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Momentum-scalar coupling turbulence, a phenomenon observed in both natural and
engineering contexts, involves the intricate interaction between multicomponent scalars
and multiscale forces (i.e., multiple coupling mechanisms), resulting in a wide array of
manifestations. Despite its importance, limited research has been conducted to comprehend
the influence of these multicomponent and multiple coupling mechanisms on turbulence
cascades. Hence, this study aims to provide a preliminary and theoretical exploration into
how these multiple coupling mechanisms govern the cascades of turbulent kinetic energy
and multicomponent scalars. To simplify the mathematical analysis, homogeneous and
isotropic hypotheses of flow field have been applied. The key findings of this study can be
summarized as follows. The first is validation of quad-cascade processes. The second is
an examination of various cases involving single scalar components but multiple coupling
mechanisms. Of particular interest is the coexistence of buoyancy-driven turbulence and
electrokinetic turbulence, which introduces a new variable flux (VF) subrange resulting
from their nonlinear interaction. Another extension considers an exponential modulation
function, equivalent to the coexistence of multiple coupling mechanisms acting on a single
scalar. The study identifies two new VF subranges. Third, binary scalar components and
coupling mechanisms are investigated, indicating coupling mechanisms with significantly
different strengths that can also induce complex interactions and new VF subranges.
Fourth is the complexity when three or more different scalar components and coupling
mechanisms coexist simultaneously: with the exception of certain special cases, closure of
the problem becomes unattainable. This highlights the challenges inherent in addressing
the simultaneous presence of multiple scalar components and coupling mechanisms. This
research endeavor illuminates the theoretical understanding of the diverse scaling proper-
ties observed in momentum-scalar coupling turbulence across different scenarios.

DOI: 10.1103/PhysRevFluids.9.084610

I. INTRODUCTION

Turbulence is pervasive in nature and engineering, arising from various physical mechanisms
such as hydrodynamics, thermal convection [1], electrohydrodynamics [2], magnetohydrodynamics
[3,4], and even in quantum [5,6] and biological [7] systems. Turbulent transport involves diverse
scalars such as temperature [8,9], salinity [10,11], electric conductivity [12–14], and permittivity
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[15,16], among others such as magnetic susceptibility [17] and chemical components [18,19]. These
scalars display a multiscale distribution in wavenumber space and can generate external multiscale
forces through different physical mechanisms, driving the flow towards a state of turbulence through
a feedback mechanism.

In the real world, it is rare for just a single scalar or physical mechanism to be isolated. Instead,
the coexistence of multicomponent scalars and multiphysical interactions is the normal state. In the
atmosphere, for example, buoyancy-driven flow, electrohydrodynamic flow due to spatial electric
charge distribution [2,20], and magnetohydrodynamic flow influenced by the Earth’s magnetic
field [21] all occur concurrently. Buoyancy-driven turbulence—which includes thermal convection,
stratified turbulence, and boundary layers—is a key mechanism in atmospheric evolution on scales
up to hundreds of kilometers. The atmosphere contains various electric media such as charged
species, gases with differing moisture levels, droplets, and dust clouds, leading to spatial and
temporal variations in electric conductivity and permittivity. Given that the atmosphere is not
electrically neutral and can experience electric fields as strong as 106 V/m during thunderstorms,
electrohydrodynamic (EHD) and electrokinetic (EK) turbulence—both driven by electric body force
(EBF)—are also inevitable in atmospheric flow up to kilometer scales. Additionally, whenever
charged species are unevenly distributed, deviations from electrical neutrality arise locally. This
scenario leads to the flow carrying nonuniform charges, resulting in electric currents. Under the
Earth’s magnetic field, these currents produce Lorentz forces (LFs), necessitating the presence of
magnetohydrodynamic (MHD) effects. Thus, buoyancy-driven turbulence, EBF-driven turbulence,
and LF-driven (MHD) turbulence coexist and can collectively dictate wind evolution in both large
and small scales.

Similar examples of turbulence driven by multiscale forces exist elsewhere. In the ocean,
temperature and salinity jointly affect flows on various scales. At the core of the Earth [22],
the combination of high and uneven temperatures with ferromagnetism can mutually impact the
dynamics of the outer liquid core. Moreover, in fields like chemical engineering and combustion,
multicomponent scalar systems are also prevalent [23]. These scenarios highlight the intricate
interplay and importance of understanding multiscalar and multiphysical interactions in turbulent
systems.

Unfortunately, most theoretical and numerical researches study the “real-world turbulence”
[24] by focusing on a single scalar and one dominant physical mechanism, such as buoyancy or
electrostatic influence. A paradigm of momentum-scalar coupled turbulent flow—buoyancy-driven
turbulence—has attracted significant attention over the past several decades. Obukhov’s work [25]
laid the theoretical groundwork for understanding the inertial subrange of passive scalar transport in
turbulence characterized by high Reynolds numbers. Subsequently, Bolgiano [26] and Obukhov [27]
independently introduced the Bolgiano-Obukhov (BO59) law [28]. According to their predictions,
in the subrange primarily influenced by buoyancy effects arising from density or temperature varia-
tions, the spectra of turbulent kinetic energy and scalar variance demonstrate specific characteristics
as

Eu(k) ∼ k− 11
5 and Es(k) ∼ k− 7

5 . (1)

The buoyancy-dominant subrange described by the BO59 law represents a region characterized
by partially variable flux; within this context, the flux of scalar variance remains constant while
that of turbulent kinetic energy does not. Since the influence of buoyancy decays rapidly along
wavenumber, the buoyancy-dominant subrange occurs at the lower-wavenumber side of the inertial
subrange. In 2000, Niemela et al. [9] first observed slopes of − 11

5 and − 7
5 in the spectra of

turbulent kinetic energy and temperature variance, respectively. Subsequently, several researchers
[29–31] claimed that the BO59 law can be predicted through numerical simulations across various
scenarios. However, both numerical and experimental investigations still lack convincing results
regarding the BO59 law. For a more comprehensive review of buoyancy-driven turbulence, please
refer to Ref. [32]. In an effort to address this issue, Alam et al. [33] revisited the BO59 law and
attempted to explain why its observation has not been successful. Notably, their work provided
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numerical observations of a novel scaling subrange featuring nonconstant flux of scalar variance and
constant flux of kinetic energy, which, in my opinion, constitutes their most significant contribution.
Regrettably, this observation did not receive much attention at the time.

Electrokinetic turbulence pertains to a turbulence phenomenon primarily observed in electrolyte
solutions with nonuniform electric properties (such as electric conductivity or permittivity), driven
by EBF through electrostatic effects. Regarding EK turbulence, Zhao and Wang [16,34] have
developed a series of theoretical frameworks aimed at elucidating the transport of turbulent kinetic
energy and scalar variance. Based on a hypothesis involving a constant flux of scalar variance
(electric conductivity or permittivity) with a nonconstant flux of kinetic energy, they predicted that
the spectra of turbulent kinetic energy and scalar variance would exhibit

Eu(k) ∼ k− 7
5 and Es(k) ∼ k− 9

5 . (2)

Furthermore, it was predicted that in EK turbulence, where the EBF becomes dominant at
small scales, the subrange where the cascades of turbulent kinetic energy and scalar variance are
influenced by the EBF should occur at the higher-wavenumber range of the inertial subrange. As a
result, EK turbulence is characterized by a bidirectional cascade of turbulent kinetic energy and
a direct cascade of scalar variance [35]. This represents another significant difference between
buoyancy-driven turbulence and EK turbulence.

In magnetohydrodynamic turbulence, numerous theories have been proposed over the past
60 years. Iroshinikov [36] and Kraichnan [37] separately introduced the Iroshinikov-Kraichnan
spectrum for MHD turbulence by considering the influence of the Alfvén effect on the cascade
of turbulent kinetic energy [38]. According to their theory, the energy spectrum Eu(k) in the inertial
subrange of MHD turbulence follows a power law of k−3/2, deviating from the classical Kolmogorov
− 5

3 law, even though the latter is more commonly observed in experimental data [39,40] and
numerical simulations of MHD turbulence [38,41]. In contrast, the Iroshinikov-Kraichnan theory
was numerically supported by Eyink et al. [4] when considering a Richardson dispersion, besides
the Alfvén effect. Further theoretical models, such as the anisotropic MHD energy spectrum
Eu(k) ∼ k−5/2, have also been proposed for the inertial subrange of anisotropic MHD turbulence
[38]. Moreover, experimental investigations [21] have revealed a wider array of scaling behaviors.
Despite these advances, the research focus has largely been on the form of the inertial subrange, not
so much on the more intricate subrange where the Lorentz force takes precedence in the cascades
of turbulent kinetic energy and related scalar fields like magnetic conductivity. Verma [42] provides
an extensive overview of recent developments in this field.

