

∂P(k)

∂z
, (8a)

∂P(1)

∂z
= ∂P(2)

∂z
. (8b)

The base flow velocity is subject to the no-slip conditions at the pipe wall,

U (1)
z (φ = φ0 + π ) = 0, U (2)

z (φ = φ0) = 0. (9)

The base flow velocity and shear stress are continuous at the interface:

U (1)
z (φ = π ) = U (2)

z (φ = π ), (10)

μ12

(
∂U (1)

z

∂φ

)
φ=π

=
(

∂U (2)
z

∂φ

)
φ=π

. (11)

For a plane unperturbed interface, continuity of the normal stress results in continuity of the pressure
across the interface:

P(1)(φ = π ) = P(2)(φ = π ). (12)
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Integration of the base flow velocity profiles over the lower- and upper-layer cross-section areas
yields a relative contribution of each fluid into the prescribed total volumetric flow rate, which can
be written as a ratio of the corresponding superficial velocity to the mixture velocity:∫ φ0+π

π

∫ +∞

−∞
U (1)

z Hξ Hφdξdφ = U1S

Um
, (13a)

∫ π

φ0

∫ +∞

−∞
U (2)

z Hξ Hφdξdφ = U2S

Um
. (13b)

For a specific two-phase system with particular physical properties of fluids and pipe diameter,
the holdup and dimensionless base flow velocity profile are uniquely defined by the volumetric flow
rate ratio, q12 = Q1/Q2 = U1S/U2S (see, e.g., Ref. [14]).

IV. LINEAR STABILITY

Linear stability of the base flow is studied with respect to infinitesimal perturbations. The velocity
and pressure of the perturbed flow are

u(k) = U (k)(ξ, φ) + u′(k)(ξ, φ, z), (14)

p(k) = P(k)(ξ, φ) + p′(k)(ξ, φ, z), (15)

while the perturbed interface is described as a surface φ = π + η(ξ, z, t ), where η denotes the
deviation of the interface from the undisturbed plane state. The infinitesimal perturbations are
presented as ⎛

⎝u′(k)

p′(k)

η

⎞
⎠ =

⎛
⎝ũ(k)(ξ, φ) = [

ũ(k)
ξ (ξ, φ), ũ(k)

φ (ξ, φ), ũ(k)
z (ξ, φ)

]
p̃(k)(ξ, φ)

η̃(ξ )

⎞
⎠e(iαz+λt ), (16)

where α is the real wavenumber and λ = λR + iλI is the complex time increment of the perturbation.
The dimensionless wave speed is then defined as c = −λI/α.

The linearized equations for the perturbation amplitude [Eq. (16)] are

1

Hξ

∂ ũ(k)
ξ

∂ξ
+ 1

Hφ

∂ ũ(k)
φ

∂φ
− 2

sinh ξ

sin φ0
ũ(k)

ξ − 2
sin φ

sin φ0
ũ(k)

φ + iαũz = 0, (17)

λũ(k)
ξ + iαU (k)

z ũ(k)
ξ = − ρ1

ρ12ρk

1

Hξ

∂ p̃(k)

∂ξ

+ 1

Re

ρ1

ρ12ρk

μ12μk

μ1

[
1

Hξ Hφ

∂

∂ξ

(
Hφ

Hξ

∂ ũ(k)
ξ

∂ξ

)
+ 1

Hξ Hφ

∂

∂φ

(
Hξ

Hφ

∂ ũ(k)
ξ

∂φ

)
− α2ũ(k)

ξ

− 4
sin φ

sin φ0

1

Hξ

∂ ũ(k)
φ

∂ξ
+ 4

sinh ξ

sin φ0

1

Hφ

∂ ũ(k)
φ

∂φ
+ 4

cos2 φ − cosh2 ξ

sin2 φ0
ũ(k)

ξ

]
, (18a)

λũ(k)
φ + iαU (k)

z ũ(k)
φ = − ρ1

ρ12ρk

1

Hξ

∂ p̃(k)

∂φ

+ 1

Re

ρ1

ρ12ρk

μ12μk

μ1

[
1

Hξ Hφ

∂

∂ξ

(
Hφ

Hξ

∂ ũ(k)
φ

∂ξ

)
+ 1

Hξ Hφ

∂

∂φ

(
Hξ

Hφ

∂ ũ(k)
φ

∂φ

)
− α2ũ(k)

φ

+ 4
sin φ

sin φ0

1

Hξ

∂ ũ(k)
ξ

∂ξ
− 4

sinh ξ

sin φ0

1

Hφ

∂ ũ(k)
ξ

∂φ
+ 4

cos2 φ − cosh2 ξ

sin2 φ0
ũ(k)

φ

]
, (18b)
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λũ(k)
z + ũ(k)

ξ

Hξ

∂U (k)
z

∂ξ
+ ũ(k)

φ

Hφ

∂U (k)
z

∂φ
+ iαU (k)

z ũ(k)
z

= −iα
ρ1

ρ12ρk
p̃(k) + 1

Re

ρ1

ρ12ρk

μ12μk

μ1

×
[

1

Hξ Hφ

∂

∂ξ

(
Hφ

Hξ

∂ ũ(k)
z

∂ξ

)
+ 1

Hξ Hφ

∂

∂φ

(
Hξ

Hφ

∂ ũ(k)
z

∂φ

)
− α2ũ(k)

z

]
. (18c)

The no-slip condition at the pipe wall is formulated for the perturbation amplitude [Eq. (16)] as

ũ(1)(φ = φ0 + π ) = ũ(2)(φ = φ0) = 0. (19)

To derive the linearized form of the interfacial boundary conditions, we use the Taylor expansion
around the unperturbed interface φ = π . The kinematic boundary condition [Eq. (4)] for the
perturbed flow reads

