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Flooding as a sub-critical instability in open channels
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In flood events caused by a gradual increase in the flow rate of a watercourse, the
rise in water level is often abrupt, while the fall in level is delayed. We show that such
behavior can be demonstrated by considering stationary flows at a high Reynolds number
in a prismatic open channel: Several geometries of the channel cross section lead to a
subcritical instability that results in a discontinuous rise in the level when the flow rate
exceeds a critical value Fi, and in a fall, also discontinuous, when the flow rate returns
below a value Fo lower than Fi. This hysteretic behavior originates from the interplay
between gravity, which drives the flow downstream, and turbulent friction with the channel
wall. The potential existence of several solutions arising from this bifurcation requires
careful consideration in flood simulations.

DOI: 10.1103/PhysRevFluids.9.084607

I. INTRODUCTION

The issue of flooding is becoming increasingly problematic due to extreme events in a changing
climate [1,2], and it is still a challenge in fluid mechanics [3]. Despite the considerable progress
that has been made in reducing the devastating effects of flooding, both in terms of prediction and
preventive measures, a complete understanding of the physical phenomena involved in flooding is
still incomplete. Recent developments are based on numerical models that can simulate watershed-
scale flows from spatially related data, such as rainfall, land use, and topography [4,5], including
situations involving several phases, for example, with sediments in suspension [6,7].

Flooding by river overflow is characterized by the quick invasion by water, typically overnight,
followed by a much slower outflow [8]. Several factors have been identified in the literature to
explain the contrast between flood and ebb times: (i) the low gradient with which accumulated
water flows from extensive flooded areas towards the main watercourses or drainage systems [9],
(ii) the low reabsorption of saturated soils or in areas where the soil is highly compacted [10],
and (iii) sediment deposits transported during flooding and settled on riverbanks and riverbeds as
water levels fall, slowing down the drainage process [10].

Here we introduce an additional mechanism based on fluid mechanics to explain this behavior.
We show that, for uniform and stationary flows at high Reynolds numbers in prismatic channels
of defined slope and cross-section, a subcritical instability leads to an abrupt rise in level as flow
increases in a quasi-static manner, while the fall in level is delayed to lower flow rates. This scheme
corresponds to a subcritical bifurcation of the flow characterized by a hysteretic cycle so that, within
a range of flow rate, the water level is higher in the rising water phase than in the receding water
phase. Hence, once the flood has occurred, the flooding persists until the flow rate falls back to a
lower level than before the flood.

This article is organized as follows: Section II reviews why the average velocity of a stationary
flow with a high Reynolds number and, therefore, turbulent in a prismatic channel depends, to a
first approximation, on the cross-sectional area of the flow and the wetted perimeter via the ratio
of these two quantities. In Sec. III, an instability condition relating to both the geometry of the
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FIG. 1. Channel bed profile. The wetted perimeter of the cross-section, L, corresponds to the length of the
blue lines. The x axis is horizontal and in the plane perpendicular to the main slope of the flow. The z axis
points upwards. The velocity profile (black arrows) presented in the figure corresponds to a high Reynolds
number flow.

prismatic channel and the flow law is derived. The consequences of this instability are analyzed for
two generic types of straight channel section geometry (Secs. IV and V), with evidence of hysteresis
cycles. These cycles result in a discontinuous rise in the water level for a critical flow rate Fi when
the latter is reached by increasing values, and a discontinuous decrease in the level for another
critical flow rate Fo if the latter is reached downwards. Finally, the article ends with a discussion of
the assumptions on which the theory is based and the limitations they may entail.

II. UNIFORM AND STEADY FLOW IN PRISMATIC CHANNELS

For uniform, steady flow in prismatic open channels (whose properties are invariant in the
direction of flow; see Sec. VI for a discussion of the limitations inherent in this assumption), various
laws can be applied to express the mean flow velocity as a function of channel slope and dissipation.
The Chézy formula is still widely used in hydraulic engineering due to its simplicity and practical
applicability in many real-life situations. Before the French Revolution, Chézy was given the task
of bringing running water to Paris, a project going back to the beginning of the 17th century (and
that was only completted at the end of the 19th century). He derived his law by balancing input and
friction. The input is the momentum given to water by gravity because water flows on an incline in
the gravity field. The inclination angle between the surface of water and the horizontal plane will
be denoted as i. For big rivers, i is quite small, in the range of 1×10−2 rad or even less. The mass
of water per unit length along the river is ρA, where A is the cross-sectional area of the flow and ρ

the mass density of water. The horizontal component of the pull of gravity on this mass of water is
(for i small)

