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Physics-informed machine-learning solution to log-layer mismatch
in wall-modeled large-eddy simulation
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This study proposes a physics-informed machine learning to enable using the erroneous
flow data at near-wall grid points as the input to the wall model in a wall-modeled large-
eddy simulation (LES). The proposed neural network predicts the amount of numerical
error in the near-wall grid-point data and inputs the physically correct flow variables into
the wall model by correcting the near-wall error. The input and output features of the
neural networks are selected based on the physical relations of the turbulent boundary
layer for robustness against various Reynolds and Mach number conditions. The proposed
neural networks allow the wall model to accurately predict the wall shear stress from the
erroneous near-wall information and yields accurate predictions of the turbulence statistics.
Additionally, the proposed physics-informed machine-learning approach reproduces the
asymmetry in the probability density functions of the predicted wall shear stress observed
in direct numerical simulations, while the conventional wall model with input away from
the wall does not. The results suggest that using the near-wall information for wall
modeling may increase the fidelity of the wall-modeled LES.
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I. INTRODUCTION

The wall-resolved large-eddy simulation (LES) has been considered an optimal compromise be-
tween predictive accuracy and computational cost, apart from high Reynolds numbers at which the
computational cost becomes impractically high. Compared to the wall-resolved LES, the promise of
the wall-modeled LES is to reduce the computational costs drastically by intentionally not resolving
the near-wall small-scale energetic and dynamically essential motions in the inner layer, such as the
streaks, while retaining the predictive accuracy of the wall-resolved LES. Here, in this study, the
focus is on the wall-modeling approaches that model the wall stress τw (and heat flux qw if the flow is
compressible) directly and solve the LES equations with the modeled wall-flux boundary conditions
(cf. the reviews by Piomelli and Balaras [1], Larsson et al. [2], and Bose and Park [3]). Not resolving
these inner-layer motions with small lengths and time scales reduces the required grid resolution
and time-step size drastically. Grid-point and time-step requirement estimates have previously been
studied [4–6]. Originally, Chapman [4] has estimated that the number of grid points required for
wall-resolved LES and wall-modeled LES scale as Nwr ∼ Re9/5

Lx
and Nwm ∼ Re2/5

Lx
, where Lx is the

length of the plate, respectively. Choi and Moin [5] later revisited Chapman’s estimates and arrived
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at the estimates Nwr ∼ Re13/7
Lx

and Nwm ∼ ReLx . The recent study by Yang and Griffin [6] estimates
that the overall costs for wall-resolved LES and wall-modeled LES are proportional to Re2.72

Lx
and

Re1.14
Lx

, respectively.
One of the crucial issues in the wall-modeled LES is the inevitable presence of near-wall

erroneous solutions, mainly due to the discretization and subgrid modeling errors, typically in
the first few grid points off the wall as discussed in Refs. [7–9]. Despite the near-wall erroneous
solution in the wall-modeled LES, traditionally, the wall model has taken input from the erroneous
solution at the first off-wall grid point y2 (where y1 = 0 is placed at the wall), leading to the error
in the predicted skin friction τw, which is fed into the LES as the wall flux boundary conditions,
with its associated so-called “log-layer mismatch.” Later, Kawai and Larsson [9] have analytically
derived the criterion that yields the LES to be properly resolved at the “matching height” y = hwm,
where the LES solution is fed into the wall model. They proposed that the wall model should receive
the LES solution a few grid points away from the wall (i.e., hwm = y j , where j depends on the
employed discretization method) for the LES to be well resolved and also to bypass the near-wall
erroneous solution. This wall-modeled LES approach allows the wall model to yield accurately
predicted skin friction and removes the chronic problem of the log-layer mismatch. The approach
of applying hwm = y j ( j > 2) [9] instead of using the established practice hwm = y2 is now widely
accepted and leads the recent successes of the wall-modeled LES of high Reynolds number flows,
e.g., Refs. [10–23].

Despite the successes of the wall-modeled LES using nonlocal quantities at hwm = y j ( j > 2),
there is a demand for a local wall-modeling approach using the wall-adjacent grid points, i.e.,
hwm = y2. As discussed by Yang et al. [24], the nonlocal approach incurs difficulties in meshing
and numerical implementation (e.g., data exchange, parallel performance, etc.), especially when
applying the wall-modeled LES to practical engineering applications with complex geometries. In
addition to the numerical difficulties, there is a possible drawback that the nonlocal approach cannot
reflect the flow physics involved below the matching height y < hwm. For example, even if there is
a small separation, skewed velocity distributions, or near-wall turbulent structures at y < hwm, the
nonlocal wall model only receives the LES solution at y = hwm a few grid points away from the wall
and cannot properly reflect the physically important motions below the matching height. A locally
confined wall-modeling approach that uses the wall-adjacent grid points as input for the wall model
may reflect the physically important information in predicting τw (will be discussed in this paper).

The issue of the locally confined wall-modeling approach is the log-layer mismatch problem due
to the inevitable presence of discretization and subgrid modeling errors in the first few grid points
off the wall [9]. This issue of using the locally confined wall model has been addressed by several
studies. Yang et al. [24,25] theorized that the log-layer mismatch occurs because of the nonphysical
correlation of the resolved LES velocity and the modeled wall stress and proposed to apply temporal
averaging or spatial averaging to the input flow quantities (i.e., velocity components) for hwm = y2

of the wall model. They argued that the averaging procedure breaks the nonphysical correlation
between the input velocity and the output wall stress and reasonably resolves the log-layer mismatch
problem, although additional parameters for temporal and spatial averaging are introduced. Also,
Portè-Agel et al. [26] showed that by modifying the near-wall subgrid scale (SGS) model, the
log-layer mismatch can be resolved with the local wall-modeling (although Yang et al. [24] reported
that this approach has limited impact on the log-layer mismatch problem). Similarly, Bae and
Lozano-Duràn [27] have shown that imposing the obtained boundary condition by adjusting the
eddy viscosity improves the predicted statistics. The above studies propose different solutions to
the log-layer mismatch problem. Instead of the various proposed physic-based approaches, we pur-
sue and propose a data-driven solution to the log-layer mismatch problem in this study. Specifically,
we build upon the theory by Kawai and Larsson [9] that the log-layer mismatch occurs because of
the under-resolution of turbulence and the consequential numerical errors in the near-wall region.

The difficulty of the log-layer mismatch problem with the near-wall grid point as the input is
that the cause of the problem stems from numerical errors and is essentially difficult to understand
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analytically. Machine learning is an emerging technology and may even predict quantities that are
difficult to analytically understand by using large datasets. Many studies have utilized machine-
learning techniques in place of conventional wall models. The employed techniques include simple
feed-forward neural networks [28,29], convolutional neural networks [30,31], reinforcement learn-
ing [32,33], and many others. Notably, Vadrot et al. [34] have performed a comparative analysis
between some of the proposed machine-learning methods. More examples of machine learning in
fluid dynamics can be found in the reviews by Duraisamy et al. [35] and Brunton et al. [36].

In the proposed approach, the near-wall flow quantities that involve the inevitable errors are
corrected by the neural networks before being used as the input for the wall model. The wall model
is then able to yield an accurate prediction of the skin friction and its associated correct logarithmic
law of the mean velocity profile. The proposed neural networks are constructed such that the near-
wall erroneous quantities are corrected robustly against the various Reynolds number and Mach
number conditions including those outside of the training data (i.e., extrapolation conditions) by
incorporating the physics-informed transformations of the variables based on physical relations of
the turbulent boundary layer. We also address the advantage of using the wall-adjacent grid points
as input for the wall model to reflect the physically important near-wall motions.