λHφη̃ = ũ(1)
φ − iαU (1)

z (φ = π )Hφη̃ = ũ(2)
φ − iαU (2)

z (φ = π )Hφη̃. (20)

The continuity of velocity components is

ũ(1)
ξ (φ = π ) = ũ(2)

ξ (φ = π ), (21a)

ũ(1)
φ (φ = π ) = ũ(2)

φ (φ = π ), (21b)

ũ(1)
z (φ = π ) = ũ(2)

z (φ = π ) +
(

1

Hφ

∂U (2)
z

∂φ

∣∣∣∣
φ=π

− 1

Hφ

∂U (1)
z

∂φ

∣∣∣∣
φ=π

)
Hφη̃. (21c)

The interfacial boundary conditions require also continuity of the tangential stresses in planes (ξ, φ)
and (φ, z) and a jump in the normal shear stress. After linearization, they read

μ12
1

Hφ

∂ ũ(1)
ξ

∂φ

∣∣∣∣∣
φ=π

− 1

Hφ

∂ ũ(2)
ξ

∂φ

∣∣∣∣∣
φ=π

+ (μ12 − 1)
1

Hξ

∂ ũφ

∂ξ

∣∣∣∣∣
φ=π

−iα(μ12 − 1)
1

Hξ

∂Uz

∂ξ
Hφη̃

∣∣∣∣∣
φ=π

+ 2(μ12 − 1)
sinh ξ

sin φ0
ũφ (φ = π ) = 0, (22a)

iα(μ12 − 1)ũφ (φ = π ) − (μ12 − 1)
1

Hξ

∂Uz

∂ξ

1

Hξ

∂
(
Hφη̃

)
∂ξ

∣∣∣∣∣
φ=π

+
[
μ12

1

Hφ

∂

∂φ

(
1

Hφ

∂U (1)
z

∂φ

)
− μ12

1

Hξ

∂U (1)
z

∂ξ

2 sinh ξ

sin φ0

− 1

Hφ

∂

∂φ

(
1

Hφ

∂U (2)
z

∂φ

)
+ 1

Hξ

∂U (2)
z

∂ξ

2 sinh ξ

sin φ0

]
φ=π

Hφη̃ +
(

μ12
1

Hφ

∂ ũ(1)
z

∂φ
− 1

Hφ

∂ ũ(2)
z

∂φ

)∣∣∣∣∣
φ=π

= 0,

(22b)

( p̃(2) − p̃(1) )

∣∣∣∣
φ=π

+ 1

Fr
(ρ12 − 1)

(
− cosh ξ + sinh2 ξ

cosh ξ − cos φ

)
Hφη̃

∣∣∣∣∣
φ=π

+ 2

Re

(
μ12

Hφ

∂ ũ(1)
φ

∂φ
− 1

Hφ

∂ ũ(2)
φ

∂φ

)∣∣∣∣∣
φ=π

− 4

Re
(μ12 − 1)

sinh ξ

sin φ0
ũξ

∣∣∣∣∣
φ=π

= − 1

We

[
1

Hξ

∂

∂ξ

(
Hφ

Hξ

∂η̃

∂ξ

)
− 2

Hφ

Hξ

∂η̃

∂ξ

sinh ξ

sin φ0
− α2Hφη̃

]
. (22c)
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V. NUMERICAL METHOD

The stability problem formulated in the previous section is solved using the finite-volume
method. We use a staggered quadrilateral grid, whose faces coincide with the coordinate lines
in the bipolar coordinates, so that the scalar values of pressure p, the base flow velocity U (k)

z ,
and the axial velocity of the perturbation, u(k)

z , are calculated in the cell centers defined by the
integer indices [ξi, φ j], where i = 0, 1, . . . , Nξ and j = 0, 1, . . . , Nφ . In the following, the tilde
symbol is omitted above the perturbation amplitude. The two other components of the perturbation
velocity, u(k)

ξ and u(k)
φ , are calculated on the cell faces [ξi+1/2, φ j] and [ξi, φ j+1/2], respectively,

where ξi+1/2 = (ξi + ξi+1)/2 and φ j+1/2 = (φ j + φ j+1)/2. The holdup is found as a function of
the specified input flow rates, so that the mesh distribution in the φ direction is changing in the
process of the baseflow solution. The number of cells in each sublayer (phase) is then proportional
to its relative height [i.e., Nlower/Nφ = (π − φ0)/π for the light phase, shown in red in Fig. 2].

The hyperbolic tangent stretching is used in the ξ direction,

ξ → ξmax

(
tanh[aξ (ξ − 1)]

tanh(aξ )
+ tanh(aξ ξ )

tanh(aξ )

)
, (23)

where ξ denotes originally uniformly distributed (between 0 and 1) grid cells and aξ = 5 is the
stretching parameter that determines the degree of clustering, so that the cells are redistributed to be
more dense near the midplane (around ξ = 0). ξmax is the grid cutoff parameter that determines the
location of the boundary cell adjacent to the triple point. Following Ref. [14], ξmax = 3π is chosen.
In the φ direction, the grid is stretched using the sine function near the pipe walls and at both sides
of the interface as follows:

φ → φ − aφ sin(2πφ), (24)

where aφ = 0.12 and φ denotes originally uniformly distributed (between 0 and 1) grid cells in
each sublayer. After applying the sine stretching [Eq. (24)], the φ coordinates in the heavy phase
(shown in blue in Fig. 2) are obtained as φ → φφ0 + π , and in the light phase (red in Fig. 2) as
φ → φ(π − φ0) + φ0. In Ref. [14], it was demonstrated that the number of computational cells in
each direction sufficient to obtain a solution converged at least in three decimal digits is equal to
Nξ = Nφ = 200 for the considered problem.