As can be seen above, the current discourse on turbulence often follows a reductionist approach,
suggesting that a single primary mechanism largely governs these phenomena, which can overlook
the inherent complexity of such systems. In the physical and life sciences [43], the concept of
emergence acknowledges that multifaceted, highly nonlinear systems exhibit behaviors that cannot
be attributed solely to one dominant mechanism, ignoring the distinction between primary and
secondary effects. This concept, highlighted in Anderson’s seminal paper “More is Different” [44],
emphasizes the novelty arising from complex interactions across different scales.

Turbulence is a prime example of a highly nonlinear system where isolating individual com-
ponents and coupling mechanisms is often impractical, especially in fields like engineering,
meteorology, oceanography, and astrophysics. In EK or EHD turbulence, the interplay of external
electric fields with fluids produces both electrostatic forces and electrothermal effects, the latter
leading to buoyancy through temperature variations. Traditionally, electrostatically induced EK tur-
bulence is considered the primary factor. However, the influence of electrothermal effects on overall
turbulence is not well understood. The presence of such multidimensional coupling mechanisms
can lead to unexpected and novel emergent behaviors.

Despite the significance of this multifaceted interplay in turbulent systems, research on the
cascades of turbulent kinetic energy and scalar fields influenced by multiple mechanisms is lacking.
This study aims to explore the interplay among the physical mechanisms governing the cascade
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processes of turbulent kinetic energy and multicomponent scalars. It reveals that interactions
between coupling mechanisms of distinct strengths can generate new scaling behaviors in the spectra
of turbulent kinetic energy and the variances of two scalar quantities.

II. THEORY

Most theoretical models to date have focused on the inertial subrange (e.g., Kolmogorov’s 1941
law and the Obukhov-Corrsin law), the constant scalar flux subrange (e.g., the BO59 law and Zhao
and Wang’s model [16,34,45]), and the variable flux (VF) subrange (e.g., Verma [42] and Shur-
Lumley models [46]). In 2022, inspired by Alam et al.’s investigation of stably stratified turbulence
[33], Zhao [47] developed a model for momentum-scalar coupling turbulence based on the fluxes
of turbulent kinetic energy (�u) and scalar variance (�s).

This model employed a multiscale force of ∇as′ type (also see Ref. [45]) to describe the
coupling relationship between momentum and scalar fluctuations (s′). It theoretically predicted a
quad-cascade process involving turbulent kinetic energy and scalar variance, covering the inertial
subrange, constant energy flux (constant-�u) subrange, constant scalar flux (constant-�s) subrange,
and VF subrange. Zhao’s model [47] provides a comprehensive framework for studying complex
momentum-scalar coupling turbulence with multiple scalar components and coupling mechanisms,
encompassing various phenomena such as buoyancy-driven flow, electrokinetic flow, and magneto-
hydrodynamic flow with differing a values.

A. Conservative law by the fluxes of turbulent kinetic energy and multicomponent scalars

In this investigation, based on Zhao’s model [47], a flux model for momentum-scalar coupling
turbulence with multicomponent scalars and multiple coupling mechanisms is studied theoretically
and numerically. A three-dimensional model has been considered. The governing equations are
expressed as follows:

Du
Dt

= − 1

ρ
∇p + ν�u +

imax∑
i=1

MiD
βi
4 s′

i, (3a)

Ds′
1

Dt
= −N1 · u + D f ,1�s′

1

...

Ds′
i

Dt
= −Ni · u + D f ,i�s′

i

...

Ds′
imax

Dt
= −Ni max · u + D f ,imax�s′

imax, (3b)

∇ · u = 0, (3c)

where ρ is the referenced fluid density, u denotes the velocity vector, p is pressure, and s′
i is the

fluctuation of the ith scalar component. D/Dt = d/dt + u · ∇ is material derivative. In this paper,
D = �2, with � = ∇ · ∇ being a Laplacian operator. Dβi/4s′

i denotes the fractional derivation on
s′

i with orders βi/4, respectively. MiD
βi/4s′

i is the multiscale force related to the ith scalar field s′
i

[45,47], with Mi being the dimensional vector associated with the ith physical field. Ni = ∇si is
the gradient of the mean field (·̄) with respect to the ith scalar si. It characterizes the strength of the
mean scalar gradient that can be provided from the background flow. ν and D f ,i are the kinematic
viscosity and diffusivity of the ith scalar, respectively. The assumption (∇2s̄i � ∇2s′

i) is made for
the model.
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For example, in buoyancy-driven turbulence, it is approximately βi = 0. s′
i can be either tem-

perature fluctuations with Mi = αgẑ and Ni = ∇T̄ , or density fluctuations with Mi = Ni = − fVBẑ,
respectively. Here, α is the thermal expansion coefficient, g is gravity acceleration, ẑ is the inverse

direction of gravity, T̄ is the mean field of temperature (T ), and fVB =
√

g
ρ̄
| dρ0

dz | is Väisälä-Brunt

frequency. ρ0 and ρ̄ are background density and mean density, respectively [33,42]. In an electroki-
netic turbulence generated by electrostatic force, when the electric field (E ) is in the y direction (ŷ)
that is perpendicular to the initial interface of electric conductivity (σ ), as investigated by Wang
et al. [12,13], it is approximately βi = 1, with Mi = −εE2ŷ/ρσ̄ and Ni = ∇σ̄ . Here, ε is electric
permittivity and σ̄ is the mean field of electric conductivity [47].

In this model, two hypotheses have been made to simplify the analysis:
(1) All scalar components are assumed to be independent and nonreactive. This is analogous

to the well-known Boussinesq approximation [32,48]. For instance, in buoyancy-driven turbulence,
buoyancy can result from stratifications of temperature, density (different materials), and salinity,
which can be treated as being independent of each other. Similarly, in electrokinetic turbulence
in an electrolyte solution with different free ions (e.g., Na+, Ca2+, and Cl−), ions are considered
independent and nonreactive.

(2) Turbulent flow is approximated as homogeneous and isotropic. This approximation is com-
mon in many classical turbulent models, such as the Kolmogorov 1941 (K41) law, Obukhov-Corrsin
law, and BO59 law for stably stratified turbulence, as well as the Zhao-Wang model [16,34] for
electrokinetic turbulence. This hypothesis is partially supported by studies such as that by Nath et al.
[49] in turbulent thermal convection and that by Kumar et al. [29] in stably stratified turbulence.

In Fourier space, let Eu(k) = 1
2 |u(k)|2 and Es,i(k) = 1

2 |s′
i(k)|2 be the modal turbulent kinetic

energy and ith scalar variance. Equations (3) can be rewritten as [24,42,50]

d

dt
Eu(k) = Tu(k) − Du(k) +

imax∑
i=1

Fs,i(k), (4a)

d

dt
Es,i(k) = Ts,i(k) − Ds,i(k) − FA,i(k), (4b)

klul (k) = 0, (4c)

with

Tu(k) = Im

[∫
kl ûl (n)ûq(m)û∗

q(k)dk3

]
, (5a)

Ts,i(k) = Im

[∫
kl ûl (n)ŝ′

i(m)ŝ′
i
∗(k)dn3

]
, (5b)

Fs,i(k) = Re
[
kβi Miq ŝ′

i(k)û∗
q(k)

]
, (5c)

FA,i(k) = Re
[
Niq ŝ′

i(k)û∗
q(k)

]
, (5d)

Du(k) = 2νk2Eu(k), (5e)

Ds,i(k) = 2D f ,ik
2Es,i(k), (5f)

where Re and Im represent the real and imaginary parts of the quantity. k = kl x̂l and k = |k| =
(klkl )1/2, with kl being the wavenumber component in the lth direction (denoted by x̂l ). The
wavenumbers have a relation of k = m + n. ûq is the Fourier transform of the qth directional
component of u. ŝ′

i is the Fourier transform of s′
i. The asterisk represents a complex conjugate. Tu(k)

and Du(k) are the nonlinear turbulent kinetic energy transfer rate and dissipation rate, respectively.
Ts,i(k) and Ds,i(k) are the nonlinear transfer rate of the ith scalar variance and scalar dissipation rate,
respectively. Fs,i(k) denotes the energy feeding rate by the multiscale force due to the ith scalar field
and FA,i(k) is the ith scalar feeding rate by bulk components.
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Assuming the velocity and scalar fields are homogeneous and isotropic, in a spherical shell
around k with a thickness of dk in the wavenumber space, Eqs. (4a) and (4b) become [51]∑

k<|k′|�k+dk

d

dt
Eu(k′) =

∑
k<|k′|�k+dk

[
Tu(k′) +

imax∑
i=1

Fs,i(k
′) − Du(k′)