Fg = giA. (1)

Chézy assumed that friction occurs mainly at the bottom and sides of the river. Then, he estimated
friction by extending Newton’s recent quadratic law of drag of a blunt body at large velocities on
friction to the banks of the river, stating that friction per unit length along the river is proportional to
the wetted perimeter L of the cross-section (see Fig. 1), the mass density of the fluid and the square
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of the (average) velocity U ,

F f = cLU 2 (2)

with c, the so-called “friction coefficient,” or drag coefficient, depending on the Reynolds number
and the roughness of the surface. Therefore, the balance of forces yields [11]

U =
√

gi

c

A

L
. (3)

In the literature, the Chézy formula is usually written as U = C
√

iA/L, where C = √
g/c is called

the Chézy resistance coefficient. The Darcy-Weisbach law has the same formulation as Eq. (3),
with the coefficient c no longer assumed to be constant; c in Eq. (3) is equal to one-eighth of
the Weisbach resistance coefficient [12]. Chézy measured the water input of small rivers near Paris,
such as the Yvette and Bièvre running near Orsay and Bièvres, to validate his law [Eq. (3)], and
he noticed that the drag coefficient (c) is higher in the summer when the weeds have grown than in
winter. The drag coefficient, determined empirically for different types of surfaces, typically varies
between 1×10−2 and 1×10−3 [13].

A friction force (per unit length) proportional to the wetted perimeter and the square of the
velocity is supported by Prandtl’s boundary layer theory [14]. For example, in pipes of circular
cross-section, the flow is assumed to be a plug flow (the velocity of the fluid is assumed to
be constant except in the close vicinity of the boundary). The friction force along the pipe can
be obtained by applying standard formulas for the pressure drop in turbulent pipe flows. Since
all friction is in this boundary layer [15], this leads to a friction force per unit length equal to
the perimeter of the pipe cross section multiplied by ρU 2 times a drag coefficient c, with U the
mean flow velocity [15]. The turbulent flow in a river or channel can also be approached, at a high
Reynolds number, by a plug flow in which the velocity gradients are localized near the walls and
bottom of the river, and the velocity is almost constant elsewhere and equal to U (Fig. 1) [14].
Therefore, it is safe to assume that the friction at a high Reynolds number is proportional to the
length L of the wetted cross section in water and the square of velocity U . For channels or rivers with
rough or patterned bottoms and walls, the wetted perimeter L to be considered must be obtained after
spatial filtering of the actual profile, thereby excluding all asperities with characteristic dimensions
lower than the boundary layer thickness. This filtering is straightforward for a channel or river with
straight cross-sections whose main dimensions are much larger than those of the asperities. Their
effects are then taken into account through the coefficient of friction c.

In the frame of the mixing length model, Prandtl derived an implicit relation linking the
coefficient c to the Reynolds number Re named “Prandtl’s universal law for smooth pipes.” In the
limit of a very large Reynolds number, it gives [14]

c ∝ 1

(log(Re))2
. (4)

In the case of a plane Poiseuille flow, this relation was recently obtained with a different closure
model based on an integral representation of Reynolds turbulent stress satisfying basic requirements
of geometrical invariance, independently of any arbitrary length [16]. Equation (4) was generalized
for rough surfaces with empirical laws for friction coefficients showing that the Reynolds number
dependence of c is even reduced by the surface roughness at a high Reynolds number [17–20].
These laws have been successfully applied to free-surface flow in channels [12,21].

In addition to the Chézy formula [Eq. (3)], other empirically based formulas are used to model
stationary, uniform, free-surface flows of water in channels. One of these, also widely used, is the
Manning-Strickler formula,

U = 1/p(A/L)2/3i1/2. (5)

p is the Manning coefficient, which is specific to the material and condition of the channel
surface [22,23]. Depending on the texture of the surfaces, it usually ranges from 1×10−2 m−1/3s

084607-3



MORA, LE BERRE, AND POMEAU

to 1×10−1 m−1/3s. In what follows, we are dealing with flows with Reynolds numbers large enough
that c in Eq. (3) or p in Eq. (5) can be regarded as a constant in a first approximation.