The discretization of the linearized governing equations [Eqs. (17)–(18c)] and boundary condi-
tions [Eqs. (19)–(22)] reduces the linear stability problem to a generalized eigenvalue problem:

λ · B · v = J · v, (25)

where λ = λR + iλI is the eigenvalue and the corresponding eigenvector is the perturbation am-
plitude, v = (uξ , uφ, uz, p,�η)

T
. B is a diagonal matrix with the elements corresponding to time

derivatives of ũ and η equal to 1. On the other hand, the diagonal elements corresponding to p and
the boundary conditions without time derivatives (all except for the kinematic one) are zeros, so
that det B = 0. J is the Jacobian matrix defined by the right-hand side of the linearized equations.
The real part of the eigenvalue, λR, determines the growth rate of the perturbation, so that the flow
is considered unstable when there exists an eigenvalue with a positive real part. Considering all
possible wavenumbers, the eigenvalue with the largest λR and the corresponding eigenvector are
referred to as the leading or the most unstable one.

The generalized eigenvalue problem [Eq. (25)] is solved by the Arnoldi iteration in the shift-and-
inverse mode using the ARPACK package of Ref. [33] in FORTRAN:

(J − λ0 · B)−1 · B · v = ϑ · v, (26)

where ϑ = 1/(λ − λ0) and λ0 is a complex shift. More details on the present numerical approach
and its validation can be found in Ref. [14].
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FIG. 3. Dimensionless base flow velocity scaled by its maximum value, Uz/max(Uz ). Air-water pipe flow,
D = 0.05 m. (a) h = 0.1, (b) h = 0.52, and (c) h = 0.95. The unperturbed interface is denoted by the horizontal
dashed black line; the cross-section centerline is denoted by the vertical dash-dotted black line.

VI. RESULTS AND DISCUSSION

There are six dimensionless parameters that govern the stability problem of horizontal two-phase
stratified flow in a circular pipe. These parameters include the flow rate ratio, q12 = U1S/U2S , and the
viscosity ratio, μ12, which uniquely define the base flow solution, i.e., the heavy phase holdup and
dimensionless velocity profile. Four additional dimensionless parameters are required to determine
the flow stability: the density ratio ρ12, the Reynolds number of one of the phases, e.g., Re(2),
the Froude number Fr, and the Weber number We. For such a large parameter space, an overall
parametric analysis seems unfeasible. Therefore, we focus on air-water flows, thereby fixing μ12

and ρ12.
In the following, we study the flow stability with respect to all possible three-dimensional

infinitesimal disturbances, using the numerical approach presented and verified in Ref. [14]. We vary
the superficial velocity of air and water to cover the whole range of holdups starting from the very
thin film of the heavy phase (low holdup) and up to the very thin film of the light phase (high holdup).
For the sake of easier comparison with experimental data and further physical interpretations, the
obtained results are summarized in the form of the stability boundaries on a flow pattern map with
the axes of superficial velocities of each phase.

A. Case study

Air-water flows are associated with large density and viscosity ratios, e.g., ρ12 = 1000 and μ12 =
55, respectively. The case study is a flow in a horizontal circular pipe of diameter D = 0.05 m.

For a given two-phase system, the base flow with a smooth interface is uniquely defined by the
ratio of superficial velocities, U1S/U2S . In particular, the water holdup [i.e., the relative cross-section
area occupied by the lower (water) layer] can be found. The dimensionless base velocity (scaled by
the mixture velocity Um) is also uniquely defined by the flow rate ratio. Its contours are shown in
Fig. 3 for holdups 0.1, 0.52, and 0.95. For these holdups, the base flow velocity profiles are shown
at the vertical centerline (x = 0) and at the interface between air and water in Figs. 4(a) and 4(b),
respectively.

The water flow rate is less than that of air (U1S < U2S) for a wide range of holdups, up to h ≈
0.81. For all water holdups, even very high, the maximum of the base flow velocity is reached at
the air phase, on the vertical centerline of the cross section (Fig. 3). Since the base flow velocity
distribution in a horizontal pipe does not depend on densities of the phases (see Sec. III), this is a
result of high viscosity ratio between the water and air. In the case of a very thin air layer, h � 0.95
(U1S/U2S � 12.885), there is a secondary velocity maximum at the interface, and in its vicinity
the water velocity gradients in the vertical direction are small [e.g., Fig. 3(c) and the black line in
Fig. 4(a) for h = 0.95]. The maximum of the dimensionless base flow velocity, Uz, is reached for the
holdup of about 0.75 and is equal to Umax ≈ 5.14 [not shown, but similar to the case of h = 0.52, for
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FIG. 4. Base flow. Air-water pipe flow, D = 0.05 m. (a) Velocity profiles at x = 0. The locations of
the unperturbed interface are denoted by corresponding horizontal dashed lines. (b) Velocity profiles at the
interface. (c) Interfacial shear stress.

which max(Uz ) = 3.87; see Fig. 3(b) and the dashed green line in Fig. 4(a)]. In a circular pipe, the
interface length varies strongly with the holdup (see Sec. II) and equals 0.72D, 0.99D, and 0.59D
for the three considered holdups. Therefore, the profiles at the interface are shown with respect to
coordinate x scaled by lint.