]
, (6a)

∑
k<|k′|�k+dk

d

dt
Es,i(k

′) =
∑

k<|k′|�k+dk

[Ts,i(k
′) − FA,i(k

′) − Ds,i(k
′)]. (6b)

Since the flux of turbulent kinetic energy �u(k) = −∑
|k′|�k Tu(k′) and the flux of scalar variance

�s,i(k) = −∑
|k′|�k Ts,i(k

′) [33,42,47], we can define

d�u(k) = −
∑

k�|k′|�k+dk

Tu(k′), (7a)

d�s,i(k) = −
∑

k�|k′|�k+dk

Ts,i(k
′), (7b)

Eu(k)dk =
∑

k<|k′|�k+dk

Eu(k′), (7c)

Es,i(k)dk =
∑

k<|k′|�k+dk

Es,i(k
′), (7d)

Fs,i(k)dk =
∑

k<|k′|�k+dk

Fs,i(k
′), (7e)

FA,i(k)dk =
∑

k<|k′|�k+dk

FA,i(k
′), (7f)

Du(k)dk =
∑

k<|k′|�k+dk

Du(k′), (7g)

Ds,i(k)dk =
∑

k<|k′|�k+dk

Ds,i(k
′), (7h)

where Eu(k) and Es,i(k) are the averaged power spectra of turbulent kinetic energy and the ith
scalar variance over the spherical shell, Fs,i(k) is the energy feeding rate by multiscale force due
to the ith scalar field at wavenumber k, FA,i(k) is the ith scalar feeding rate at wavenumber k, and
Du and Ds,i are dissipation terms at wavenumber k, respectively. After substituting Eqs. (7a)–(7h)
into Eqs. (6a) and (6b), considering the flow is statistically equilibrium, and letting dk → 0, the
following is obtained:

d

dk
�u(k) =

imax∑
i=1

Fs,i(k) − Du(k), (8a)

d

dk
�s,i(k) = −FA,i(k) − Ds,i(k), (8b)

where

Fs,i(k) = Re
[
kβi Miq ŝ′

i(k)û∗
q(k)

]
, (9a)

FA,i(k) = Re
[
Niq ŝ′

i(k)û∗
q(k)

]
, (9b)

Du(k) = 2νk2Eu(k), (9c)

Ds,i(k) = 2D f ,ik
2Es,i(k). (9d)
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Thus, if Mi is parallel to Ni,

Fs,i(k) − Mi

Ni
FA,i(k)kβi = 0, (10)

where Mi = |Mi| and Ni = |Ni|, respectively.

B. Inertial subrange

In the inertial subrange, where the influence of multiscale forcing and dissipation is negligible,
Eqs. (8a) and (8b) become

d

dk
�u(k) = 0, (11a)

d

dk
�s,i(k) = 0, (11b)

or

�u(k) = const along k,

�s,i(k) = const along k.

In the flow region far from boundary layers, known as the bulk region, the statistical features can
significantly differ from those in the boundary layers, as seen in buoyancy-driven turbulence [32].
In the bulk region, the following relationship can be established [33,47]:

Eu(k) = u2
k/k ∼ kξu , (12a)

Es,i(k) = s2
k,i/k ∼ kξs,i , (12b)

�u(k) = ku3
k ∼ kλu , (12c)

�s,i(k) = ks2
k,iuk ∼ kλs,i , (12d)

where ξu, ξs,i, λu, and λs,i denote the scaling exponents of Eu, Es,i, �u, and �s,i, respectively. uk and
sk,i represent the velocity and ith scalar components in k space. It can be deduced that

E3/2
u k5/2 = const along k, (13a)

Es,iE
1/2
u k5/2 = const along k. (13b)

Thereafter, the celebrated K41 law and Obukhov-Corrsin law for inertial subrange have been
derived, with ξu = ξs,i = −5/3. Considering Eq. (11a) is a direct consequence of the Navier-Stokes
equation, if the Navier-Stokes equation has smooth and power-law solutions in spectral space, the
k−5/3 spectrum related to the K41 law must be one of them. From these equations, it can be inferred
that, in the inertial subrange, there must be constant �u and �s,i for all the scalars, which are
independent of each other. Each scalar will exhibit a − 5

3 slope in the spectra of scalar variance,
although with different spectral intensities.

C. Conservative law in the MFD subrange

From Eq. (9a), it is evident that the multiscale force depends not only on the strong coupling be-
tween the scalar and velocity spectra, but is also modulated by kβi , where βi is primarily determined
by the physical mechanism. The influence of the work input by the multiscale force extends across a
wide subrange in the spectral space, rather than being limited to a single wavenumber (or frequency)
or a narrow spectral band. This is why the forcing term in Eq. (3a) is referred to as a multiscale force.
In the subrange where the transports of turbulent kinetic energy and scalar variance are dominated
by the multiscale force, known as the multiscale-force-dominated (MFD) subrange, the dissipation
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terms of turbulent kinetic energy and scalar variance are neglected. As a result, Eqs. (8a) and (8b)
simplify to

d

dk
�u(k) =

imax∑
i=1

Fs,i(k), (14a)

d

dk
�s,i(k) = −FA,i(k). (14b)

Combining Eq. (10) and Eqs. (14a) and (14b), a conservation law is thus obtained:

d

dk
�u(k) +

imax∑
i=1

Mi

Ni
kβi

d

dk
�s,i(k) = 0. (15)

It can be seen that Eqs. (11a) and (12b) are the special solutions of Eq. (15) as well. Therefore, the
scenarios of Kolmogorov [52,53], and Obukhov and Corrsin’s [25,54] theories, have been unified
into this model. After substituting Eqs. (12c) and (12d) into Eq. (15), the following is obtained:

d

dk
ku3

k +
imax∑
i=1

Mi

Ni
kβi

d

dk
ks2

k,iuk = 0. (16)

If uk is nontrivial, Eq. (16) can be rewritten by multiplying uk as

uk
d

dk
ku3

k + ku2
k

imax∑
i=1

Mi

Ni
kβi

d

dk
s2

k,i +
(

imax∑
i=1

Mi

Ni
kβi s2

k,i

)
uk

d

dk
kuk = 0. (17)

Given that in the MFD subrange, the flow is propelled by the
∑imax

i=1 MiD
βi/4s′

i-type force,
as expressed in Eq. (3a), the convection term is balanced by the volume force. Thus, another
relationship that connects uk and sk,i is established dimensionally as

ku2
k =

imax∑
i=1

kβi Misk,i. (18)

Subsequently, by substituting Eq. (18) into Eq. (17) with simple mathematical processing, the
following is obtained:

imax∑
j=1

imax∑
i=1

MiMj

[
3

2
kβi+β j−1sk,i

(
d

dk
sk, j

)
+ 1

2
(3β j − 1)kβi+β j−2sk,isk, j + 2

Nj
kβi+β j sk,isk, j

(
d

dk
sk, j

)

+ β j + 1

2Ni
kβi+β j−1sk, j s

2
k,i + 1

2Ni
kβi+β j s2

k,i

(
d

dk
sk, j

)]
= 0. (19)

Since kβi+β j−2sk,i is nontrivial, finally Eq. (19) becomes
imax∑
j=1

imax∑
i=1

Fi j = 0 (20)

with

Fi j = MiMj

[(
3

2
k + 2

Nj
k2sk, j + 1

2Ni
k2sk,i

)(
d

dk
sk, j

)
+ 1

2
(3β j − 1)sk, j + β j + 1

2Ni
ksk,isk, j

]
. (21)

Fi j represents the interaction between the ith scalar and its corresponding coupling mechanism
with the jth one. In a turbulent system with imax � 2, e.g., scalar A and B or their coupling mech-
anisms, altering their indices does not alter the underlying physics or observations. In other words,
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the cascades of turbulent kinetic energy and scalar variances remain unaffected. Consequently, a
corollary is proposed as follows.