What is important here is that these laws lead, according to the arguments developed above to
explain the physical origin of the Chézy formula, to a velocity that is an increasing function of the
A/L ratio:

U = f (A/L). (6)

III. INSTABILITY CONDITION

In this section, we show that the relation between the flow rate F and the cross-sectional area of
the flow A can be a non-monotonic function for specific channel cross-section geometries and flow
rates. Such a decrease implies an instability, which is associated with a saddle-node bifurcation.
At the bifurcation point, an infinitesimal increase in the flow rate leads to a finite increase in the
cross-sectional area of the flow, a situation associated with flooding.

Assume that the banks are much flatter than the side walls of the river. As the level rises, the
wetted perimeter L increases and reaches more friction on a wider bottom. Therefore, friction tends
to decrease the flow speed so that, at a constant flow rate, it can be satisfied only by increasing again
the depth, and so by reaching a higher A. This feedback describes the instability causing the flood.
This depends on the particular shape of the channel, i.e., on the relation between L and A. To put
this scheme into perspective, Eq. (6) is to be supplemented by a relation between the two parameters
L and A, as well as by the flow rate F that will be the control parameter. Fundamentally, a flood is
triggered by a slow change of F that increases first and then decays to return to its initial value. The
control parameter F enters into the equation by the condition F = UA. Let us consider as variable
quantity A. This maps the equation into a single one for A:

F = A. f (A/L) (7)

This equation depends on the flow law f and the topography of the banks of the river through
the function L(A). There is a bifurcation in the solution if the derivative dF

dA changes its sign, from
positive to negative, i.e., once from Eq. (7):

f

(
A

L

)
<

A2

L2

(
dL

dA
− L

A

)
f ′

(
A

L

)
(8)

Since function f and its first derivative f ′ are positive, Eq. (8) is clearly fulfilled for any bed profile
in which dL/dA can be far larger than L/A. Roughly speaking, it says that if the length L changes
fast enough as a function of the area A, then dF

dA < 0: an increase in L drives down the velocity U
by friction and makes it impossible to keep the imposed flux. This generates multiple solutions in
terms of A in Eq. (7).

In the particular case U ∝ (A/L)n, as for the Chézy formula (n = 1/2) or Manning formula
(n = 2/3), the condition dF/dA < 0 simplifies to

dL

dA
>

(
1 + n

n

)
L

A
. (9)

IV. RECTANGULAR DITCH SURMOUNTED BY A SLOPING BANK

In Sec. III, we have established the condition defining a bifurcation point in the F − A parametric
plane [Eq. (8)]. It depends on the geometry of the cross-section through L(A) and the flow laws in
the channels f (A/L). For convex cross-sections (e.g., a U- or V-shaped profile), flow rate is always
an increasing function of A: the steady height of water in the channel increases progressively and
continuously as flow increases in a quasi-static way.

In this section, we consider prismatic channels with non-convex cross-sections consisting of a
central rectangular ditch of width 2�0 and height h0, surmounted on each side by an inclined plane
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FIG. 2. Cross-section of a prismatic channel, composed of a rectangular ditch of height h0 and width 2�0,
surmounted by banks inclined at an angle α to the horizontal.

with angle α to the horizontal acting as a floodplain, as depicted in Fig. 2. Let x be the horizontal
axis in the direction perpendicular to the flow direction, and z the vertical axis. The wetted perimeter
L and cross-sectional area A of the flow are

L(z < h0) = 2(�0 + z)

L(z � h0) = 2

(
�0 + h0 + z − h0

sin(α)

)

A(z < h0) = 2�0z

A(z � h0) = 2�0z + (z − h0)2

tan(α)
(10)

The steady flow rate computed from Eq. (7) is plotted as a function of the cross-sectional area A
in Fig. 3(a) with h0 = 2�0 and α = 0.05, for both the Chézy and Manning formulas. The flow rate
increases as a function of the cross-sectional area of the flow until it reaches a critical value, Fi