The proposed methodology may be viewed as an alternative method to bypass the near-wall
numerical errors that cause the log-layer mismatch problem. The methodology by Kawai and
Larsson [9] is to not use the erroneous values entirely by placing the matching point away from
the wall. On the contrary, the proposed methodology uses the erroneous near-wall quantities and
attempts to correct the errors in the input for the wall model beforehand so that the log-layer
mismatch does not occur. Thus, the proposed methodology may also serve as a new piece of
evidence for the theory by Kawai and Larsson [9] that the log-layer mismatch occurs because of
the near-wall numerical errors.

To test the robustness of the proposed methodology, in this paper, we vary the Reynolds and Mach
numbers over a wide range as the flow parameters for the fully developed nominally zero-pressure
gradient flat-plate turbulent boundary layer. The structure of this paper is as follows. In Sec. II,
we describe the employed wall-modeled LES approach and the neural network. The proposed
neural networks, which correct the erroneous near-wall flow quantities, are introduced in Sec. III.
In Sec. IV, the proposed physics-informed machine-learning-based wall-modeling approach is
validated through wall-modeled LES of the nominally zero-pressure-gradient flat-plate turbulent
boundary layers at various Reynolds number and Mach number conditions. The study is summarized
in Sec. V.

II. GOVERNING EQUATIONS AND NEURAL NETWORKS

A. Wall-modeled LES

The employed wall-modeled LES approach is based on the equilibrium wall model proposed by
Kawai and Larsson [9], in which the spatially filtered LES equations are solved all the way down
to the wall with a grid that does not resolve the inner-layer motions. The grid and time-step sizes
are chosen to resolve the outer-layer motions that typically scale with the boundary layer thickness
δ with a nearly isotropic grid with δ/�xi � 25 (i = 1, 2, 3 in each direction). The effects of the
unresolved physically important near-wall motions are modeled as the wall shear stress τw and heat
flux qw through the wall model that takes input from the instantaneous LES solution q = (ρ,U, p)
at the matching height y = hwm, where ρ is the density, U is the streamwise velocity, and p is the
static pressure.

Figure 1 shows the schematic of the typical wall-modeled LES. The widely accepted wall-
modeling approach is to receive the well-resolved LES solution at a few grid points away from
the wall and bypass the near-wall erroneous solution [9]. As discussed in Ref. [9], even with the
inevitable presence of near-wall errors in the wall-modeled LES, if the accurate LES solution within
the inner portion of the boundary layer is fed into the wall model, the wall model functions properly
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FIG. 1. Schematic of wall-modeled LES framework. Wall model predicts velocity and temperature profiles
( ) below the matching height (hwm ) using the LES input away from the wall. Predicted wall shear stress τw

and heat flux qw are then fed back to LES as wall flux boundary conditions.

to accurately predict the skin friction, which leads to the correct log-law through the conservation
of momentum.

The governing equations of the LES are the spatially filtered compressible Navier–Stokes
equations:

∂ρ

∂t
+ ∂

∂x j
(ρu j ) = 0, (1)

∂ρui

∂t
+ ∂

∂x j
(ρuiu j ) = − ∂ p

∂xi
+ ∂τi j

∂x j
, (2)

∂ρE

∂t
+ ∂

∂x j
(ρEuj ) = − ∂

∂x j
(pu j ) + ∂

∂x j
(τ jkuk ) − ∂q j

∂x j
, (3)

where the notation for the filtering is omitted for simplicity. E is the total energy defined as

E = p

ρ(γ − 1)
+ 1

2
ukuk, (4)

where γ = 1.4 is the heat capacity ratio assuming ideal gas. τi j are the components of the viscous
and SGS stress tensor defined as

τi j = (μ + μt,SGS)

(
∂ui

∂x j
+ ∂u j

∂xi
− 2

3
δi j

∂uk

∂xk

)
, (5)

where μ is the molecular viscosity calculated by Sutherland’s law, and μt,SGS is the SGS turbulent
viscosity calculated by an SGS model. qi is the heat flux vector defined as

qi = −(κ + κt )
∂T

∂xi
= −cp

(
μ

Pr
+ μt,SGS

Prt,SGS

)
∂T

∂xi
, (6)

where T is the temperature, κ and κt are the molecular and turbulent heat transfer coefficients, cp

is the heat capacity at constant pressure, Pr is the Prandtl number, and Prt,SGS is the SGS turbulent
Prandtl number. In this study, the selective mixed-scale model [37] is employed as the SGS model.
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The employed wall modeling approach is the equilibrium wall model proposed by Kawai and
Larsson [9]. This methodology solves the following simplified equilibrium momentum and total
energy equations:

d

dy

[
(μ + μt,wm )

dU

dy

]
= 0, (7)

d

dy

[
(μ + μt,wm )U

dU

dy
+ cp

(
μ

Pr
+ μt,wm

Prt,wm

)
dT

dy

]
= 0, (8)

where Prt,wm is the wall model turbulent Prandtl number. The wall model eddy viscosity μt,wm is
given as

μt,wm = κρy
√

τw

ρ
D, D = [1 − exp(−y+/A+)]2, (9)

with the values κ = 0.41, Prt,wm = 0.9, and A+ = 17. y+ = yuτ /νw is the wall distance nondi-
mensionalized by the friction velocity uτ and the wall kinematic viscosity νw. The above ordinary
differential equations are solved in the wall-modeled region 0 � y � hwm. The top boundary
condition is imposed as the instantaneous streamwise velocity magnitude U and the temperature
T at the matching location in the LES. After numerically solving the coupled ordinary differential
equations, the wall shear stress τw and the wall heat flux qw are returned to the LES and used as the
flux boundary conditions. To summarize, the wall model can be thought of as a function that takes
the instantaneous velocity and temperature at the matching location hwm as input and outputs the
appropriate flux boundary conditions for the LES.

B. Neural network

This study employs feed-forward neural networks [38]. A feed-forward neural network consists
of one input layer (the 0th layer), multiple hidden layers, and one output layer (the final Lth layer).
The output vector xl in the lth layer (1 � l � L − 1) is calculated as

xl = f (W lxl−1 + bl ), (10)

where the matrix W l and the vector bl indicate the weights and biases in the lth layer, and f is the
nonlinear activation function. For the final Lth layer, the activation function is not used:

xL = W LxL−1 + bL. (11)

The neural networks express transformation from an input vector to an output vector through the
combination of linear affine transformation and nonlinear activation functions.

The training of a neural network determines the best parameters of weights W l and biases
bl which minimize the error between the training data and the prediction. The loss function
employed in this study is the mean-square error between the predicted value and the expected value.
The parameters of the network are updated at each training step via the employed optimization
method. In this study, we employ Adam [39] as the optimization method with the recommended
hyperparameters and the rectified linear unit (ReLU) [40] as the activation function in the hidden
layers, with He normalization [41] for the random initial parameters. The neural networks in this
study have five hidden layers and five neurons in each layer based on the preliminary hyperparameter
grid search. The neural networks are trained using 80% of the collected data, and the remaining 20%
of data are used as the test data to estimate the predictive capability.