Corollary. Fi j is invariant when switching i and j, i.e., Fi j = Fji; accordingly,

3

2
k

d

dk
(sk, j − sk,i ) + k2 d

dk

(
s2

k, j

Nj
− s2

k,i

Ni

)
+

(
1

2Ni
k2sk,i

d

dk
sk, j − 1

2Nj
k2sk, j

d

dk
sk,i

)
+3

2
(β j sk, j − βisk,i ) − 1

2
(sk, j − sk,i ) + ksk,isk, j

2NiNj
(β jNj + Nj − βiNi − Ni ) = 0. (22)

Then, the computation on sk,i can be simplified according to this symmetry.

D. Numerical computations

To demonstrate the variations of Eu(k), Es,i(k), �u(k), and �s,i(k), a wide range of wavenumbers
is required. However, direct computation of Eqs. (18), (20), and (21) in a linear wavenumber space
with a wide band, e.g., 50 decades, demands excessive computational resources. Therefore, in this
investigation, these computations are performed in a nonlinear wavenumber space by transforming
k = 10q, as suggested by Zhao [47]. Considering dsk,i/dk = (10q ln 10)−1dsk,i/dq, Eqs. (18), (20),
and (21) are converted to

Fi j = MiMj

[
(ln 10)−1

(
3

2
+ 2

Nj
10qsk, j + 1

2Ni
10qsk,i

)
dsk,i

dq
+ 1

2
(3β j − 1)sk, j+β j + 1

2Ni
10qsk,isk, j

]
,

(23)

u2
k =

imax∑
i=1

10(βi−1)qMisk,i. (24)

Equations (20), (23), and (24) (if solvable, see Sec. III D for details) can be nu-
merically solved using the finite difference method, as depicted in Fig. 1. During the
computation, the process of the dsk,i/dq term is crucial. Two finite difference schemes
have been applied. At a position q(l ) with l > 1, a first-order approximation was ap-
plied with dsk,i[q(l )]/dq = {sk,i[q(l )] − sk,i[q(l−1)]}/�q, where �q = q(l ) − q(l−1) = 0.006
is the interval in the q space. When l � 1, a third-order approximation is applied, with
dsk,i[q(l )]/dq = { 11

6 sk,i[q(l )]−3sk,i[q(l−1)] + 3
2 sk,i[q(l−2)]− 1

3 sk,i[q(l−3)]}/�q. Since all the
sk,i[q(l−1)], sk,i[q(l−2)], and sk,i[q(l−3)] have been solved in previous steps, substituting
dsk,i[q(l )]/dq into Eqs. (20) and (23) leaves sk,i[q(l )] as the only unknowns. Equation (23) can
be solved based on boundary conditions, sk,i[q(1)]. Consequently, uk[q(l )] can be computed using
Eq. (24). The process is then repeated for the next position, q(l + 1). Note that in each step, sk,i

and uk each have two solutions, but only one solution can be used in the next calculation. For
instance, if solution 2 is picked, it must be used consistently throughout all solving processes.
When solution 2 of sk,i and uk is determined for all q, sk,i and uk corresponding to solution 2 are
obtained for all wavenumbers k. Eu, Es,i, �u, and �s,i related to solution 2 can be solved according
to Eqs. (12a)–(12d).

In the numerical computations for a single scalar, e.g., in Secs. III A and III B, both lower-order
and higher-order difference methods were applied for better accuracy. In Sec. III C, where binary
scalar components and two coupling mechanisms are concerned, only the lower-order difference
method was applied to reduce computation time. All transitions of the subranges, as frequently
observed in the following, are natural variations of the solutions of Eqs. (20), (23), and (24), not
artificially determined.
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FIG. 1. Flow chart of the procedure in solving sk,i, uk , and the corresponding Eu, Es,i, �u, and �s,i.

III. RESULTS

In this section, we have addressed and resolved several special cases related to the multicompo-
nent model. These cases encompass a range of scenarios. In Sec. III A, a single scalar component
with a single coupling mechanism is examined for turbulent systems where there is only one scalar
component. For the same problem, Eqs. (18), (20), and (21) are different from that in Zhao’s
model [47]. Therefore, a comparison between the two models is carried out first to ensure the
computation results from the two models are consistent. In Sec. III B, turbulent systems with a single
scalar component but subjected to multiple coupling mechanisms, encompassing diverse forms of
interactions or forces, have been analyzed. In Sec. III C, turbulent systems consisting of two scalar
components where each corresponds to a different coupling mechanism have been investigated. Our
analysis centers around understanding the interactions and coupling between these components, and
how they impact the overall cascades of the system. In Sec. III D, turbulence systems with three or
more scalar components and coupling mechanisms have been preliminarily investigated. Since the
features of the inertial subrange have been well established by Kolmogorov, Obukhov, Corrsin, and
many researchers, in the following section, this investigation only focuses on the features of MFD
subranges.

A. A single scalar component with a single coupling mechanism

Let us begin by considering the simplest case, which involves only a single scalar component
and a single coupling mechanism in the model. This scenario is applicable to various models in
buoyancy-driven turbulence and EBF-driven turbulence. In buoyancy-driven turbulence, such as
thermal convection [32], the control scalar is temperature under the Boussinesq approximation. The
coupling between the scalar component and the turbulence occurs through a gravity field. In EBF-
driven turbulence, for example, EK turbulence, the control scalar can be either electric conductivity
or electric permittivity [34,45], with the coupling mechanism being an electric field. This simplified
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scenario captures the essence of these types of turbulent systems, where a single scalar component
is influenced by a specific coupling mechanism. Here, imax = 1. Considering M1 	= 0, Eq. (19)
becomes (

3

2
k + 5

2N1
k2sk,1

)
dsk,1

dk
+ 3β1 − 1

2
sk,1 + β1 + 1

2N1
ks2

k,1 = 0. (25)

This is an alternation of Eq. (17) in Zhao’s model [47]. Equation (25) can be rewritten as

dsk,1

dk
= − sk,1

k

3β1−1
2 + β1+1

2N1
ksk,1

3
2 + 5

2N1
ksk,1

. (26)

From Eq. (26), three different scaling subranges in the MFD subrange can be predicted.
a. Constant-�u subrange. When ksk,1 → 0, Eq. (26) is simplified as dsk,1

dk = − sk,1

k
3β1−1

3 . Thus,

sk,1 ∼ k
1−3β1

3 , and uk ∼ M1k− 1
3 according to Eq. (18). Thereafter, from Eqs. (12), we simply have

ξu = −5/3, ξs,1 = −(6β1 + 1)/3, λu = 0, and λs,1 = (4−6β1)/3. This corresponds to the constant-
�u subrange in Zhao’s model [47].

b. Constant-�s subrange. When ksk,1 → ∞, Eq. (26) is simplified as dsk,1

dk = − sk,1

k
β1+1

5 . Thus,

sk,1 ∼ k− β1+1
5 . According to Eq. (18) and Eqs. (12), uk ∼ M1k− 2β1−3

5 , ξu = (4β1 − 11)/5, ξs,1 =
−(2β1 + 7)/5, λu = (6β1 − 4)/5, and λs,1 = 0 are sequentially obtained. This corresponds to the
constant-�s subrange in Zhao’s model [47].

It should be noted that the region where ksk,1 → 0 depends on β1. For β1 < 4/3, ksk,1 → 0
as k → 0, indicating the constant-�u subrange is at the low-wavenumber limit. For β1 > 4/3,
ksk,1 → 0 as k → ∞, indicating the constant-�u subrange is at the high-wavenumber limit. For
ksk,1 → ∞, either k → ∞ for β1 < 4, or k → 0 for β1 > 4 is required. However, according to
Zhao’s model [47], β1 > 4 leads to a failure of the statistical equilibrium hypothesis, so this situation
is not considered in this investigation. Considering the cases together, two different relations
between the constant-�u subrange and constant-�s subrange can be predicted.