(inflow). The flow rate then decreases as a function of the cross-sectional area of the flow until
it reaches Fo (outflow). It then increases again. This non-monotonic behavior is associated with
the occurrence of a saddle-node-like bifurcation characterized by a hysteresis cycle in the cross-
sectional area of the flow versus flow rate relationship. The red arrows in Fig. 3(a) depict the path
in the A − F plane during a quasi-static increase in flow, and the green arrows represent the path
during outflow. The cross-sectional area of the flow increases in a non-continuous way when the
flow crosses the Fi value. An infinitesimal increase in flow rate therefore has a dramatic effect on
the cross-sectional area of the flow. This situation is akin to flooding. The cross-sectional area of the
flow also decreases abruptly when the flow crosses the Fo value downwards. Given that Fi > Fo ,
the sudden jump in the cross-sectional area of the flow during decay occurs at a lower flow rate than
during the abrupt jump during flooding. In other words, for the same flow rate, the cross-sectional
area of the flow is the largest during receding water levels. The growth and decay are not on the
same branch of the hysteresis cycle. Thus the first stage (at increasing F ) is much quicker because
it happens with less friction on a narrower channel bottom, although the decay is longer because it
happens on the upper branch where the flood is extended to a larger and shallower river with more
friction on the bottom.

Figures 3(b) and 3(c) represent the same hysteresis cycle as Fig. 3(a), in x − F and z − F
parametric planes, respectively. In the following, we refer to �A, 2�x, and �z as the jumps in
the cross-sectional area of the flow, in the water mirror width and the water height while the flow
exceeds Fi [see Figs. 3(a)–3(c)]. Figures 4(a)–4(c) plot the variation of �A, �x, and �z as a function
of the angle α of the upper bank, for different values of the ratio h0/�0, applying the Chézy and
Manning formulas. In addition, Fig. 4(d) plots the gap between critical flow during inflow (Fi) and
critical flow during outflow (Fo), normalized by the flow rate calculated when the water head is
equal to the ditch depth. These gaps can take on significant values. For example, when h0 = �0, for
α = 0.05 and using the Manning formula, the cross-sectional area of the flow increases by more
than 50% [Fig. 4(a)]; the height then jumps by almost 20% [Fig. 4(b)] and the water bed width
increases by more than 350% [Fig. 4(c)] as the flow overcomes the threshold value Fi. Still, in this
situation, flow Fi is around 25% greater than Fo [Fig. 4(d)]. In addition, the curves in Fig. 4 show
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FIG. 3. Normalized flow rate F/F0 calculated from Eq. (7) using the Chézy formula (solid lines, n = 1/2)
or Manning formula (dotted lines, n = 2/3) for h0/�0 = 2. Flow rate F0 is the flow rate calculated when the
water head is exactly h0. F/F0 is plotted as a function of the cross-sectional area of the flow normalized by
ditch area (a), as a function of water mirror width normalized by ditch width (b), and as a function of water
head normalized by ditch depth (c). Red arrows indicate the direction of the path when the flow rate increases
progressively, and green arrows indicate the direction of the path when it decreases progressively.

that the amplitudes of the �A, �x, and Fi − Fo gaps associated with hysteresis are more pronounced
with the use of the Manning formula than with the Chézy formula, and are more prominent the
smaller the α angle. The existence of the maximum of �z as a function of α is due to the fact
that �z is necessarily zero when α = 0. We can also see from Figs. 4(a)–4(d) that the hysteresis
characteristics disappear beyond a certain angle α, which depends on the ratio h0/�0.The ratio
dL/dA

L/A is at its maximum when A = 2�0h0, just after the ditch is completely filled. The condition
Eq. (9) evaluated for A = 2�0h0 therefore provides the requirement for the instability to arise in the
geometry considered here. This condition is α < αc with

sin αc =
(

n

n + 1

)(
1

1 + �0/h0

)
. (11)

In the limit h0 � �0 we obtain αc = arcsin( n
n+1 ), i.e., αc � 0.41 rad (23.5 ◦) using the Manning

formula, and αc � 0.34 rad (19.5 ◦) using the Chézy formula. A steeper slope will never produce
instability with this channel cross-section geometry, whatever the relative depth of the ditch.
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FIG. 4. Jump in cross-sectional area of the flow normalized by ditch cross-sectional area (a), jump in water
head normalized by ditch height (b), and jump in water mirror width normalized by ditch width (c) as flow
increases. Gap between critical flow during inflow (Fi) and critical flow during outflow (Fo), normalized by
the flow calculated when the water head is equal to the ditch depth (d). The curves are calculated from Eq. (7)
using the Chézy formula (solid lines, n = 1/2) or Manning formula (dotted lines, n = 2/3). The ratios of h0 to
�0 are specified in the graphical legend in (d).