III. PROPOSED METHODOLOGY

A. Overview

As proposed by Kawai and Larsson [9], the conventional wall-modeled LES typically uses the
matching location lm � 3, where l represents the grid index in the wall-normal direction and l = 1
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FIG. 2. Schematic of wall-modeled LES using the first off-wall information with correction amount
predicted by neural network.

at the wall. This method bypasses the inherent numerical errors that exist in the wall-adjacent
grid points due to the severe under-resolution of turbulence. Instead, we propose to preprocess
and correct the wall-adjacent erroneous flow quantities using neural networks before inputting
into the wall model. In particular, our proposed method adds the corrections �q̂ = (�ρ̂,�Û ,� p̂)
predicted by the neural networks to the wall-adjacent flow quantities q = (ρ,U, p) at l = 2 which
contain the numerical errors, and uses the corrected q + �q̂ as the input to the wall model. Note
that the operator (̂·) represents the average in the spanwise direction. Here, � p̂ is assumed to be
zero because the pressure is nearly constant in the wall-normal direction in the inner layer of the
boundary layer. After the correction, the corrected value q + �q̂ is considered as the physically
correct flow variables at y|l=2. Thus, our goal is to predict �ρ̂ and �Û from the erroneous LES
quantities q̂ by neural networks. Since no analytical relationship between the numerical error �q̂
and the resolved quantities q̂ exists, a neural network may be a suitable method for predicting �q̂.
Figure 2 shows the overview of the proposed method. The detailed procedures of the proposed
method are as follows:

(1) Calculate the physics-informed input features λ (described in Sec. III C) for the neural
networks from q̂.

(2) Predict �q̂ by the neural networks from λ.
(3) Correct the erroneous quantities q as q + �q̂ as the input for the wall model.
(4) Obtain the skin friction τw and heat flux qw by the wall model from the corrected flow

quantities q + �q̂.
(5) Feed back the obtained τw and qw as the flux boundary conditions of the LES.
The training of the neural network requires the expected output �q̂ for each input q̂ in the training

data. In this study, the accurate flow variables q̂ + �q̂ are obtained by driving the wall model using
lm = 6 as proposed by Kawai and Larsson [9]. Specifically, the erroneous LES input q̂ is taken
from l = 2, and the accurate flow variables q̂ + �q̂ are obtained from the wall-model solution at
the same distance from the wall. The details of the training data collection process are described in
the subsequent Sec. III B.

We also mention that the present study uses offline learning, where the training of the
model is separate and independent from the generation of the dataset. Online trainings of the
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FIG. 3. Schematic of wall-modeled LES of fully developed flat-plate turbulent boundary layer. Every five
grid points are visualized as gray lines. Colored contours show streamwise velocity.

machine-learning models, which dynamically couple the training with the wall-modeled LES sim-
ulations, were not necessary to obtain the proposed models that successfully alleviate the log-layer
mismatch. This is because the flowfields from the wall-modeled LES simulations using lm = 6 as in
the training data and the flowfields from the proposed wall-modeled LES methodology do not differ
significantly. Therefore, the machine-learning models are able to function correctly solely from the
offline training data.

B. Training data

This section describes the flow conditions of the wall-modeled LES used for obtaining the
training data and the details of the data collection process. The flow configuration used is the fully
developed flat-plate turbulent boundary layer as shown in Fig. 3. The computational domain is 45δin,
10δin, 3δin in the streamwise (x), wall-normal (y), and spanwise (z) directions, where δin represents
the boundary layer thickness at the inlet. The wall-parallel grid spacings are �x = �z ≈ 0.05δin,
while the wall-normal grid spacing at the wall is �yw ≈ 0.0125δin as in Ref. [9]. The number
of grid points is 901 × 174 × 60. The sixth-order compact differencing scheme [42] is employed
for computing the spatial derivatives and an eighth-order compact low-pass filter [42,43] is used
for stability of the computation. The third-order TVD Runge–Kutta method [44] is used for time
integration. The rescaling-reintroduction method [45] is used to generate the inflow conditions. This
method recycles the turbulence states taken downstream (x = 12δin in this study) as the inflow with
appropriate scalings. The adiabatic and nonslip boundary conditions are imposed at the wall, and
the periodic boundary conditions are applied in the spanwise direction.

The computed friction Reynolds number (Reτ = δuτ /νw) and Mach number (M∞ = u∞/a∞,
where u∞ and a∞ are the streamwise velocity and speed of sound at freestream, respectively)
conditions are shown in Table I. We divide the conditions into two groups: the training group
(shaded red in Table I) used as the training data, and the validation group used to test the predictive
capabilities of the physics-informed machine-learning models. The friction Reynolds number and
the Mach number conditions in the training group cover the range of 5 000 � Reτ � 80 000 and
1.69 � M∞ � 2.40. The conditions in the validation group are not used during training of the neural
networks and only used for testing. They are further subdivided into two groups: the interpolation
group (shaded green in Table I) which lies within the range of Reynolds and Mach numbers used in
training (i.e., interpolation in the flow parameter space), and the extrapolation group (shaded blue
in Table I) where one or both of the flow conditions are higher than the trained range of conditions
(i.e., extrapolation in the flow parameter space). If the neural networks are trained appropriately on
the training data, it is expected that the models perform well on the interpolation group. However,
it is not always true that a well-trained model performs well on the extrapolation group outside of
the trained range of inputs. Therefore, the extrapolation group serves to test the applicability of the
learned models to new and unseen flow conditions. In this study, the proposed physics-informed
machine-learning models are designed with hopes to enable accurate predictions regardless of the
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TABLE I. Flow conditions of collected data and their purpose. T , training group; I ,
interpolation group for validation; E , extrapolation group for validation. Subscripts are the
case specifiers used in Figs. 7–9 and Tables III–V.

���������
Reτ

M∞
1.69 1.90 2.10 2.25 2.40 2.70

5,000 T T T(c)

10,000 I(f)

20,000 T I(d) T(b) T E(h)

40,000 I(e)

80,000 T(a) T T

160,000 E(g) E(i)

flow condition. As such, the accuracy of the predictions in the extrapolation group signifies the
effectiveness of the proposed physics-informed methodology.

Figure 4 is a schematic of the processes of obtaining the correction amounts �q̂. The figure shows
the process of obtaining the spanwise-averaged van Driest transformed velocity correction in wall
units �û+

vD as an example (the choice of variable is discussed in the subsequent Sec. III C). To
generate the training data, the conventional wall-modeled LES using lm = 6 as the matching point
is performed. As shown with the black line in Fig. 4, the LES velocity at l = 2 (̂u+

vD,LES|l=2) deviates
from the law of the wall because of the under-resolution of near-wall turbulence. In this study, we
assume that the flow computed by the conventional wall model using lm = 6 (red dashed line) is
accurate and used as the reference data.

First, the spanwise-averaged flow variables at l = 2 in both the wall model and LES (̂qwm|l=2 and
q̂LES|l=2) are obtained. Comparing the red dashed line and the black line at y|l=2 in Fig. 4, the error
�q̂ = q̂wm|l=2 − q̂LES|l=2 (�û+

vD = û+
vD,wm|l=2 − û+

vD,LES|l=2 in Fig. 4) is calculated, as represented

FIG. 4. Schematic of the training data collection process for the proposed neural networks. The red dashed
line and the black line show the velocity profiles predicted by the wall model and LES, respectively. The green
line represents the difference between the velocity predicted by the wall model and LES at y|l=2. Operator (̂·)
denotes spanwise averaging.
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TABLE II. Physics-informed input and output features for each neural network.

Input Output

û+
vD − ln(Reδin /M∞)/κ, ln(̂y+M∞/Reδin ) �û+

vD

ρ̂/ρ̂w, û+, β̂ �(̂ρ/ρ̂w )

by the green line. �q̂ is the expected correction amount that needs to be predicted by the proposed
neural networks such that q̂wm|l=2 = q̂LES|l=2 + �q̂. To summarize, the spanwise-averaged flow
variables at l = 2 in the LES region q̂LES|l=2 are acquired as the input data, and the differences
between the LES region and the wall-modeled region �q̂ at l = 2 are obtained as the expected
output data. This process is performed at each of the 901 streamwise locations at 10 000 time steps to
obtain the entire training dataset. The time window for data collection corresponds to approximately
140δin/u∞. These 901 × 10 000 pairs of training data are obtained for the nine conditions in the
training group (red-shaded conditions in Table I), which totals to 9 × 901 × 10 000 = 81 090 000
data pairs in the dataset.