For β1 < 4/3, the constant-�u subrange is located on the lower-wavenumber side of the constant-
�s subrange. For 4/3 < β1 < 4, both subranges should be present at the higher-wavenumber side,
leading to competition between the two subranges, which may depend on M1, N1 and the initial
values of sk,1. This competition experiences roughly three stages, as numerically investigated by
Zhao’s model [47]. For 4/3 < β1 < 3/2, both the constant-�u subrange and constant-�s subrange
are numerically predictable. For 3/2 < β1 < 2, only the constant-�u subrange is observed. For
2 < β1 < 4, only the constant-�s subrange is observed.

c. VF subrange. Beyond the inertial subrange, constant-�u subrange, and constant-�s subrange,
there still exists the fourth subrange where �u and �s are simultaneously variable, i.e., the VF
subrange. This is also a special solution for Eq. (26). When ksk,1 = hN1 (h is a real number
to be determined), which is a limited number irrelevant to k, it is required that sk,1 = hN1k−1.
Equation (26) becomes

dsk,1

dk
= − sk,1

k

3β1 − 1 + (β1 + 1)h

3 + 5h
. (27)

If and only if h = (3β1 − 4)/(4 − β1), Eq. (27) has a solution in the form of sk,1 = hN1k−1.
Thus,

sk,1 = 3β1 − 4

4 − β1
N1k−1. (28)

According to Eq. (18) and Eqs. (12), it is easy to get the scaling exponents in the VF subrange as

ξu = β1 − 3, ξs,1 = −3, λu = 3

2
β1 − 2, λs,1 = β1

2
− 2. (29)
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FIG. 2. Spectra of kinetic energy, scalar variance, and their fluxes for the variable flux subrange when
β1 = 1: (a) log10Eu vs log10k, (b) log10Es,1 vs log10k, (c) log10�u vs log10k, and (d) log10�s,1 vs log10k. It can
be seen that ξu = −2, ξs,1 = −3, λu = −1/2, and λs,1 = −3/2, which are also consistent with the prediction in
the VF subrange. Please note that the range of k where the scaling properties emerge has no practical meaning.
It strictly relies on the selection of M1, N1 and the initial values of sk,1. In this case, M1 = 1, N1 = 1, and
sk,1 = 1 are used as an example.

Figure 2 presents an example where β1 = 1. By numerically solving Eq. (25) using the method
detailed in Sec. II D, the results ξu = −2, ξs,1 = −3, λu = −1/2, and λs,1 = −3/2 are obtained,
which are coincident with the theoretical predictions. Zhao [47] provides another example with
β1 = 0, demonstrating that either λu or λs,1 is nonzero, thus supporting the existence of the VF
subrange. The theory of the quad-cascade process advanced by Zhao [47] is further validated
through a different theoretical approach. For convenience, the scaling exponents for β1 values of
0 and 1 are summarized in Table I.

When solving Eq. (25), it is important to note the presence of a bifurcation during the transition
from the constant-�s subrange to the VF subrange as β1 decreases below 2/3. Figure 3 shows
that for β1 > 2/3, such as 0.67 and 1, the curves of Eu, Es,1, �u, and �s,1 from the numerical
computations are smooth during the transition. However, for β1 < 2/3, even at 0.66 which is
slightly smaller than 2/3, spikes with equal intervals (in logarithmic coordinates) can be observed in
the VF subrange, as shown in Fig. 3. These spikes are independent of the computational resolution

TABLE I. Summary of the scaling exponents of different scaling subranges in a single scalar case, where
β1 = 0 or 1. The scaling exponents are calculated according to Zhao [47] and Eq. (29) in this investigation.

β1 Scaling exponents Inertial subrange Constant-�u subrange Constant-�s subrange VF subrange

ξu −5/3 −5/3 −11/5 −3
ξs,i −5/3 −1/3 −7/5 −3

0
λu 0 0 −4/5 −2
λs,i 0 −4/3 0 −2
ξu −5/3 −5/3 −7/5 −2
ξs,i −5/3 −7/3 −9/5 −3

1
λu 0 0 2/5 −1/2
λs,i 0 −2/3 0 −3/2
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FIG. 3. A bifurcation can be observed during the transition from the constant-�s subrange to the VF
subrange, even if in a single scalar component situation when β1 is decreased to below 2/3: (a) log10Eu vs
log10k, (b) log10Es,1 vs log10k, (c) log10�u vs log10k, and (d) log10�s,1 vs log10k.

(�q), suggesting the possible existence of other solution branches when solving the inherently
nonlinear and inhomogeneous Eq. (25).

B. A single scalar component with multiple coupling mechanisms

Let us consider another scenario where turbulence is driven by multiple coupling mechanisms,
all dependent on a single scalar component (s′). In this case, the energy feeding rate in Eq. (5c) takes
the following general form:

Fs(k) = Re[s′(k)A(k) · u∗(k)], (30)

where A(k) = ∑imax
i=1 Mikβi is a modulation function which has a polynomial form of k, with βi =

i−1. Here, the operator of the multiscale force has the form of
∑imax

i=1 MiD
(i−1)/4. Since Ni is only

a function of s̄i, it remains unchanged with i in this case, i.e., Ni = N . Besides, let s′
i = s′, then

Eqs. (3a) and (3b) can be rewritten as

Du
Dt

= − 1

ρ
∇p + ν∇2u +

imax∑
i=1

MiD
(i−1)

4 s′, (31a)

Ds′

Dt
= −N · u + D f ,i�s′. (31b)

Accordingly, Eqs. (20), (21), and (18) become(
3

2
k + 5

2N
k2sk

)(
d

dk
sk

) imax∑
i=1

M2
i + sk

2

imax∑
i=1

M2
i (3i − 4) + ks2

k

2N

imax∑
i=1

iM2
i = 0, (32)

u2
k =

imax∑
i=1

ki−2Misk,i. (33)

In this section, we discuss two special scenarios to illustrate how multiple coupling mechanisms,
even through a single scalar, affect the cascade process of turbulence. One scenario involves
turbulence driven by buoyancy and EBF, both caused by variations in the temperature field. The
other one considers a modulation function with an exponential form.

084610-13



WEI ZHAO

1. Turbulence driven by buoyancy and EBF

A typical example is the coexistence of turbulent thermal convection and EK turbulence driven
by temperature-dependent electric conductivity. In thermal convection, the flow is driven by tem-
perature fluctuation (T ′). In EK turbulence, if electric conductivity fluctuation is caused only by
temperature fluctuation, then EK turbulence is driven by the temperature field as well. These
two mechanisms strongly couple with each other. For single thermal turbulence convection under
the Boussinesq approximation, i = 1 (or β1 = 0) and M1 = αgẑ, where α and g are the thermal
expansion coefficient and gravity acceleration, respectively.

For EK turbulence with small electric conductivity variance, if σ is linearly related to temperature
fluctuations (T ′) as σ = σ0 + ∂σ

∂T T ′, with σ0 = σ |T =T̄ , it simply has σ ′ = ∂σ
∂T T ′. In fluids like water,

1
σ

∂σ
∂T = 0.02 [55,56]. Considering small scalar fluctuations, i.e., σ ′ � σ0, it is approximately ∂σ

∂T ≈
0.02σ0, which is constant within the temperature range. For simplicity, define a constant  = ∂σ

∂T . In

EK turbulence, it is approximately i = 2 (β2 = 1). Therefore, D
1
4 σ ′ = D

1
4 T ′ and M2 = −εE2 ẑ

ρσ0
.

For this case, imax = 2; then Eqs. (31a) and (31b) can be rewritten as
Du
Dt

= − 1

ρ
∇p + ν∇2u + M1D

0T ′ + M2D
1
4 T ′, (34a)

DT ′

Dt
= −N1 · u + D f ,1�T ′, (34b)

Dσ ′

Dt
= −N2 · u + D f ,2�σ ′. (34c)

Here, N1 = ∇T̄ and N2 = ∇σ̄ = ∇T̄ . Equation (34c) becomes

D

Dt
T ′ = −∇T̄ · u + D f ,2�T ′, (35)

Thus, the problem involves a single scalar T ′, but two coupling mechanisms. In the MFD
subrange, D f ,i has a negligible influence on the cascade processes of turbulent kinetic energy and
scalar variance. According to Eqs. (32) and (33), we obtain(

3

2
k + 5

2N
k2sk

)(
d

dk
sk

)[
α2g2 + 2 ε2E4

ρ2σ 2
0

]
+ sk

[
2 ε2E4

ρ2σ 2
0

− α2g2

2

]
+ 1

2N

[
α2g2 + 22 ε2E4

ρ2σ 2
0

]
ks2

k = 0, (36)

u2
k =

2∑
i=1

ki−2Misk =
(

αgk−1 − 
εE2

ρσ0

)
sk . (37)

Assuming the working fluid is water, it has σ0 = 10−3 S/m and  = 2 × 10−5 S/m K [55,56].
Let α = 0.002 K−1 [57], g = 9.8 m/s2, ρ = 103 kg/m3, ε = 7 × 10−10 F/m, E = 102 V/m, N =
40 K/m, M1 = 0.02 m/K s2 and M2 = −εE2

ρσ0
= −1.4 × 10−10 m2/K s2. In this case, M1 � M2,

indicating the strength of buoyancy-driven turbulence is much higher than that of EK turbulence.
The sk and uk can be numerically computed through Eqs. (36) and (37). The results are shown in
Fig. 4.