As shown in Ref. [32] and further investigated in Refs. [34,35], the solution for the base flow
predicts very large and diverging wall and interfacial shear stresses upon approaching the triple
point, when the contact angle between the interface and the pipe wall as seen from the less viscous
phase is sharp (i.e., π − φ0 < π/2). In the case of the air-water flow, it happens when the water
occupies more than half the pipe, i.e., h > 0.5 and φ0 > π/2. This can be observed in Fig. 4(c)
for h = 0.95, when the interfacial shear stress exerted by the air on the water, τint, achieves very
large negative values (in fact, τint → −∞) for x → ±1. For small water holdups, e.g., h = 0.1 [red
line in Fig. 4(c)], the faster air phase drags the water all along the interface, so that τint � 0. Once
h > 0.5, there is a region near the triple point where the air is pulled by the water phase (τint < 0).
With higher holdup, this region expands to the pipe center. It was found that, although the values
of shear stress diverge (go to infinity), their integral around the triple point, i.e., the friction force,
stays finite. Our numerical solution in bipolar coordinates allows us to reproduce the analytically
obtained exponential growth of the interfacial shear stresses [34], when the cutoff length ξmax � 3π .

The critical point on the neutral stability boundary for a particular holdup is found by increasing
both superficial velocities, starting from very small values, while keeping their ratio constant, until
the real part of the leading eigenvalue for any wavenumber α changes sign from negative to positive,
i.e., becomes unstable. At the critical point, the perturbations of all wavenumbers α are damped in
time (λR < 0), except for the critical wavenumber αcrit, for which max(λR) = 0, meaning that the
perturbation is neutrally stable. By identifying the critical superficial velocities for a wide range of
water holdups (h ∈ [0.02, 0.97]), the stability boundary of a smooth stratified flow pattern is found
with respect to perturbations of all wavenumbers. It is shown in Fig. 5 as a solid blue curve on
the flow pattern map with the air and water superficial velocities on the axes. The stable region for
smooth stratified flow obtained for relatively low superficial velocities is denoted by “S”, while
the unstable one for larger U1S and U2S is denoted by “U.” Of particular interest is long-wave
perturbation, which is the basic assumption in some mechanistic models, e.g., the two-fluid model.
It is observed that the stability boundary with respect to long-wave perturbations, which is depicted
by a dashed black line, overpredicts the stable region.

Experimental flow-pattern data are available for the pipe diameter chosen for the case study (e.g.,
Refs. [11,13]). In Ref. [13], the pipe diameter was slightly different, i.e., D = 2 in. ≈ 5.1 cm. More-
over, the flow patterns in the experiments were determined by visual observations with relatively
large steps in superficial velocities (see the experimental points depicted in Fig. 6). Therefore, only
the qualitative comparison between theoretical and experimental results is possible. For the range of
U1S ∈ [0.002, 0.1], a good agreement is found between the critical U2S|crit obtained in the stability
analysis and the experimentally found transition from the stratified-smooth to stratified-wavy flow
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FIG. 5. Stability boundaries for all wavelengths (solid blue line) and long-wave (dashed black line)
perturbations of the air-water flow in a pipe of diameter D = 0.05 m.

patterns (Fig. 2 of Ref. [13]). The numerical results are also close to the average distribution of the
large experimental data sets of Ref. [11].

The stability boundary can be alternatively presented in terms of the water holdup. The blue
curve in Fig. 7(a) corresponds to the blue curve in Fig. 5 and shows the critical superficial velocity
of the heavy phase as a function of holdup. Figure 7(b) shows the critical wavenumber, αcrit, and
the corresponding wave speed scaled by the average water velocity for points along the stability
boundary. According to the critical wavenumbers, five critical modes can be distinguished. The
critical wave speed is about four times the average water velocity and about twice the interfacial
velocity (see Table I) for most of the holdups, except for the very small (h < 0.03) and large (h >

0.9) holdups. For these extreme holdups, the strong confinement effect due to the curved walls
slows down the wave, and its velocity is lower than the interfacial velocity at the pipe centerline.
For very low water holdups (<0.03) and when the water occupies more than half of the pipe, i.e., h ∈
[0.52, 0.9], the critical perturbation is long wave (αcrit → 0), denoted as αcrit = 0.001 in Fig. 7(b).
This is due to the fact that convergence for small, but nonzero, values of the wavenumber α (long-
wave limit) is reached, starting from α = 0.001, as was elaborated in Ref. [14]. The long-wave
stability boundary calculated for the whole range of holdups is also shown in Fig. 7(a).

Contrarily to the two-plate geometry [1], where for long waves there is no critical water
superficial velocity for low air velocities, in pipe flow, the long-wave stability region is bounded
for the whole range of holdups. However, long-wave perturbations, which is the basic assumption
in the widely used two-fluid model, are not critical for other holdups. Three distinct regions are

FIG. 6. Stability boundary predicted by the present numerical analysis (solid blue line, same as in Fig. 5)
and the experimental data of Refs. [11,13] for the air-water flow in a pipe of diameter D = 0.05 m.

093901-10



INSTABILITY OF STRATIFIED AIR-WATER FLOWS IN …

FIG. 7. Critical parameters along the stability boundary (Fig. 5) as functions of holdup: (a) critical
superficial velocity of water, U1S; (b) wavenumber (blue circles) and wave speed scaled by the average water
base flow velocity cw = ccritUmh/U1S (red squares) for some of the holdups.

observed along the stability boundary [Fig. 7(b)]. In a range of holdups between 0.03 and 0.2, the
flow stability is defined by short-wave perturbations, whose wavenumber decreases continuously
from ≈6.7 to 4. When the holdup exceeds a value of 0.2 (U1S = 0.018 m/s, U2S = 3.159 m/s), an
abrupt change in the critical mode takes place, from one with αcrit ≈ 4 to a mode with a larger
wavenumber, αcrit ≈ 10.5 (smaller wavelength). Starting from the holdup of 0.2 and up to 0.52,
αcrit decreases to ≈7.5, when another abrupt change in the critical wavenumber is observed and the
long-wave perturbation becomes critical. To analyze this abrupt change in the critical wavenumber,
one can analyze the growth rate of perturbations with respect to wavenumber at h = 0.51 (red line
in Fig. 8). At this point, i.e., U1S = 0.084 m/s, U2S = 1.092 m/s, αcrit = 7.45 (shown as red circle),
while the secondary maximum is at α ≈ 3. The values of the growth rate λR, get close to zero also
for α → 0, since λR is scaled with α2 for long waves, i.e., λR/α2 = const. This is demonstrated
by straight lines of λR/α for α → 0 in Fig. 8(b), where an enlargement of the long-wave region
is presented (the calculations for this figure were performed with resolution of �α = 0.01). When
increasing the holdup to 0.52 (dashed black line in Fig. 8), the critical mode switches to long waves
(black circle), while the short waves are stable (λR < 0) with local maxima at α ≈ 3 and at α ≈ 7.45.