Results from higher-fidelity simulations such as the DNS or wall-resolved LES may also be used
to construct the reference dataset. However, since the conventional wall-modeled LES simulations
have been shown to be sufficiently accurate for high-Reynolds-number wall-bounded flows [9–23],
we treat the wall-modeled LES with lm = 6 as the reference in this study. An additional advantage
to using the wall-modeled LES as the training data is the lower computational cost for dataset
generation. This study uses flowfields at the Reynolds numbers of up to Reτ ≈ 80 000 to train the
machine-learning models, which are prohibitively expensive to compute with DNS or wall-resolved
LES. Therefore, the present approach of using the wall-modeled LES as the reference data allows
the proposed methodology to be tested on a wider range of Reynolds number conditions.

C. Physics-informed input and output features for neural networks

In this study, separate neural networks are trained for each of the output correction amounts
�ρ̂ and �û. For each correction amount, the input and output features are determined to enable
accurate predictions for the various Reynolds and Mach number conditions by considering the
known physics of the turbulent boundary layer. The main cause that prevents the neural networks’
capability to make accurate predictions across a range of Reynolds and Mach numbers is the spread
of data in the input and output feature space. If it is possible through appropriate physics-informed
feature transformations to construct the input and output feature variables that collapse the data from
different flow conditions regardless of the condition, it may enable the neural networks to retain the
same predictive capabilities for the extrapolation conditions. In other words, the key motivation
of this study is that, by collapsing both the interpolation and extrapolation in the Reynolds and
Mach number space, extrapolation in the flow parameter space is never an extrapolation in the
input and output feature spaces. This approach has been shown in literature to be effective for
predictions in the extrapolation conditions [28]. Here, we use the known physical laws of the
turbulent boundary layer to find the appropriate input and output features that collapse under the
wide range of Reynolds and Mach number conditions. The chosen physics-informed input and
output features are summarized in Table II. In the following, the theoretical bases for the choice
of these physical features are explained.

1. Physics-informed input and output features for correction amount �û

The following discussion assumes that the matching point lm = 2 is placed in the log layer and
is in an equilibrium state. The log law of the wall is written as

u+ = 1

κ
ln y+ + B, (12)
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where the operator (·) denotes Reynolds averaging, the superscript (·)+ denotes values in wall units,
and κ and B are constants. In this study, the spanwise averaged quantities are used in prediction.
Thus, we assume that the spanwise-averaged velocity û+ and wall-normal distance ŷ+ at y|l=2 satisfy
the following equation:

û+ = 1

κ
ln ŷ+ + B. (13)

Here, we consider the erroneous values û+|l=2 and ŷ+|l=2 to be correlated to the numerical error
�û. Therefore, û+|l=2 and ŷ+|l=2 are the candidates for the input values to the neural network.
However, as discussed above, it is desirable to transform these quantities to be invariant for different
Reynolds and Mach number conditions for prediction robustness. In other words, these quantities
are normalized based on the physics of wall turbulence so that they collapse under the same scaling
law.

First, the density variations induced by the different Mach numbers are considered. The van
Driest transformation of velocity [46] is written as

ûvD =
∫ û

0

√
ρ̂

ρ̂w

du. (14)

Under the equilibrium condition, the density variation can be approximated by using the Crocco–
Busemann’s relation [47] as

ρ̂w

ρ̂
= T̂

Tw

= 1 +
(

Taw

Tw

− 1

)
û

u∞
− r

γ − 1

2
M2

∞
T∞
Tw

(
û

u∞

)2

, (15)

where r = Pr1/3 is the recovery factor, the subscripts w denotes quantities at the wall, aw denotes
quantities at an adiabatic wall, and ∞ denotes quantities of the freestream. By substituting Eq. (15)
into Eq. (14) and assuming an adiabatic wall (Tw = Taw), ûvD can be calculated as

ûvD =
∫ û

0

(
1 +

(
Taw

Tw

− 1

)
û

u∞
− r

γ − 1

2
M2

∞
T∞
Tw

(
û

u∞

)2
)−1/2

dû

=
∫ û

0

(
1 − r

γ − 1

2
M2

∞
T∞
Tw

(
û

u∞

)2
)−1/2

dû

= u∞
a

arcsin

(
âu

u∞

)
, (16)

where a =
√

r γ−1
2 M2∞

T∞
Tw

. By using ûvD defined as Eq. (16), the velocity profiles of û+
vD = ûvD/uτ

align with the law of the wall under various Mach number conditions. It was found that the van
Driest transformation reduces the hyperparameter sensitivities of the predictions that were observed
when using the nontransformed û+.

Second, ŷ+|l=2 is transformed to reduce its dependence on the Reynolds number. Here, while the
inner-layer-scaled ŷ+|l=2 are variable with respect to different Reynolds numbers, the outer-layer
scales are invariant regardless of the Reynolds number condition. Therefore, to transform ŷ+|l=2

to a robust parameter against varying Reynolds numbers, ŷ+|l=2 = y|l=2ûτ /̂νw is scaled using the
outer-layer scales of the boundary layer, i.e., y, ûτ , and ν̂w are normalized by δin, a∞, and ν∞, as

y

δin

ûτ

a∞

ν∞
ν̂w

= ŷ+ ν∞
a∞δin

= ŷ+ u∞
a∞

ν∞
δinu∞

= ŷ+ M∞
Reδin

. (17)

Compared to ŷ+|l=2, ŷ+|l=2M∞/Reδin is more robust (varies less) against varying Reynolds numbers
(will be shown in Fig. 6).
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FIG. 5. Profiles of physics-informed input feature u+
vD − 1

κ
ln(Reδin/M∞) as a function of ln(y+M∞/Reδin )

with various flow conditions. Blue, Reτ ≈ 5 000 and M∞ = 1.69; red, Reτ ≈ 80 000 and M∞ = 1.69; green,
Reτ ≈ 5 000 and M∞ = 2.40; yellow, Reτ ≈ 80 000 and M∞ = 2.40. Black dash-dotted line is the transformed
log-law of the wall [Eq. (18)]. Colored-dashed lines show distance between colored and black lines at l = 2.

Finally, Eq. (13) is transformed using the values û+
vD and ŷ+M∞/Reδin as follows:

û+
vD = 1

κ
ln ŷ+ + B = 1

κ
ln

(̂
y+ M∞

Reδin

Reδin

M∞

)
+ B

= 1

κ

{
ln

(̂
y+ M∞

Reδin

)
+ ln

(
Reδin

M∞

)}
+ B,

û+
vD − 1

κ
ln

(
Reδin

M∞

)
= 1

κ
ln

(̂
y+ M∞

Reδin

)
+ B. (18)

(a) (b)

FIG. 6. Scatter plots of (a) ŷ+|l=2 against û+|l=2, (b) ŷ+|l=2M∞/Reδin against û+
vD|l=2 − 1

κ
ln(Reδin /M∞)

(proposed) and their marginal probability distributions. Colors are as in Fig. 5.
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From Eq. (18), one may find that the variables û+
vD − 1