Despite the spikes in solution 1, the entire wavenumber regime can be divided into three
subranges from low wavenumber to high wavenumber, including a constant-�s subrange of
buoyancy-driven turbulence, a new VF subrange that has never been reported, and a VF subrange of
EK turbulence. In the constant-�s subrange of buoyancy-driven turbulence, the scaling properties
align with the BO59 law. The VF subrange corresponding to EK turbulence is also predicted
theoretically in Table I. However, in the new VF subrange, new scaling exponents, i.e., ξu = − 6

5 ,
ξs,1 = − 7

5 , λu = 7
10 , and λs,1 = 1

2 , have been observed from the numerical computations, as shown
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FIG. 4. Eu, Es,1, �u, and �s,1 in the turbulence driven by buoyancy and EBF simultaneously. Here, both
solutions 1 and 2 are taken into account. (a) log10Eu vs log10k, where the red and blue circles represent the
intersection positions of different scaling subranges in solution 1 and 2, respectively. (b) log10Es,1 vs log10k.
(c) log10�u vs log10k. (d) log10�s,1 vs log10k.

in Figs. 4(a)–4(d). In solution 2, there are also three subranges that emerge in sequence, including
constant-�u and constant-�s subranges of buoyancy-driven turbulence, and the new VF subrange
observed in solution 1.

The emergence of new VF subranges is a consequence of the entanglement of the two mech-
anisms, even though M1 � M2 indicates that the strength of EK turbulence is much smaller than
that of buoyancy-driven turbulence. This supports that a secondary mechanism can collaborate with
the dominant mechanism to significantly influence the cascade processes. When the wavenumber is
sufficiently large, even the much weaker influence of EBF can become dominant.

It is important to note that since ξs,1 = − 7
5 in the new VF subrange is consistent with the BO59

law, careful analysis is required if a − 7
5 spectrum is observed in such a flow system. The observed

− 7
5 spectrum may not adhere to the BO59 law but to the VF subrange where buoyancy-driven

turbulence and EK turbulence coexist.
In Fig. 4(a), the intersection points of the different subranges are plotted. An interesting obser-

vation is that the intersection points in solutions 1 and 2 can differ. For instance, in solution 1, the
intersection points are located at k = 108.1 and k = 1014.6, respectively. In solution 2, the intersec-
tion points are located at k = 10−3.2 and k = 108.1, respectively. The various intersection points of
the different subranges indicate more characteristic scales in turbulence driven by buoyancy and
EBF, even though the latter is much weaker than the former.

2. Modulated by an exponential function

In recent years, several investigations have reported on the modulations directly applied to
turbulence [58,59]. However, in momentum-scalar coupling turbulence, the coexistence of mul-
tiple coupling mechanisms introduces a more complex modulation on the spectra of turbulent
kinetic energy and scalar variance. Using the modulation form in Eq. (30), a general modula-
tion model has been established. For instance, if the modulation function takes an exponential
form, A(k) = A0e−k/C (with C being a reference wavenumber), it can be approximated as A(k) ≈
A0[1− k

C + 1
2 ( k

C )
2 − 1

6 ( k
C )

3
] + O(k4) using a Taylor expansion when k/C � 1. This approximation

is equivalent to having βi = 0, 1, 2, 3, with Mi being 1, − 1
C , 1

2C2 , and − 1
6C3 , respectively.

Subsequently, sk and uk can be solved from Eqs. (32) and (33), as shown in Fig. 5. Here, only
one solution is presented.
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FIG. 5. Eu, Es,1, �u, and �s,1 in the turbulence driven by a single scalar with multiple coupling mech-

anisms. The modulation function has a form of A(k) = A0e−k/C ≈ A0[1− k
C + 1

2 ( k
C )

2 − 1
6 ( k

C )
3
]. Here, only

solution 1 is computed. (a) log10Eu vs log10k, (b) log10Es,1 vs log10k, (c) log10�u vs log10k, and (d) log10�s,1

vs log10k.

In the first case, with A0 = 1 and C = 1, the Mi values are 1, −1, 1
2 , and − 1

6 , respectively. The
small differences among Mi indicate similar forcing intensities among these coupling mechanisms.
This scenario demonstrates how multiple mechanisms, rather than a single one, control the cas-
cade process in momentum-scalar coupling turbulence. The cascade process is divided into two
new VF subranges intersecting at a wavenumber ki = 1.596, where a singular point is observed
in Figs. 5(a), 5(c), and 5(d). In the VF subrange at the lower-wavenumber regime, the scaling
exponents are ξu = −59/25, ξs,1 = −17/10, λu = −1, and λs,1 = −1/3. In the VF subrange at the
higher-wavenumber regime, the scaling exponents are ξu = 2/3, ξs,1 = −17/10, λu = 88/25, and
λs,1 = 34/33. These scaling exponents, not predicted in any single scalar component model,
strongly depend on the form of A(k), indicating that nonlinear interactions in regimes with multiple
coupling mechanisms can lead to unexpected scaling properties. It should be noted that for k/C > 1,
it is inappropriate to describe the influence of A(k) = A0e−k/C modulation using the approximation
A(k) ≈ A0[1− k

C + 1
2 ( k

C )
2 − 1

6 ( k
C )

3
].

In the second case, with A0 = 1 but C increased to 1010, the larger C significantly inhibits
the contributions of forcing mechanisms with larger βi. Consequently, the influence of β1 = 0
is promoted, controlling the cascade process. The constant-�s subrange and VF subrange of
β1 = 0 are observed sequentially. Additionally, ki is postponed to 1.596 × 1010 due to the larger
C, indicating a tight relationship between ki and Mi.

In the third case, where A0 is changed to 10−10 but C is kept at 1010, the cascade process remains
the same as in the previous case, differing only in the smaller magnitudes of Eu, �u, and �s,1 due
to the smaller uk [see Eq. (37)]. The magnitude of A0 is irrelevant to Es,1.

C. Binary scalar components and two coupling mechanisms

In the study of momentum-scalar coupling turbulence, we often encounter scenarios where
multiple scalar components and mechanisms can coexist simultaneously. Among these scenarios,
binary scalar transport stands out as both a simple and representative example of the complexities
involved in multiple scalar transport. This section delves into the cascades of turbulent kinetic
energy and scalar variance, driven by binary scalar components that operate independently of
each other. This situation is commonly observed in both natural environments and engineering
applications.
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A notable illustration of this is the simultaneous occurrence of stratified turbulence and EK turbu-
lence. These phenomena are driven by buoyancy and EBF, respectively. The buoyancy force depends
on density variations, whereas the EBF is influenced by electric conductivity or permittivity. In
instances where density fluctuations are not substantial enough to provoke notable variations in elec-
tric conductivity or permittivity, and vice versa, it is logical to treat these quantities as independent
from one another. Consequently, density and electric conductivity (or electric permittivity) function
as independent scalar quantities, denoted as sk,1 and sk,2, respectively. These scalar quantities can
be addressed and solved using Eq. (18) along with Eqs. (20) and (22), considering a scenario with
imax = 2, as

M2
1

[(
3

2
k + 5

2N1
k2sk,1

)(
d

dk
sk,1

)
+ 1

2
(3β1 − 1)sk,1 + β1 + 1

2N1
ks2

k,1

]
+M2

2

[(
3

2
k + 5

2N2
k2sk,2

)(
d

dk
sk,2

)
+ 1

2
(3β2 − 1)sk,2 + β2 + 1

2N2
ks2

k,2

]
+2M1M2

[(
3

2
k + 2

N2
k2sk,2 + 1

2N1
k2sk,1

)(
d

dk
sk,2

)
+ 1

2
(3β2 − 1)sk,2 + β2 + 1

2N1
ksk,1sk,2

]
= 0,

(38)

3

2
k

d

dk
(sk,2 − sk,1) + k2 d

dk

(
s2

k,2

N2
− s2

k,1

N1

)
+

(
1

2N1
k2sk,1

d

dk
sk,2 − 1

2N2
k2sk,2

d

dk
sk,1

)
+3

2
(β2sk,2 − β1sk,1) − 1

2
(sk,2 − sk,1) + ksk,1sk,2

2N1N2
(β2N2 + N2 − β1N1 − N1) = 0, (39)

ku2
k = kβ1 M1sk,1 + kβ2 M2sk,2. (40)

In the following sections, some examples of the cascade processes due to binary scalar compo-
nents will be discussed.