V. CHANNELS WITH GRADUALLY FLARING BANKS

In Sec. IV, channels with a central ditch were considered. The “reservoir” of the cross-sectional
area of the flow formed by the poured ditch (A = 2�0h0), combined with the low inclination
of the newly covered banks, resulted in a wetted perimeter growth rate dL/L greater than the
cross-sectional area growth rate of the flow, dA/A, multiplied by (1 + n)/n (and thus the instability
condition Eq. (9) was fulfilled). The slope (α) of the banks being constant, the ratio dL/dA

L/A was
unbounded and the instability condition Eq. (9) could only be verified on a limited portion of the
section.

Let us now consider the example of a channel whose straight cross-section becomes more and
more flared as we move away from its centerline. As an illustration, let us take straight cross-
sections defined as

z(x) = h0
(x/�0)a

1 + (x/�0)a
, (12)

where h0, �0 and the exponent a are constants. The variable x is the horizontal axis in the direction
perpendicular to the flow direction, and z is the vertical axis (see Fig. 5). This choice of z(x)
does not claim to reproduce the precise geometry of channels. It does, however, highlight generic
characteristics of cross-sections for which the instability described in Sec. III can occur.

The perimeter L and the area A as a function of the half-width of the bed x are computed as

L(x) = 2
∫ x

0

√
1 + (dz/dx)2dx, (13)

A(x) = 2

(
xz(x) −

∫ x

0
zdx

)
. (14)
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FIG. 5. Examples of channel cross-sections defined by z(x) = h0
(x/�0 )a

1+(x/�0 )a with a = 1, 2, 4, and 6.

Figure 6 displays the flow rate calculated with Eqs. (7), (13), and (14), for h0 = �0 and a = 2,
plotted as a function of the half-width of the water mirror x. The flow rate, whether calculated
using the Chézy or Manning formula, reaches a maximum (Fi) for a certain value of the width of
the water mirror and then declines as a function of x. In this case, the decrease in flow rate as a

FIG. 6. Flow rate as a function of the half-width of the water mirror for a cross-section defined by z(x) =
h0

(x/�0 )2

1+(x/�0 )2 , with h0 = �0, calculated from Eq. (7) using the Chézy formula (solid lines) or Manning formula
(dotted lines). Red arrows indicate the direction of the path when the flow rate increases progressively, and
green arrows indicate the direction of the path when it decreases progressively.
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FIG. 7. Gap between channel height (h0) and water head just before the jump (zi → h0), normalized by
channel height, as a function of parameter a, for h0/�0 = 2, 1, and 1/2, calculated from Eq. (7) using the Chézy
formula (solid lines) or Manning formula (dotted lines).

function of x continues as x tends towards infinity. Consequently, with an infinitesimal increase
in flow at F = Fi, the flow switches from a stationary regime with a finite bed width to another
stationary regime where the bed extension is infinite: the water has invaded the entire flood area.
Subsequently, a gradual reduction in flow rate will not succeed in resorbing this flooding, unless the
flow rate returns to rigorously zero (see Fig. 6). The critical flow rate for outflow is, in these cases,
Fo = 0.

In a real-world environment, a cross-section will not be represented correctly by Eq. (12) for
values of x tending towards infinity, even with an added average roughness that takes account of
asperities. However, it is enough for the topology to be roughly approximated up to the area of
the riverbed capable of withstanding the flow rate Fo for a jump in width (or, equivalently, a jump
in height) to occur. The values of the jump in height h0 − zi when the flow rate Fi is reached are
plotted in Fig. 7 as a function of the exponent a for different values of the ratio h0/�0. In the case
of a cross section as defined by Eq. (12) with h0 = �0 and a = 2, the flow rate Fi is reached when
the water height zi calculated using the Manning formula is equal to 90% of the maximum depth h0.
We have not determined the minimum value of exponent a for the instability to occur, but it appears
that instability occurs even for values of a less than 1, for which the area of the cross section of the
channel is not bounded.