The three components of the velocity of the critical perturbations are shown in Figs. 9 and 10
by their amplitude, which depends on two cross-section coordinates [Eq. (16)]. In linear stability
analysis, the perturbation amplitude is defined to within multiplication by a constant. For the
purpose of presentation, it is scaled by the maximal absolute value of the axial perturbation
velocity, max(|uz|). As pointed out above, for very low holdups, the critical perturbation is long
wave (αcrit → 0). For h = 0.1, the critical perturbation is short wave with αcrit = 4.683, and the

TABLE I. Critical parameters for air-water flow in a circular pipe with D = 0.05 m. Uint is the dimension-
less interfacial velocity at x = 0.

U1S|crit (m/s) U2S|crit (m/s) h Uint αcrit ccrit

0.000781 10.410 0.02 0.009593 → 0 0.007737
0.007219 5.093 0.1 0.035995 4.683 0.064243
0.033600 2.168 0.3 0.127212 9 0.230111
0.084345 1.092 0.51 0.332493 7.454 0.545201
0.087089 1.048 0.52 0.361668 → 0 0.584886
0.092859 0.276 0.7 0.859151 → 0 1.875878
0.362804 0.028 0.95 1.865712 4 0.251130
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FIG. 8. (a) Growth rate of perturbation as a function of wavenumber for two different holdups along the
stability boundary (Fig. 5). (b) Enlargement on the long-wave region (small wavenumbers α). Growth rate
scaled by the wavenumber.

amplitude of the velocity components of the critical perturbation is shown in Figs. 9(a)–9(c) and
11. The maximal axial-velocity perturbation is located at the center of the interface on its upper
(air) side. Note that there is a jump in the axial velocity of the perturbation across the interface
because of its deformation [Eq. 21(c)]. The difference between the axial air and water velocities
at the interface can be seen below in Fig. 11(b) for h = 0.1, 0.52, 0.95. The axial velocities in the
water phase are much smaller (less than 0.05) than the maximal value. Farther from the interface,
the axial velocity decreases drastically also in the air phase. However, once the air layer becomes
thinner (i.e., h > 0.52), the perturbation amplitude of the axial velocity reaches a local maximum
of ≈0.65 max(|uz|) in the air bulk for h = 0.95.

The lateral, ux, and vertical, uy, velocity components are smaller than the axial one for all the
critical perturbations obtained along the stability boundary for the considered pipe flow. For short-

FIG. 9. Amplitude contours of the critical perturbation. Air-water pipe flow, D = 0.05 m. [(a)–(c)] h = 0.1.
[(d)–(f)] h = 0.51. [(a), (d)] Lateral component of velocity, [(b), (e)] vertical component of velocity, and [(c),
(f)] axial velocity. The unperturbed interface is denoted by a horizontal dashed black line, and the cross-section
centerline by a vertical dash-dotted black line.
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FIG. 10. Amplitude contours of the critical perturbation. Air-water flow in a circular pipe of diameter
D = 0.05 m. [(a)–(c)] h = 0.52. [(d)–(f)] h = 0.95. [(a), (d)] Lateral component of velocity, [(b), (e)] vertical
component of velocity, and [(c), (f)] axial velocity. The unperturbed interface is denoted by a horizontal dashed
black line, and the cross-section centerline by a vertical dash-dotted black line.

wave perturbations, they are an order of magnitude smaller, e.g., max(|ux|) = 0.18 and max(|uy|) =
0.067 for h = 0.1, and either of these components can be the larger one [see Figs. 9(d)–9(f) and
10(d)–10(f)]. For long-wave perturbations, the axial component of velocity is larger by several
orders of magnitude than the lateral and vertical components [compare color bar limits between
Figs. 10(a)–10(c)]. The lateral and vertical velocities of long-wave perturbations are scaled by α;
i.e., |ux|/α and |uy|/α stay constant for α � 0.001. Due to the flow symmetry, there is no flow across
the vertical centerline, x = 0, so that ux(x = 0) = 0 [Fig. 12(a)]. The maximum of the perturbation

FIG. 11. Velocity amplitude profiles of the critical perturbations (Figs. 9 and 10) at x = 0. Air-water pipe
flow, D = 0.014 m. (a) Lateral component divided by its maximal value and (b) vertical component divided by
its maximal value. The locations of the unperturbed interface are denoted by corresponding horizontal dashed
lines.
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FIG. 12. Amplitude profiles of the critical perturbations at the interface (Figs. 9 and 10). Air-water
pipe flow, D = 0.014 m. (a) Lateral velocity component divided by its maximal value, (b) vertical velocity
component divided by its maximal value, and (c) interfacial displacement normalized by its maximum.

amplitude ux lies either in the air phase in the vicinity of the interface (e.g., for small water holdups)
or at the interface itself (e.g., for h � 0.52), when there is a secondary maximum in the upper part
of the pipe. The amplitude of the vertical velocity component, uy, of the critical perturbation reaches
its maximum in the air phase. For h = 0.1, 0.51, the maximum is close to the triple points. Those
regions of the pipe are also characterized by dense clustering of the perturbation amplitude contour
lines, since significant interfacial and wall shear stresses act on the flow there. On the other hand,
for larger holdups, i.e., h = 0.52, 0.95, the maximum of uy is located at the centerline, x = 0 [see
Figs. 10(b), 10(e), and 11(a)].