1. A special scenario where β1 = β2, M1 = M2, and Df ,1 = Df ,2, but N1 �= N2

In this specific scenario, we explore a straightforward example of binary scalar transport, where
the two scalar components can be different, yet the underlying driving mechanism across these
scalars remains identical. For instance, in EK turbulence, two variants of electric conductivity
components (such as Ca2+ and Cl−) with distinct N1 and N2 values are incorporated. This results
in the equations being approximately defined as β1 = β2, M1 = M2, and D f ,1 = D f ,2, although
N1 	= N2. Consequently, under these assumptions, Eqs. (3b) are reformulated as

Ds′
1

Dt
= −N1 · u + D f ,1�s′

1,

Ds′
2

Dt
= −N2 · u + D f ,1�s′

2. (41)

Any linear combination of s′
1 and s′

2, defined as s′
c = as′

1 + bs′
2 (a and b are two proportion

coefficients), also fulfills a convection-diffusion equation

Ds′
c

Dt
= −Nc · u + D f ,1�s′

c, (42)

where Nc = aN1 + bN2. Therefore, theoretically, for the special binary scalar scenario discussed
in this section, analyzing s′

1 and s′
2 should yield results identical to those found in Sec. III A for a

single scalar, s′
c. Taking a = b = 1 as an example, within the context of a single scalar model and

referring to Sec. III A, Eq. (25) can be rewritten as(
3

2
k + 5

2Nc
k2sk,c

)
dsk,c

dk
+ 3β1 − 1

2
sk,c + β1 + 1

2Nc
ks2

k,c = 0, (43)
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FIG. 6. Spectra of scalar variance at β1 = 1. Here, N2 = 10N1. (a) log10Es,1 and log10Es,2 vary with log10k.
Es,1 and Es,2 are computed from Eqs. (45) and (39). The inset is the zoom-in of the plots. The circles represent
the initial values of Es,1 and Es,2 at the lowest wavenumber. (b) Comparison among the spectra of s′

1 and s′
2

computed from Eqs. (45) and (39), and s′
c computed from Eq. (43). The circles represent the initial values of

Es,1, Es,2, and Es,c at the lowest wavenumber.

where sk,c = sk,1 + sk,2 is the spectral component of s′
c. After substituting sk,c and Nc into Eq. (43),

it becomes

3

2
k

d (sk,1 + sk,2)

dk
+ 5

2(N1 + N2)
k2sk,1

dsk,1

dk
+ 5

2(N1 + N2)
k2sk,2

dsk,2

dk
+ 5

2(N1 + N2)
k2sk,1

dsk,2

dk

+ 5

2(N1 + N2)
k2sk,2

dsk,1

dk
+ 3β1 − 1

2
(sk,1 + sk,2) + β1 + 1

2(N1 + N2)
k
(
s2

k,1 + s2
k,2 + 2sk,1sk,2

) = 0.

(44)

When considering binary scalar components s′
1 and s′

2, according to Eq. (38), the following is
obtained:

3k
d

dk
(sk,1 + sk,2) + 9

2N1
k2sk,1

d

dk
sk,1 + 9

2N2
k2sk,2

d

dk
sk,2 + 1

2N1
k2sk,1

d

dk
sk,2 + 1

2N2
k2sk,2

d

dk
sk,1

+(3β1 − 1)(sk,1 + sk,2) + (β1 + 1)k

(
s2

k,1

2N1
+ s2

k,2

2N2

)
+ (β1 + 1)

(
N1 + N2

2N1N2

)
ksk,1sk,2 = 0. (45)

Both Eqs. (44) and (45) describe the same phenomenon, indicating they must be either equivalent
or proportional. To satisfy this, we introduce the assumption that sk,1 and sk,2 share the same scaling
behavior, differing only by a factor hc, such that sk,2 = hcsk,1. Consequently, Eqs. (44) and (45) are
equivalent if hc = N2/N1. This leads us to the following relationship:

sk,2 = N2

N1
sk,1. (46)

In this specific scenario, one can solve for sk,c first. Afterwards, sk,1 and sk,2 can be calculated
using sk,1 = N1

N1+N2
sk,c and sk,2 = N2

N1+N2
sk,c, respectively. Alternatively, the same results can also be

derived by solving Eqs. (39) and (45) directly. Once sk,1 and sk,2 are obtained, uk can be calculated
through Eq. (40).

Figures 6(a) and 6(b) illustrate further insights. Figure 6(a) showcases the calculated Es,i for
β1 = 1 and N2 = 10N1, according to Eqs. (39) and (45). Despite N2 being an order of magnitude
larger than N1, Es,1 and Es,2 exhibit remarkably similar distributions, with Es,2 = 102Es,1 within the
constant-�u subrange [as shown in the inset of Fig. 6(a)]. In Fig. 6(b), the spectra of s′

1, s′
2, and

s′
c are plotted, derived from Eqs. (45) and (39), and Eq. (43), respectively. Initial values, denoted

by circles, reveal Es,c = Es,1 + Es,2, translating to sk,c = 11sk,1 and sk,c = 11
10 sk,2, aligning with the

theoretical expectations.
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FIG. 7. Spectra computed with binary scalar components at different βi. Here, β1 = 0 and β2 = 1 to
simulate the turbulence driven by buoyancy and EBF simultaneously. As a conceptual model, the magnitudes
of Mi and Ni are selected arbitrarily. (a) log10Eu vs log10k, (b) log10�u vs log10k, (c) log10Es,1 vs log10k,
(d) log10Es,2 vs log10k, (e) log10�s,1 vs log10k, and (f) log10�s,2 vs log10k.

This analysis demonstrates that the discussed special scenario can be resolved using either a
single or binary scalar component model approach. Furthermore, the model can be extended to
incorporate multiple scalar components (for instance, when imax > 2), assuming βi, Mi, and D f ,i

remain constant across all components, while Ni varies. Thereafter,

sk,i = Ni∑
i Ni

sk,c and sk,c =
∑

i

sk,i. (47)

2. General scenario of binary scalar components

In the general scenario involving two binary scalar components, Eqs. (38) and (39) must be
solved concurrently to determine sk,1 and sk,2. Subsequently, uk is calculated using Eq. (40).
Following this, Eu, Es,i (i = 1, 2), �u, and �s,i can be derived from sk,1, sk,2, and uk directly, based
on Eqs. (12).

Previous studies have shown that in the wavenumber space, the influence of buoyancy or EBF
can be differentiated; buoyancy predominantly affects the cascades in the lower wavenumber ranges,
while EBF governs the higher wavenumber ranges. However, the interaction between these mecha-
nisms in a regime where both are present remains unclear. This section explores the combined effects
of buoyancy (β1 = 0) and EBF (β2 = 1) with varying strengths on the cascades of turbulent kinetic
energy and scalar variance. The two scalar components considered could represent temperature and
electric conductivity, respectively.

Figure 7 illustrates the wavenumber subranges influenced by both buoyancy and EBF. In a
conceptual model setting, the magnitudes of Mi and Ni were arbitrarily chosen. With M1 = M2 = 1
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and N1 = N2 = 1 as an example, solution 1 (depicted by red lines) shows a sequence of a
constant-�u subrange followed by two VF subranges. In the constant-�u subrange, located in
the lower-wavenumber regime, ξu = − 5

3 [Fig. 7(a)] and λu = 0 [Fig. 7(b)], ξs,1 = − 1
3 [Fig. 7(c)],

ξs,2 = − 7
3 [Fig. 7(d), λs,1 = 4

3 [Fig. 7(e)], and λs,2 = − 2
3 [Fig. 7(f)], which are aligning with single

scalar predictions in Table I for β1 = 0 and β2 = 1, respectively.
Following the constant-�u subrange is a VF subrange driven by buoyancy, where ξu = −3, ξs,1 =

ξs,2 = −3, λu = −2, and λs,1 = λs,2 = −2. In this subrange, EBF plays a negligible role, and the
cascades of s′

2 are the same as those of s′
1. Proceeding to the higher-wavenumber side, another VF

subrange completely governed by EBF is visible, where the influence of buoyancy is negligible, and
ξu = −2, ξs,1 = ξs,2 = −3, λu = − 1

2 , and λs,1 = λs,2 = − 3
2 which are coincident to Table I as well.