κ
ln(Reδin/M∞) and ln(̂y+M∞/Reδin ) follow

the same linear functional form in the near-wall region regardless of the flow conditions, which
suggests that they collapse under varying flow conditions. Therefore, û+

vD − 1
κ

ln(Reδin/M∞) and
ln(̂y+M∞/Reδin ) are chosen to be the physics-informed input features to the neural network. Figure 5
shows the profiles of the physics-informed input features calculated by the mean velocity and
density for different Reynolds and Mach numbers. The profiles in the log region collapse well
under various Reynolds and Mach numbers conditions including l = 2 [the leftmost data points
at ln(y+M∞/Reδin ) ≈ −8] and up to ln(y+M∞/Reδin ) ≈ −4, which shows that the chosen input
features appropriately collapse for various Reynolds and Mach number conditions. Additionally,
the desired mean correction amount �(u+

vD − 1
κ

ln(Reδin/M∞)) shown as the dashed vertical lines in
the figure also take similar amounts for different flow conditions; that is, they collapse. We note
that since 1

κ
ln(Reδin/M∞) is a constant for each flow condition, the equality �û+

vD = �(̂u+
vD −

1
κ

ln(Reδin/M∞)) shows that the quantity �û+
vD also collapses under varying flow conditions. Thus,

the output feature is chosen to be the van Driest transformed velocity correction in wall units
�û+

vD = �ûvD/uτ , which is later transformed back to the correction amount �û through Eq. (16).
Figure 6 shows the distributions of the proposed physics-informed input features for different

Reynolds and Mach numbers. In Fig. 6(a) which shows the conventional inputs ŷ+ and û+, the
different flow conditions form distinctive peaks in the distributions. However, in Fig. 6(b) which
shows the proposed physics-informed inputs û+

vD − 1
κ

ln(Reδin/M∞) and ln(̂y+M∞/Reδin ), the peaks
for each flow condition show a better overlap. Additionally, the values in the horizontal axis of
Fig. 6(a) mainly lie in the range of 3 � ln ŷ+ � 7, whereas in Fig. 6(b), the values are mostly
in the range of −9 � ln(̂y+M∞/Reδin ) � −7.5. Similarly, the values in the vertical axes mainly
lie within 10 � û+ � 40 for Fig. 6(a) and −20 � û+

vD − 1
κ

ln(Reδin/M∞) � 0 for Fig. 6(b). It can
be observed that the proposed physics-informed input features confine the range of values to a
narrower range. Another observation is that, with increasing Reynolds and Mach numbers, each
input feature occupies a wider range in horizontal and vertical axes respectively in Fig. 6(a), whereas
in Fig. 6(b), the physics-informed input features remain within the limited area. As a result, by
using the proposed input and output features, the extrapolation conditions in the flow parameter
space (Reynolds and Mach numbers) does not result in the extrapolation in the input feature space
[̂u+

vD − 1
κ

ln(Reδin/M∞) and ln(̂y+M∞/Reδin )]. These observations suggest that using the proposed
physics-informed features for training will lead to robust neural networks that generalize well to
different flow conditions.

We note that, in this study, we have decided to use the van Driest transformation of the velocity
[46] to collapse the effect of density variations within the boundary layer because it is known to
be effective for wall turbulence with an adiabatic wall under the ideal gas assumption, which is the
focus of this study. However, the van Driest transformation is known to deteriorate its capability with
large variations in the thermodynamic properties (e.g., density and viscosity) such as flows with wall
heat flux [48–50], supercritical flows [51], etc. In such cases, the semilocal Reynolds number Re∗

τ =√
ρ

ρw

μw

μ
Reτ has been shown to be the similarity parameter of the turbulence phenomena [48–50].

As a result, the velocity profiles using the distance from the wall in semilocal scale y∗ [52,53] and
the velocity in semilocal scale u∗ [48,49] show a good collapse of the log law. Therefore, the input
features using the semilocal variables [i.e., û∗ − 1

κ
ln(Reδin/M∞) and ln(̂y∗M∞/Reδin )] may yield

better results for flows with large property variations. Similarly, one may use other transformations
of the variables as needed to obtain a better set of input and output features.

2. Physics-informed input and output features for correction amount �ρ̂

For the correction amount of density �ρ̂, the physics-informed input features are chosen based
on the Crocco–Busemann’s relation [47]:

ρ̂w

ρ̂
= T̂

T̂w

≈ 1 − r

2cpT̂w

û2 = 1 − β̂û+2, (19)
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where β̂ is the coefficient represented as

β̂ = r
û2

τ

2cpT̂w

, (20)

with the recovery factor r = Pr1/3. This equation assumes the equilibrium boundary layer with an
adiabatic wall. As with the log law for the velocity, we consider the near-wall numerical errors in
the density to be correlated with this relation. We simply use the nondimensional flow quantities in
Eq. (19) (̂ρ/ρ̂w, β̂, û+) as the physics-informed input features for the density correction �ρ̂. ρ̂/ρ̂w,
β̂, and û+ work sufficiently well as the input features to the neural network for accurate predictions,
as shown in Sec. IV. Similarly, the nondimensional correction of density �ρ̂/ρ̂w is used as the
output feature.

3. Summary of the proposed approach

Here, the detailed methodology of the proposed approach is summarized. First, before the wall
model is used at each time step, the proposed physics-informed input features are obtained as a
function of the quantities at the matching point lm = 2. The physics-informed input features are
input into the trained neural networks, and the proposed physics-informed output features for the
correction of velocity and density (�û+

vD and �ρ̂/ρ̂w) are obtained as the outputs. The obtained
proposed output features are transformed back to the correction amounts �û and �ρ̂. Finally, the
corrected flow quantities ρ|l=2 + �ρ̂, u|l=2 + �û, and p|l=2 are used as the input to the wall model
to obtain the skin friction and heat flux as the boundary conditions.

Because the chosen physics-informed input and output features collapse the feature spaces with
regard to varying Reynolds and Mach number conditions, both interpolation and extrapolation in
the flow parameter (Reynolds and Mach number) space are mapped to an interpolation in the input
and output feature spaces. Thus, we expect that the corrections learned by the neural networks will
be universal across various flow conditions in terms of the Reynolds and Mach numbers and allow
for accurate predictions in the extrapolation flow conditions.

4. Approximation of quantities at the wall used in input features

The input features shown in Table II require flow quantities at the wall, such as ρw, uτ , and τw

which need to be extracted from the LES solution. However, the quantities at the wall in the LES
region (l = 1) are in the near-wall under-resolved region. Therefore, the quantities at the wall used
for the physics-informed input features are extrapolated from the interior points (l � 2) as follows.

Assuming a constant total shear stress and the equilibrium condition in the near-wall region, the
total shear stress balance reads

τw ≈ (μ + μt,SGS)
dũ

dy
− ρũ′′v′′, (21)

where (̃·) denotes the Favre averaging operator, and (·)′′ ≡ (·) − (̃·). As stated in Sec. III A, we use
the spanwise-averaged flow quantities for the prediction. Thus, replacing the Reynolds averaging
(·) in Eq. (21) with the spanwise averaging (̂·) yields

τ̂w ≈ (μ̂ + μ̂t,SGS)
dŭ

dy
− ρ̂(

︸ ︸
u∗v∗), (22)

where the operators
︸︸
(·) and (·)∗ substitute the operators (̃·) and (·)′′ as f̆ ≡ ρ̂ f

ρ̂
, f ∗ ≡ f − f̆ . The

spanwise-averaged wall shear stress τ̂w used in the input features is approximated by solving
Eq. (22) using the values at the matching point lm = 2. Because the velocity profile between l = 1
and l = 2 is unknown in wall-modeled LES, the derivative on velocity dŭ/dy is approximated by
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TABLE III. Relative error E�û+
vD

in the predicted �û+
vD.