Figure 12 shows the distribution along the interface of the two cross-section velocity components
and the interfacial displacement of the critical perturbation. The latter is related to the vertical
velocity through the kinematic boundary condition [Eq. (20)] that describes the interface as a
transport barrier for each phase. Worth noting is that for low holdups, the maximal interface
displacement is away from the pipe vertical centerline [Fig. 12(c)]. As mentioned above, in the
considered air-water flow, the maximal values of the critical perturbation amplitude are reached at
the interface, so that the interfacial instability can be expected. Thereby the interface will not remain
smooth upon crossing the stability boundary.

B. Effect of pipe diameter

In the previous section, we analyzed linear stability in a pipe of particular diameter D = 0.05 m.
In contrast to single-phase channel flow, stability characteristics of the two-phase stratified flow, in
particular critical superficial velocities, are strongly affected by the channel size (e.g., Ref. [1]).

In order to analyze the effect of diameter, we consider a flow in a pipe of diameter D = 0.014 m.
The stability boundary for the flow is obtained for the whole range of water holdups in the same
manner as for the pipe of larger diameter. It is shown by a dashed red line on the flow pattern map
in Fig. 13(a).

FIG. 13. Effect of the pipe diameter on stability boundary: (a) stability boundaries on the flow pattern map,
(b) critical water superficial velocity as a function of holdup, and (c) wavenumber of the critical perturbation
versus holdup.
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TABLE II. Critical parameters for air-water flow with low water holdup (h = 0.03, U1S/U2S = 1.536 ×
10−4) in circular pipes of different diameters. We2S = ρ2DU 2

2S/σ . Re2S = ρ2DU2S/μ2.

D (m) U1S|crit (m/s) U2S|crit (m/s) αcrit ccrit We2S|crit Re2S|crit

0.002 0.00253 16.477 → 0 0.0114 7.541 1830.8
0.005 0.00175 11.416 → 0 0.0114 9.051 3171.2
0.01 0.00133 8.682 → 0 0.0114 10.469 4823.4
0.014 0.00128 8.303 → 0 0.0113 13.405 6457.9
0.02 0.00125 8.138 4.889 0.0236 18.398 9042.7
0.05 0.00142 9.262 6.411 0.0243 59.571 25727.5
0.1 0.00189 12.316 6.082 0.0237 210.668 68421.6
0.2 0.00263 17.146 5.408 0.0234 816.663 190515.5

Comparing it with the stability boundary for D = 0.05 m (blue line), the decrease in diameter is
found to result in a smaller stable region for the whole range of holdups. Note that the dimensionless
base flow characteristics do not depend on the pipe diameters; therefore, the same flow rate ratios in
two systems correspond to the same holdups. The critical water superficial velocities for the same
holdup [Fig. 13(b)] are almost not affected by the pipe diameter for low values of the holdup (h <

0.05). For high holdups (h > 0.9), however, the critical perturbation in the pipe of smaller diameter
is long wave, while there is a shift to short-wave perturbations for the larger diameter of D = 0.05 m
[Fig. 13(c)]. For D = 0.014 m, there are three modes that can be distinguished for intermediate
holdups. For a range of holdups less than 0.4, the stability boundary is defined by the short-wave
perturbations. The critcal wavenumber decreases gradually from αcrit ≈ 4.3 (for h ≈ 0.035) to 3 (for
h = 0.4). Then there is a mode change to the lower αcrit = 0.08 (higher wavelength). For higher
holdups up to 0.52, this critical mode evolves continuously into the long-wave perturbation with
increase of holdup up to 0.52, which then dominates the neutral stability boundary up to very high
values of holdup.

The pipe diameter effect on the critical stability characteristics is shown in Table II and Fig. 14
for low water holdup, where transition from the stratified-smooth to stratified-wavy flow patterns
is expected (e.g., for h = 0.03, which corresponds to U1S/U2S = 1.536 × 10−4, in Fig. 14). As
shown, with zero surface tension and for long-wave perturbations, the growth in the critical
air superficial velocity U2S|crit (dotted red line) is scaled with the superficial air Froude number
(Fr2S|crit = U 2

2S|crit/(gD) ≈ 211, dash-dotted dark green line). Yet, for small diameters, the air-water
surface tension has a strong stabilization effect also for long waves (due to the capillary force in the

FIG. 14. Effect of pipe diameter on the critical air velocity for low water holdup (h = 0.03).
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FIG. 15. Amplitude contours of the critical perturbation. Axial velocity in a circular pipe of diameter
(a) D = 0.005 m (long-wave perturbation, α → 0) and (b) D = 0.2 m (short-wave perturbation, α = 5.5).
(c) Lateral and (d) vertical components of the perturbation velocity for D = 0.2 m. The unperturbed interface
is denoted by a horizontal dashed black line, and the cross-section centerline by a vertical dash-dotted black
line.

lateral direction) and U2S|crit decreases with D (up to D ≈ 0.02 m). However, the decrease of U2S|crit

with D is more moderate than that predicted by a constant Weber number (see Table II). Once
the effect of the surface tension becomes small, for pipe diameters of D � 0.1 m, U2S|crit increases
according to the Fr2S scaling.