VI. CONCLUDING REMARKS

We have proposed a mathematical model based on the modeling of turbulent friction, leading to
a sudden rise and a delayed recession of a river’s course as a consequence of a sub-critical insta-
bility. The underlying physical mechanism has been highlighted on the basis of model situations,
which consist of steady and uniform flow at a high Reynolds number, in channels with particular
cross sections. Modeling transient regimes would make it possible to estimate the times associated
with the rise or fall of the water, which is an important issue that remains pending.

We have considered a prismatic channel, which rules out the existence of a hydraulic jump. A
hydraulic jump is characterized by an abrupt transition from fast to slow flow (for example, in the
vicinity of a channel slope change), often visible as a sudden rise in the water surface. The water
then passes from a supercritical regime (fast and shallow) to a subcritical regime (slow and deeper)
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[24]. A sudden rise in river level following a slight increase in flow can then be observed. This
situation is quite different from the one studied here, and should not be confused.

The instability we have considered here arises for certain shapes of channel cross-sections, whose
profiles are non convex. For these cross-sections, the relationship between the cross-sectional area of
the flow and the permanent flow rate presents two discontinuities: (i) the first occurs when the flow
reaches a critical flow rate Fi in increasing values, with an abrupt increase in the cross-sectional area
of the flow, and (ii) a second discontinuity which occurs when a critical flow rate Fo is reached in
decreasing values, with an abrupt decrease in the cross-sectional area of the flow. Since Fi is greater
than Fo , the abrupt decrease occurs at a lower flow rate. The head-flow curve therefore exhibits
hysteresis: backwater only occurs once the flow has declined substantially in comparison with the
flow at which the rise in water level occurred.

The physical origin of this instability is well established: the increase in friction imposed by
the geometry of certain cross-sections of channels when the water level rises leads to a reduction
in the velocity of the flow. This reduction can be such that the flow rate is also reduced. With
an imposed flow rate, a jump in the water level associated with hysteresis occurs. The particular
shape of the governing flow law f (A/L) (e.g., the Manning or Chézy formula) is not crucial: the
main characteristics of the instability turn out to be robust with respect to this governing law. This
fact gives us confidence that, even if the flow laws considered are only approximate laws of the
real world, the conclusions drawn are robust enough to be transposed to situations closer to those
encountered in the everyday environment. For example, in the case of a river with higher friction,
as the distance from the centerline increases (e.g., due to plant growth in areas usually closer to the
water’s surface), the reduction in velocity as the water level rises will be higher, making the effects
of the instability all the more pronounced.

The occurrence of a sub critical bifurcation leads to several possible solutions for the same set
of conditions. This creates an issue for numerical simulations: it is necessary to ensure that these
numerical models, which take into account complex elements, such as details of topography, the
presence of obstacles, suspended particles, or temporal variations, can also lead to the correct branch
of solutions.

This instability occurs for turbulent flows at high Reynolds numbers, for which the velocity
gradient in the cross-sections is negligible, except, of course, within the boundary layers [14]. In this
case, because friction mainly occurs in the boundary layers, friction is approximately proportional to
the wetted perimeter. This assumption is a limitation for the conditions of applicability of the theory.
In addition to the Reynolds number being significantly greater than 1, we need to ensure that the
boundary layer thickness, and therefore the wall and bottom roughness, is negligible compared to
other characteristic lengths of the system (e.g., h0 and �0). In this context, a turbulent flow modeling
based on a local description would provide a quantitative determination of the limits of the plug
flow hypothesis. In addition, numerical simulations should make it possible to establish the speed
ranges for which the assumption of a high Reynolds number can be safely applied.

The possible implications are substantial, given the ever-increasing frequency and serious con-
sequences of flooding. This work opens the way to strategies for mitigating flood amplitudes, for
example, by determining whether low-cost modifications to the bed profile or the characteristics of
river walls could prevent the sudden rise in water levels that would follow the mechanism of this
instability.
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