Training data (a) 0.167 (b) 0.114 (c) 0.124
Interpolation (d) 0.135 (e) 0.114 (f) 0.130
Extrapolation (g) 0.100 (h) 0.113 (i) 0.136

using a one-sided differencing scheme as

dŭ

dy
≈ ŭ|l=3 − ŭ|l=2

y|l=3 − y|l=2
. (23)

The wall density ρ̂w is linearly extrapolated from ρ̂|l=2 and ρ̂|l=3 as

ρ̂w ≈ ρ̂|l=2 − ρ̂|l=3 − ρ̂|l=2

y|l=3 − y|l=2
(y|l=2 − y|l=1). (24)

Assuming constant pressure in the wall-normal direction in the inner layer, the wall pressure p̂w is
approximated as p̂w ≈ p̂|l=2. Additionally, the wall viscosity μ̂w is calculated by Sutherland’s law
as a function of the wall temperature T̂w = γ p̂w/ρ̂w. Finally, the friction velocity ûτ for calculating
ŷ+ and û+ is obtained as

ûτ =
√

τ̂w

ρ̂w

. (25)

D. A priori validation of trained neural networks

The performance of the trained physics-informed machine-learning models in various Reynolds
and Mach number conditions are first tested in an a priori manner. The joint probability density
functions (PDFs) of the predicted correction �q̂ are shown in Figs. 7 and 8. The figures show the
PDF of the reference �q̂ in the horizontal axis, and that of �q̂ML predicted by the proposed neural
networks in the vertical axis. For ideal neural networks that make perfectly accurate predictions, the
values of the joint PDFs lie on the white diagonal line �q̂ = �q̂ML.

It can be seen from Fig. 7 that the trained neural network predicts the correction amount for
the velocity �û+

vD well and shows a high correlation in all the flow conditions. In particular,
Figs. 7(g)–7(i) are the joint PDFs of the extrapolation prediction conditions (i.e., the conditions
which lie outside the range of the training data for which neural networks often fail to make accurate
predictions), which also show good predictions. These results are enabled by the physics-informed
inputs that collapse the input and output feature spaces for the wide range of Reynolds and Mach
number conditions as in Eq. (18). Table III summarizes the normalized mean absolute error E
between �û+

vD and �û+
vD,ML defined as

E f = 1

jmaxtmax

jmax∑
j

tmax∑
t

( | f j,t,ML − f j,t |
σ ( f )

)
, (26)

where f is an arbitrary quantity, σ ( f ) is the standard deviation of f , j is the grid index in the
streamwise direction, and t is the time step. As shown in Table III, the error in the predicted �û+

vD
are less than 0.17σ for all nine conditions. However, as shown in the Appendix, the input and output
features without the proposed physics-informed considerations (i.e., the typical ŷ+ and û+) lead to
significant errors in the predictions both in interpolation and extrapolation conditions. Figure 15 in
the Appendix shows that predictions using the typically employed input quantities (i.e., ŷ+ and û+)
significantly deviate from the reference. Compared to the results in the Appendix, Fig. 7 indicates
that the proposed input features designed with the knowledge of the physics of the compressible
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(b) Reτ ≈ 20, 000, M∞ = 2.10
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û

+ v
D

M
L

0.00

0.05

0.10

0.15

0.20

P
D

F

(c) Reτ ≈ 5, 000, M∞ = 2.40
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(d) Reτ ≈ 20, 000, M∞ = 1.90
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(e) Reτ ≈ 40, 000, M∞ = 1.69
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(f) Reτ ≈ 10, 000, M∞ = 2.25
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(g) Reτ ≈ 160, 000, M∞ = 1.69
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(h) Reτ ≈ 20, 000, M∞ = 2.70
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Δû+

vD

0

2

4

6

8

Δ
û
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(i) Reτ ≈ 160, 000, M∞ = 2.70

FIG. 7. Joint PDFs of the velocity correction �û+
vD between the reference data vs. predictions by the

proposed physics-informed machine-learning model at various Reynolds and Mach number conditions. Top
figures (a), (b), (c), training conditions; middle figures (d), (e), (f), interpolation conditions; bottom figures (g),
(h), (i), extrapolation conditions. Diagonal white lines indicate the exact prediction (�û+

vD = �û+
vD,ML).

turbulent boundary layer are crucial for predicting the correction amount �û+
vD in various Reynolds

and Mach number conditions.
Figure 8 shows that the trained neural network also well predicts the correction amount of density

�ρ̂/ρ̂w in all flow conditions tested. Table IV summarizes the relative error of the correction

TABLE IV. Relative error E�ρ̂/ρ̂w
in the predicted �ρ̂/ρ̂w .

Training data (a) 0.626 (b) 0.625 (c) 0.619
Interpolation (d) 0.632 (e) 0.627 (f) 0.630
Extrapolation (g) 0.654 (h) 0.621 (i) 0.643
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FIG. 8. Joint PDFs of the density correction �ρ̂/ρ̂w between the reference data vs. predictions by the
proposed physics-informed machine-learning model at various Reynolds and Mach number conditions. Top
figures (a), (b), (c), training conditions; middle figures (d), (e), (f), interpolation conditions; bottom figures (g),
(h), (i), extrapolation conditions. Diagonal white lines indicate the exact prediction (�ρ̂/ρ̂w = (�ρ̂/ρ̂w )ML).

amounts of density E�ρ̂/ρ̂w
. The predictions by the trained neural network agree reasonably well

with the reference amount. The highest errors within the tested range of flow conditions are for
the two extrapolation cases with Reτ ≈ 160 000 [(g) and (i) in Table IV] by a slight margin.
Nevertheless, the differences between the cases are minor and the proposed physics-informed
methodology enables good predictions for the wide range of Reynolds and Mach numbers, including
extrapolation.

Through the a priori tests, it has been shown that the proposed physics-informed model is
able to predict the reasonably accurate correction amounts �q̂ for various Reynolds and Mach
number conditions. The prediction accuracy on the validation dataset (interpolation and extrapo-
lation) significantly depends on the choice of the input features. Therefore, we conclude that the
appropriate input features derived from the physics of the turbulent boundary layer as discussed in
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Sec. III B significantly contribute to the robustness of the trained neural networks against various
flow conditions.

IV. RESULTS

This section discusses the results of the proposed physics-informed machine-learning-based
wall-modeling methodology by examining the obtained turbulence statistics in a posteriori tests
in which the proposed physics-informed machine-learning models are implemented in the wall-
modeled LES solver and used to predict wall turbulence. The detailed procedure of the proposed
method is as described in Sec. III A. As with the training data generation described in Sec. III B,
the fully developed flat-plate turbulent boundary layer is used as the testing flow configuration.
Similarly, the numerical methods and the case settings are identical to the training data generation
step. The results of the proposed methodology are compared with those of the conventional wall
model without the proposed neural-network based corrections with the matching location lm = 2.
The statistics from the conventional wall model using the grid point away from the wall (lm = 6) as
the matching point are used as the reference.

A. Predictions of time-averaged quantities

Figure 9 shows the van Driest transformed velocity profiles at x/δin = 40 obtained by the
proposed physics-informed machine-learning-based wall model and the conventional wall model.
The velocity profiles predicted by the proposed model agree well with the reference data in all the
tested conditions. However, the conventional wall-modeled LES with lm = 2 shows the log-layer
mismatch as discussed by Kawai and Larsson [9]. Additionally, Fig. 10 shows the Reynolds normal
stresses and the Reynolds shear stress obtained by the proposed model. The cases shown in red,
green, and blue lines and symbols correspond to the training conditions, the interpolation conditions,
and the extrapolation conditions, respectively. The figures show that the proposed physics-informed
machine-learning-based wall model is able to predict accurate Reynolds stresses in addition to the
mean velocity regardless of the flow condition.