Considering only long-wave perturbation (α → 0, dashed black line with squares), the critical
Froude number is the same as for the case with zero surface tension (Fr2S|crit ≈ 211) and the wave
speed scaled by the average water base flow velocity is cw = ccritUmh/U1S ≈ 2 for D � 0.1 m. The
axial-velocity pattern of the critical long-wave perturbation (e.g., for D = 0.005 m) is shown in
Fig. 15(a). However, for D � 0.02 m, the short-wave perturbations become the critical one (dashed
blue line with circles). Its wavenumber varies in the range of ≈5–6.5, and its wave speed is cw ≈
4.5. Another feature of these critical conditions is that Fr2S|crit stays also approximately constant,
Fr2S|crit ≈ 150 (dash-dotted dark red line in Fig. 14). The patterns of the three velocity components
of the critical short-wave perturbation are shown in Figs. 15(b)–15(d) and found to be similar to
the critical (short-wave) perturbation for D = 0.05 m and the holdup of 0.1 [Figs. 9(a)–9(c)]. This
perturbation can be classified as the interfacial mode of instability, although its pattern is different
from that of the critical long-wave perturbation [Fig. 15(a)].
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FIG. 16. Amplitude profiles of the interfacial displacement (normalized by its maximum) of the long- and
short-wave critical perturbations for D = 0.005 m and D = 0.2 m, respectively.

The two critical modes are also distinct on the interface (Fig. 16): whereas the maximum of its
displacement is at the center for long waves, the interface deforms more strongly near the pipe wall.
This can be explained by the strong wall shear, the result of which is also seen in the velocity patterns
of the short-wave critical perturbation [Figs. 15(b)–15(d)]. For all the considered pipe diameters, the
velocity pattern of the long-wave perturbation looks the same as in Fig. 15(a), even when it ceases
to be the most unstable perturbation for D � 0.02 m.

C. Effect of channel geometry

As mentioned in the Introduction, most stability studies considered two-phase stratified flows
in the simplified two-plate geometry. Such analysis completely disregards the presence of lateral
walls in the channel cross section, thereby assuming it to be one dimensional. The only geometrical
parameter characterizing such a system is the distance between two plates. If this distance is equal
to the pipe diameter D = 0.014 m, then one can compare stability characteristics obtained in the
simplified geometry with those obtained in channels with the realistic square duct and circular pipe
cross sections. The details of stability analysis in the TP geometry can be found in Ref. [1].

The stability boundary for air-water flow between two plates is shown by black dots in Fig. 17.
Comparing it with the stability boundary for the circular pipe geometry, which is shown in blue and
discussed in detail above [shown in blue in Fig. 17(a)], one can see the apparent difference between
results for the whole range of holdups. For low holdups up to h ≈ 0.6, the critical superficial

FIG. 17. Effect of geometry on stability boundaries of air-water flow in channels with characteristic size
D = 0.014 m: (a) stability map, (b) critical water superficial velocity as a function of holdup, and (c) critical
water superficial velocity as a function of the (dimensionless) interface height.
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FIG. 18. Effect of geometry on the axial velocity of the critical perturbation of air-water flow in channels
with characteristic size D = 0.014 m: (a) circular pipe, h = 0.252 (h1 = 0.3); (b) square duct, h = 0.3.

velocities are lower in the TP geometry than in the pipe, while for higher holdups, they are higher.
The holdup in the TP geometry is, in fact, the same as the (dimensionless) thickness of the lower
water layer, h1 (Sec. II). In the circular pipe, on the other hand, the holdup h, defined as the relative
area of the cross section occupied by the water layer, is always different from h1 except for h = 0.5
[i.e., for φ0 = π/2, compare (φ0 − 0.5 sin 2φ0)/π with 0.5(1 − cos φ0); see Sec. II], when water
occupies exactly the half of the pipe. The difference between h1 and h is larger the further the
holdup is from 0.5. Comparing the critical water superficial velocity obtained in the pipe and TP
geometries [Fig. 17(b)], it is seen that the difference between them is also larger when the holdup
is smaller and further away from 0.5. This points at possible relevance of comparison of the critical
parameters for the same water level, i.e., the same h1. Indeed, once the critical U1S is redrawn in
terms of h1 [Fig. 17(c)], the stability curve for the pipe almost overlaps with that for the TP geometry
for the range of h < 0.4.

Although the comparison of different geometries has been demonstrated for particular channel
size, the difference between the critical velocities in the pipe and two-plate geometries (when
compared for the same h1) remains relatively small for small water layer heights also for other values
of D ∈ [0.01, 0.1] m (typically used in laboratory-scale experiments). However, for high water
holdups, the stability boundary for the TP geometry diverges from both those of the pipe and square
duct, which yield similar stability characteristics as a result of the critical long-wave perturbation in
both geometries. In the absence of the side walls in the TP geometry, short-wavelength perturbations
bound the stable region, which is otherwise unbounded for low air superficial velocities with respect
to long waves [1].

In order to compare the critical perturbations for the different geometries, we consider the same
h1 = 0.3, which in case of the circular pipe corresponds to h ≈ 0.252 (φ0 ≈ 1.159). The critical
perturbation wavenumbers are found to be similar: αcrit = 3.5 for the pipe, αcrit = 4.038 for the
square duct, and αcrit = 3.286 for the TP geometry. Two-dimensional contours of the amplitude
of the axial velocity are shown in Figs. 18(a) and 18(b) for circular and square cross sections,
respectively. Similar behavior is observed far from the side walls in the center region of the
cross section. When the results for the vertical centerline are compared, they show similar critical
perturbation profiles for the three considered geometries [Fig. 19(a)]. The only difference is the
presence of a secondary maximum of the axial velocity in the air layer, close to the upper wall, in
the TP geometry. The velocity fields in the circular and square cross sections are different as a result
of the different shape of the walls. In the pipe, the contours of the axial velocity are stretched along
the curved wall by the wall shear stresses [Fig. 18(a)]. At the interface, the behavior of the lateral
and vertical velocities of the critical perturbation is somewhat different depending on the geometry
[Fig. 19(b)]; however, their amplitudes are two orders of magnitude smaller than uz. The interface
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FIG. 19. Effect of geometry on the critical perturbation profiles of air-water flow in channels with charac-
teristic size D = 0.014 m: (a) axial velocity on the vertical centerline, (b) lateral and vertical velocities at the
interface, and (c) interface displacement. h = 0.252 (h1 = 0.3) for pipe flow and h = 0.3 for square-duct and
TP geometries.

displacement η is also not the same in the pipe and square duct due to different contact lengths
between air and water [Fig. 19(c)].