When considering a scenario where the second mechanism is weaker (M2 = 10−3 and N2 =
10−3), solution 1 (depicted by black dashed lines) presents two distinct subranges. One is the
constant-�u subrange located at the lower-wavenumber regime attributed to buoyancy, and the other
is the VF subrange located at the higher-wavenumber regime attributed to EBF. According to the
unbalanced forcing through buoyancy and EBF, the VF subrange of buoyancy-driven turbulence
mentioned in the previous paragraph is not observed in this case. Instead, a highly fluctuated
transitional regime is present, where singular and intermittent (sudden fall) spectra are numerically
computed [see, e.g., Figs. 7(b) and 7(d)–7(f)]. Despite the reduced magnitudes of M2 and N2,
their effect on the overall scaling in the constant-�u subrange dominated by buoyancy remains
unchanged. In the VF subrange dominated by EBF, the values of Eu, Es,i (i = 1, 2), �u, and
�s,i are all significantly lower than those in the previous scenario, as illustrated in Fig. 7. Yet,
an intriguing exception is observed: smaller values of M2 and N2 lead to a reduction in �s,1

within this subrange, without impacting Es,1. Such a phenomenon is not observed in conventional
hydrodynamic turbulence. Nonetheless, in turbulence that involves momentum-scalar coupling, this
behavior may be more common. This is because �s,i [as defined in Eq. (12d)] are more influenced
by the smaller M2, mediated through uk [Eq. (18)].

The impact of solution 2 on the previously mentioned scenarios has also been examined, with
findings presented in Fig. 7. Analyzing the spectra indicated by blue dotted lines, when M1 = M2 =
1 and N1 = N2 = 1, the cascade divides into two distinct subranges. The first is a VF subrange of
buoyancy-driven turbulence found in the lower-wavenumber regime. The second subrange, situated
in the higher-wavenumber region, pertains to EK turbulence. Despite the appearance of a “zigzag”
pattern in this higher subrange [as seen in Figs. 7(b), 7(e), and 7(f)], the overall trend aligns with
the predictions for the VF subrange of EK turbulence detailed in Table I.

Conversely, when implementing solution 2 with M1 = 1, N1 = 1, M2 = 10−3, and N2 =
10−3 (represented by blue dot-dashed lines), novel scaling characteristics emerge. In the lower-
wavenumber regime, the VF subrange for buoyancy-driven turbulence remains noticeable. Yet,
within the higher-wavenumber sphere, the new VF subrange—previously discussed in Sec. III B—
emerges again, characterized by ξu = − 6

5 , ξs,1 = ξs,2 = − 7
5 , λu = 7

10 , and λs,1 = λs,2 = 1
2 .

These observations underscore the nuanced interplay between buoyancy and EBF in turbulence,
suggesting that a variety of scaling behaviors can emerge based on the relative strengths of these
mechanisms. This complexity invites further investigation, particularly in scenarios with more
varied magnitudes of Mi and Ni, indicating the potential for uncovering additional unpredictable
scalings in momentum-scalar coupling turbulence.

D. Three or more scalar components

When there are three or more independent scalar components, that is, imax � 3, solving for
the imax + 1 unknowns (uk and sk,i) using the given equations [(imax2 − imax)/2 + 2] from
Eqs. (18), (20), and (21) leads to a nonclosure issue. The problem appears overdetermined at first
glance because there are more equations than unknowns, making the determination of the solutions
exceedingly challenging. However, in a physical system, such as EK turbulence involving more
than three electrolyte components (e.g., Na+, K+, Ca2+, Mg2+, Cl−, and others), deterministic
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solutions for uk and sk,i should exist and be experimentally measurable. This suggests that, in
reality, the solutions should be unique and attainable. Therefore, it can be deduced that there are
(imax2 − 3imax)/2 + 1 constraints necessary to make the equations solvable.

Identifying these unknown constraints is vital for comprehending complex nonlinear systems
with multiple components and coupling mechanisms, which are more applicable to real-world
situations than the highly simplified models like K41 [53], the Bolgiano-Obukhov model [26,27],
the Zhao-Wang model [34], etc. A prime example is in electrochemical engineering, where the
mixture of complex chemical components in a turbulent mixer with the presence of EK flow
facilitates chemical reactions. Knowing the exact spatial or spectral distribution of each chemical
component is crucial to predicting the reaction outcomes. Nevertheless, this topic exceeds the
current study’s scope and will be addressed in future research.

IV. CONCLUSIONS

This study introduces a theoretical model for the cascade processes in momentum-scaling
coupling turbulence driven by multiple scalar components and various mechanisms, building upon
the general flux model proposed by Zhao [47]. The current model comprehensively supports the
quad-cascade processes of turbulent kinetic energy and scalar variance, while also forecasting new
scaling properties.

For a model with a single scalar component where only one coupling mechanism is taken
into account, it predicts that the variable flux subrange can exhibit scaling exponents ξu = β1 − 3,
ξs,1 = −3, λu = 3

2β1 − 2, and λs,1 = 1
2β1 − 2, derived from the order of deviation in the multiscale

force MiD
βi/4s′

i. Remarkably, spikes are identified in the variable flux subranges when βi < 2/3,
suggesting the emergence of local intermittency when solving the inherently nonlinear and inhomo-
geneous conservation equation.

In the context of turbulence driven by a single scalar but subjected to multiple coupling mech-
anisms, for instance, the combined effects of buoyancy-driven turbulence and EK turbulence due
to temperature variations, a distinctive variable flux subrange is detected. This subrange exhibits
scaling exponents ξu = − 6

5 , ξs,1 = − 7
5 , λu = 7

10 , and λs,1 = 1
2 . With the expansion of this model to

include an exponential modulation function, the emergence of two new variable flux subranges
is disclosed. The first, in the lower-wavenumber regime, displays scaling exponents ξu = − 59

25 ,
ξs,1 = − 17

10 , λu = −1, and λs,1 = − 1
3 . The second appears in the higher-wavenumber regime,

marked by scaling exponents ξu = 2
3 , ξs,1 = − 17

10 , λu = 88
25 , and λs,1 = 34

33 . These findings reveal
that the determined scaling exponents heavily rely on the chosen modulation function. Moreover,
it hints at the potential to manipulate the scaling properties and cascade processes by strategically
aligning different scalar components and coupling mechanisms.

Subsequently, this study delves into a binary scalar components model, specifically focusing on
electrokinetic turbulence (βi = 1) driven by two types of ions with disparate mean concentration
gradients. Two approaches are compared: one using a single scalar component model based on the
linear relationship between the two scalar transport equations, and the other directly computing the
cascade process using the binary scalar component model. These distinct approaches both converge
on the same outcomes regarding the cascade processes, indicating consistency in the results derived
from simplified and more complex models.

Further exploration into the interplay between buoyancy-driven turbulence (β1 = 0) and elec-
trokinetic turbulence (β2 = 1), characterized by temperature and electric conductivity as the two
scalar components, reveals that the cascade process is comprised of several distinct subranges,
including the constant-�u subrange, VF subranges of buoyancy-driven turbulence and EK turbu-
lence, etc. Notably, the new variable flux subrange characterized by ξu = − 6

5 , ξs,1 = ξs,2 = − 7
5 ,

λu = 7
10 , and λs,1 = λs,2 = 1

2 is observed again. This finding is further corroborated by using the
single-scalar-component model influenced by dual mechanisms.
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The investigation then addresses the complexities that arise when three or more distinct scalar
components and coupling mechanisms simultaneously coexist, leading to potentially overdeter-
mined conservative equations. Yet, from a physical standpoint, it is posited that unique solutions
for the cascades of multiple scalars, which can be empirically validated, must exist. It suggests that
additional equations or constraints are needed to circumvent these complexities, setting the stage
for further research endeavors.

Turbulence is a complex and challenging phenomenon, particularly in the context of momentum-
scalar coupling, where multiple scalar components and coupling mechanisms come into play.
Despite its importance, the cascade process of momentum-scalar coupling turbulence has received
limited attention and remains poorly understood. In this study, we have undertaken an effort to
address this knowledge gap and shed light on a small part of this complex problem, which is
bound to be confronted sooner or later. By doing so, we aim to uncover the diverse scaling
properties observed experimentally in momentum-scalar coupling turbulence, including phenomena
in buoyancy-driven turbulence in the atmosphere. Understanding the cascade processes and scaling
properties in these turbulent flows is crucial for various scientific fields, not only for the conventional
hydrodynamic turbulence, but also for theoretical physics and optics [60,61], particularly in wave
turbulence [62,63] when more complex coupling of multiple wave functions must be included.
Our findings contribute to the groundwork necessary for future investigations and deepen our
understanding of turbulent flows across different physical systems.
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