The mean skin friction coefficient Cf = τw/0.5ρ∞u2
∞ at x/δin = 40 predicted by the proposed

neural-network-based model and the conventional wall model are compared in Fig. 11. The dotted
line in the figure is the Kármán–Schoenherr (K–S) empirical correlation [54] with corrections for
compressible flows [55] defined as

Cf ,inc = 1/[17.08(log10 Reθ,inc)2 + 25.11 log10 Reθ,inc + 6.012],

Cf ,inc = Tw/T∞ − 1

arcsin2 α
Cf , α = Tw/T∞ − 1√

Tw/T∞(Tw/T∞ − 1)
, Reθ,inc = μ∞

μw

Reθ . (27)

The corrected skin friction coefficient Cf ,inc obtained by the proposed machine-learning-based wall
model with the matching location lm = 2 shows good agreement with the empirical correlation; the
errors of the predicted Cf ,inc are less than 2%. However, Cf ,inc obtained by the conventional wall
model with lm = 2 shows underpredictions in all the conditions; the errors of the predicted Cf ,inc

are more than 10% in each condition.
The results indicate that the predicted wall shear stress τw is significantly improved by the

proposed model compared to the conventional method for the wide range of Reynolds and Mach
number conditions. These results indicate that by using the corrected flow quantities q + �q̂
as the input, the wall model is able to predict the wall shear stress accurately, which leads to
accurate predictions of the mean velocity and Reynolds stress profiles as shown in Figs. 9 and
10. Furthermore, the proposed physics-informed selections of the input and output features lead to
robust predictions even in the conditions which are not used in the training (i.e., interpolation and
extrapolation conditions).
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FIG. 9. Mean van Driest transformed velocity profiles of wall-modeled LES obtained by the proposed
physics-informed machine-learning-based wall model with lm = 2 ( ) compared to conventional wall-
modeled LES with lm = 2 ( ) and lm = 6 (◦, reference). Dashed black lines denote the law of the wall
u+

vD = log(y+)/0.41 + 5.1. Top figures (a), (b), (c), training conditions; middle figures (d), (e), (f), interpolation
conditions; bottom figures (g), (h), (i), extrapolation conditions.

B. Predictions of instantaneous skin friction distributions

As stated in Sec. I, one of the motivations of this study is to use the information contained
in the wall-adjacent grid points for predicting the instantaneous wall shear stress τw. Thus in this
section, the effects of using the wall-adjacent grid points for the prediction of τw are examined
by analyzing the instantaneous τw predicted by the wall model. Figure 12 shows the instantaneous
distributions of τw in 30 � x/δin � 40 obtained by the conventional wall model with lm = 6 and the
proposed model using lm = 2. The distributions predicted by the proposed model show relatively
fine structures compared to the conventional model. The fine instantaneous skin friction structures
are considered to reflect the small turbulent structures near the wall that is captured by the near-wall
grid points lm = 2.
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FIG. 10. Reynolds normal and shear stress profiles of the proposed model with lm = 2 (lines) compared
to the reference conventional wall-modeled LES with lm = 6 (symbols). Red lines and symbols, training
conditions; green lines and symbols, interpolation conditions; blue lines and symbols, extrapolation conditions.

, Reτ ≈ 80 000 and M∞ = 1.69; , Reτ ≈ 20 000 and M∞ = 2.10; , Reτ ≈ 5 000 and
M∞ = 2.40; , Reτ ≈ 20 000 and M∞ = 1.90; , Reτ ≈ 40 000 and M∞ = 1.69; , Reτ ≈
10 000 and M∞ = 2.25; , Reτ ≈ 160 000 and M∞ = 1.69; , Reτ ≈ 20 000 and M∞ = 2.70;

, Reτ ≈ 160 000 and M∞ = 2.70.
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FIG. 11. Skin friction coefficient obtained by the proposed physics-informed machine-learning-based wall
model with lm = 2 compared to the conventional wall-modeled LES with lm = 6 and lm = 2 as a function
of Reynolds number based on momentum thickness. Dashed gray lines ( ) represent the K–S empirical
correlation in Eq. (27). , Reτ ≈ 80 000 and M∞ = 1.69; , Reτ ≈ 20 000 and M∞ = 2.10; , Reτ ≈ 5 000
and M∞ = 2.40; , Reτ ≈ 20 000 and M∞ = 1.90; , Reτ ≈ 40 000 and M∞ = 1.69; , Reτ ≈ 10 000 and
M∞ = 2.25; , Reτ ≈ 160 000 and M∞ = 1.69; , Reτ ≈ 20 000 and M∞ = 2.70; , Reτ ≈ 160 000 and
M∞ = 2.70.

Figure 13 shows the PDFs of the instantaneous τw and their means at four different Reynolds and
Mach number conditions. Both the proposed model with lm = 2 and the conventional wall-modeled
LES with lm = 6 predict almost identical statistical averages of τw. However, the PDFs differ be-
tween the two models. The PDFs obtained by the conventional wall-modeled LES with lm = 6 show
nearly symmetric distributions around the average. However, the PDFs obtained by the proposed
method with lm = 2 show asymmetric distributions, where the peak of the PDF shifts toward the left
of the average, and the right tail region is elongated. Such tendencies are observed for all Reynolds
and Mach number conditions. Figure 14 compares the PDFs of standardized instantaneous skin
friction τ ′

w/σ = (τw − τw )/σ between the wall-modeled LES and the reference DNS data [56],
where τw and σ are the statistical mean and standard deviation of τw, respectively. The PDFs of
the DNS also show asymmetric distributions similar to those of the proposed physics-informed
machine-learning-based wall model with lm = 2. Figure 14(b) includes three DNS data with differ-
ent Reynolds numbers. Similar asymmetric distributions obtained by the proposed wall model are
observed by the DNS of various Reynolds number conditions. For example, the DNS shows that
the left tail rises with increasing Reynolds numbers and the right tail shows little Reynolds number
dependence. These results are qualitatively predicted by the proposed physics-informed wall model
with lm = 2. The results suggest that to predict a more accurate instantaneous skin friction, using
the near-wall information as the input to the wall model is an effective method.

The accurate predictions of instantaneous skin friction can be understood by considering the
velocity distributions near the wall. The conventional wall modeling approach using lm = 6 as the
matching point uses the information relatively away from the wall, where the velocity fluctuations
are more symmetric. Therefore, the conventional wall model determines the skin friction as a
function of the information away from the wall and predicts a relatively symmetric probability
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FIG. 12. Instantaneous shear stress on the wall surface of (a) the conventional wall-modeled LES with
lm = 6 and (b) the proposed physics-informed machine-learning-based wall-modeled LES with lm = 2 in the
region of 30 � x/δin � 40 and 0 � z/δin � 3.

density function distribution of the instantaneous wall shear stress around the average. However, the
proposed model using the wall-adjacent grid points at lm = 2 takes information near the wall as the
input. As a result, the predicted skin friction is able to incorporate the asymmetric near-wall flow
contributions to the predicted skin friction.