For higher holdups, from h ≈ 0.6 up to ≈0.9, higher critical superficial velocities are predicted
in the TP model than those obtained both in the pipe and duct. Moreover, the velocity pattern
of the critical perturbation of the pipe and square-duct geometries is different that that obtained
in the TP geometry (see Fig. 20). In the latter, the maximum of the axial velocity component
of the critical (short-wave, αcrit = 1.333) perturbation is in the bulk of the air and water layers
[see dotted black line in Fig. 20(c)], indicating shear mode of instability. On the other hand, in the
pipe and square duct, the critical perturbation is long wave and corresponds to the interfacial mode
of instability.

In spite of similarities between the stability characteristics for thin water layers in the pipe and TP
geometries, the effect of the channel size in these two geometries is different when a wider range
of sizes is considered. In the TP geometry and for thin water layers, linear instability was found
to be triggered by long-wave perturbation and the critical air velocity is scaled by the air Froude
number up to a channel size of about 0.025 m [1]. In larger channels, the critical air velocity in
the TP geometry was found to be due to short waves, and the critical air velocity is scaled by the
air Reynolds number (i.e., U2S|crit decreases with the channel size). On the other hand, in circular
pipes, due to the lateral confinement, the surface tension has a strong stabilization effect, not only
for short waves but also for long-wave perturbations. As a result, the diameter effect on the critical
air velocity for low liquid holdups is not scaled by the air Froude number for D < 0.1 m, even when
instability is set due to long waves. As shown in Fig. 14, for D � 0.02 m short-wave disturbances
become most unstable. Nevertheless, for D � 0.1 m, where the effect of the surface tension due to

FIG. 20. Effect of geometry on the axial velocity of the critical perturbation of air-water flow in channels
with characteristic size D = 0.014 m: (a) circular pipe, h = 0.905 (h1 = 0.85); (b) square duct, h = h1 = 0.85;
and (c) axial velocity profile on the vertical centerline.
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the lateral confinement becomes small also for low water holdups, the diameter effect on critical air
velocity is found to be scaled by the air Froude number, whereby the critical air superficial velocity
increases proportionally to

√
D. The value of critical Froude number is, however, smaller than the

critical Froude number that corresponds to long-wave instability.
The different scaling (with channel size) of the critical air velocity obtained in large channels

and pipes of large diameters may be attributed to an inherent difference between the stability limit
of the Reynolds number in single-phase (e.g, air) flow in these two geometries. In the TP geometry,
instability in single-phase flow is triggered by a short wave due to the shear mode of instability,
which is associated with Recrit = 5772 [28]. However, in the pipe geometry, the linear stability
analysis does not yield critical Re for single-phase flow. Apparently, the shear mode of instability in
the gas phase is not triggered even in the presence of a thin water layer, and the predicted stability
boundary corresponds to the interfacial instability. The latter is associated with a critical Froude
number.

VII. CONCLUSIONS

Linear stability analysis of two-phase stratified air-water flow in horizontal pipes has been
performed. The stability problem is formulated and solved for all possible infinitesimal three-
dimensional disturbances, taking into account possible deformation of the air-water interface.
The numerical approach is based on the problem formulation in the bipolar coordinates, with
the consequent discretization by the finite-volume method. The whole computational approach,
including calculation of the base flow and solution of the linear stability eigenvalue problem, is
described and validated in Ref. [14]. Solving the problem in bipolar coordinates allows us not only
to reproduce numerically the analytical solution of Ref. [32] for the base flow, but also to predict
a correct exponential growth of the interfacial shear stresses near the triple points, as reported in
Ref. [34].

The whole problem is described by six dimensionless parameters that make the corresponding
parametric studies not feasible. To focus on a certain two-phase system, we consider air-water
flow, which has been subject to extensive experimental research. The regions of stable and unstable
superficial velocities of each phase are presented as stability diagrams to allow direct comparison
with the experimental flow-pattern data. As a case study we consider a flow in a pipe of 50 mm
diameter, which was used in well-known experiments of Refs. [11,13]. The present numerical results
are found to agree well with the experimental findings.

The wavenumbers and wave speeds of the critical perturbations, as well as patterns of their three
velocity components, are reported along with the stability boundaries. Moreover, several modes of
the critical perturbations are revealed. Long waves are found to be the critical perturbation over part
of the stability boundary. Perturbations of the axial velocity are found to be larger than the two other
components for all the critical perturbations obtained along the stability boundary. The vertical
velocity, however, defines the behavior of the interface displacement via the kinematic boundary
condition. For the considered air-water flows, the maximum of the amplitude of the axial velocity
component of the critical perturbation is always reached at the interface, so that the interfacial
instability is always observed.

Due to the confinement effect in the lateral direction, the surface tension has a strong stabilization
effect not only for short- but also for long-wave disturbances, in particular for low-water holdups.
As a result, the critical air velocity that triggers interfacial instability, and thereby transitions to
stratified-wavy flow of thin water layers, is found to be scaled by the air Froude number only for
large pipe diameters (D � 0.1 m). The critical disturbances are found to be short waves, and the
corresponding critical air Froude number is Fr2S|crit ≈ 150. Long-wave instability overpredicts the
critical air flow rate and is triggered at Fr2S|crit ≈ 211.
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