As shown through the above tests, the present physics-informed machine-learning approach
successfully solves the log-layer mismatch problem with the wall-model input at lm = 2 that
plagues the wall-modeled LES solutions. Here, we comment on the applicability of the proposed
physics-informed machine-learning-based methodology as a general wall model. Recall that the
proposed machine-learning models learn the numerical errors �q̂ in the first off-wall grid point
(l = 2). The nature and the extent of the under-resolution of turbulence at l = 2 differ with regard to
the employed numerical methods (i.e., spatial discretization scheme, SGS model, etc.). For example,
the dissipation and dispersion errors in the convective term discretizations and the near-wall SGS
modeling errors in the first off-wall grid point l = 2 manifest differently when a different spatial
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FIG. 13. Probability density function (PDF) of instantaneous shear stress on the wall surface of the wall-
modeled LES with the proposed physics-informed machine-learning-based wall-modeled LES with lm = 2
( ) compared to the conventional wall model with lm = 6 ( ). The dashed lines indicate statistical mean.

discretization scheme or an SGS model is employed. Therefore, it is possible that the machine-
learning models must be retrained to obtain better predictions for different numerical methods.
Nonetheless, the proposed physics-informed choice of input and output features may still be used
to create machine-learning models that are robust against varying Reynolds and Mach numbers.

V. CONCLUSIONS

In this study, we proposed a physics-informed machine-learning approach to the log-layer mis-
match problem in the wall-modeled large-eddy simulation (LES) that uses the erroneous information
from the near-wall grid point as the inputs for the wall model. Since the log-layer mismatch occurs
as a result of the erroneous near-wall flows being used by the wall model [9], the proposed approach
is to correct the erroneous near-wall flow variables (velocity and density) before they are used as
the input. Neural networks are employed to predict the amount of numerical errors in the near-wall
grid points, and the predicted values are added to the erroneous flow variables to compensate for
the error. The wall model, with the correct input of the velocity, density, and pressure, is then able
to correctly calculate the wall shear stress to be fed back to the LES, alleviating the well-known
“log-layer mismatch” in the predicted velocity profile.
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FIG. 14. PDFs of the standardized shear stress on the wall surface of the wall-modeled LES with the
proposed physics-informed machine-learning-based wall model (solid lines) plotted on a linear scale (a) and
logarithmic scale (b) compared to the DNS data of channel flow at Reτ ≈ 1440 (◦), Reτ ≈ 180 (
), and Reτ ≈
90(×) [56]. The dashed lines in panel (a) are the distributions of shear stress predicted by the conventional
wall-modeled LES with lm = 6. , Reτ ≈ 5 000 and M∞ = 1.69; , Reτ ≈ 80 000 and M∞ = 1.69; ,
Reτ ≈ 5 000 and M∞ = 2.40; , Reτ ≈ 80 000 and M∞ = 2.40.

The input features to the neural networks are determined based on the physical laws of the
turbulent boundary layer so that the input features are robust against different Reynolds and Mach
number conditions. The proposed physics-informed input and output features of the neural networks
are expected to result in robust neural networks that enable accurate predictions of the correction
values over the wide range of Reynolds and Mach number conditions, including extrapolation in the
flow parameter space.

The proposed physics-informed machine-learning-based wall model was tested through a priori
validations and a posteriori tests using the wall-modeled LES of fully developed flat-plate turbulent
boundary layers. In the a priori test, the proposed physics-informed machine-learning models
accurately predict the velocity and density corrections �u and �ρ at the matching point lm = 2
(first off-wall grid point) used as the input to the wall-model. Accurate predictions were obtained
for the wide range of Reynolds and Mach number conditions, including the interpolation and
extrapolation conditions which are not included in the training dataset. In the a posteriori tests in
which the proposed physics-informed machine-learning-based wall model is incorporated into the
wall-modeled LES solver with lm = 2, the obtained mean velocity and Reynolds stresses show good
agreements with the reference data, whereas the conventional wall-modeled LES using the near-wall
grid point (lm = 2) as the matching point showed the typical log-layer mismatch. The proposed
methodology is also able to predict the accurate turbulence statistics for the extrapolation conditions,
which indicates that the chosen physics-informed input features allow accurate predictions of the
correction amounts for the flow conditions that are not included in the training dataset. Furthermore,
compared to the conventional wall modeling approach using information away from the wall (typi-
cally lm � 3), the predicted instantaneous skin friction obtained by the proposed physics-informed
machine-learning-based wall-modeled LES show smaller structures and asymmetric probability
density function distributions that are similar to those obtained by a direct numerical simulation.
The asymmetric distributions obtained by the proposed physics-informed machine-learning-based
method indicates that the proposed method is able to incorporate the near-wall contributions to the
predicted skin friction, unlike the conventional approach which uses the information away from
the wall.
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TABLE V. Relative error E�û+ in the predicted correction �û+.

Training data (a) 0.175 (b) 0.114 (c) 0.126
Interpolation (d) 0.132 (e) 0.333 (f) 0.519
Extrapolation (g) 0.275 (h) 0.114 (i) 0.334
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FIG. 15. Joint PDFs of the velocity correction �û+ between the reference data vs. predictions by the
improperly trained neural network at various Reynolds and Mach number conditions. Diagonal white lines
indicate the exact prediction (�û+ = �û+

ML). Top figures (a), (b), (c), training conditions; middle figures (d),
(e), (f), interpolation conditions; bottom figures (g), (h), (i), extrapolation conditions.
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FIG. 16. Mean van Driest transformed velocity profiles of wall-modeled LES obtained by the improp-
erly trained machine-learning-based wall model with lm = 2 ( ) compared to conventional wall-modeled
LES with lm = 2 ( ) and lm = 6 (◦, reference). Dashed black lines denote the law of the wall u+

vD =
log(y+)/0.41 + 5.1. Top figures (a), (b), (c), training conditions; middle figures (d), (e), (f), interpolation
conditions; bottom figures (g), (h), (i), extrapolation conditions.
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University (Projects ID No. FS01APR20 and No. FS01APR22).

APPENDIX: INPUT FEATURES WITHOUT ROBUSTNESS AGAINST FLOW CONDITIONS

The a priori results of the neural networks trained without using the proposed physics-informed
input features are shown. Figure 15 shows the joint PDFs of �û+ predicted from the input features
ŷ+ and û+, as opposed to the proposed ln(̂y+M∞/Reδin ) and û+

vD − 1
κ

ln(Reδin/M∞). In some of the
cases such as Figs. 15(a), 15(b), and 15(d), the peak of the PDF exists on the diagonal white line
which signifies accurate predictions. However, in cases such as Figs. 15(c), 15(e), 15(g), and 15(i),
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the peak lies in the horizontal direction, which indicates that the neural network outputs a similar
value regardless of the input. It can be concluded that when the input features are not appropriately
selected with respect to the various flow conditions as proposed, the resulting predictions are
not always accurate and depend on the flow conditions. Table V summarizes the relative errors
as defined in Eq. (26). In most of the tested conditions, and especially in the interpolation and
extrapolation cases, the errors are larger than those from the proposed physics-informed input
features shown in Table III.

Figure 16 shows the mean velocity profiles u+
vD obtained by a posteriori tests using the wall-

modeled LES with the above improperly trained neural network. The correction amount of velocity
�û is predicted by the above neural network, while the correction amount of density �ρ̂ is
predicted by the model as presented in Sec. III C. For flow conditions used to train the neural
network [Figs. 16(a)–16(c)], the predicted mean velocity shows good agreement with the log law.
However, the velocities for many of the interpolation and extrapolation cases show deviations from
the log law. Cases that show particularly large deviations [Figs. 16(f), 16(g), and 16(i)] coincide
with the cases with large prediction errors E�û+ as shown in Table V. An interpretation of these
deviations is that the inaccurate predictions of the corrections causes the input to the wall model
q + �q̂ to be inaccurate, which results in the incorrectly predicted skin friction τw that is fed into
the LES as the flux boundary condition. The incorrect skin friction then leads to the log-layer
mismatch. These results indicate that the proper physics-informed selections of the input and
output features significantly contribute to the prediction accuracy of the proposed physics-informed
machine-learning-based wall model for the wide range of Reynolds and Mach number conditions.
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