
PHYSICAL REVIEW FLUIDS 9, 084605 (2024)

Artificial bottleneck effect in large eddy simulations
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In Navier-Stokes turbulence, a bottleneck effect in the energy cascade near the vis-
cous cutoff causes an overshoot in the energy spectrum, or spectral bump, relative to
Komogorov’s −5/3 power-law scaling. A similar spectral overshoot occurs in large-eddy
simulations (LES) when an eddy viscosity model is used. It is not a viscous phenomenon,
but rather is caused by error in the residual stress model. This artificial bottleneck effect in
LES leads to an over-prediction of kinetic energy even if a reliable dynamic procedure is
used to accurately capture the spectral decay at the cutoff length scale. Recently, Johnson
[J. Fluid Mech. 934, A30 (2022)] introduced a physics-inspired generalization of the con-
cept of spatial filtering that provides a dynamic procedure that does not require a test filter
calculation. In this paper, this method of Stokes flow regularization (SFR) is used alongside
fundamental considerations related to kinetic energy to generate a range of LES models to
explore the artificial bottleneck effect in more detail. The coefficients for each dynamic
model are determined locally, without the need of averaging over homogeneous directions.
The theory directly provides stabilizing elements such as local averaging of coefficients.
A posteriori tests of the models in isotropic turbulence are reported, demonstrating the
robustness of the SFR-based dynamic procedure for a range of model forms and providing
a framework for fair comparisons between them in terms of their impact on the bottleneck
effect. An effective means of mitigating the bottleneck effect is to introduce a nonlinear
gradient component in the residual stress closure, forming a dynamic mixed model. One
primary reason for the efficacy of this approach is that the nonlinear gradient model is able
to accurately capture aspects of the local structure of the residual stresses, leading to a
better representation of energy cascade efficiencies.
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I. INTRODUCTION

Direct numerical simulation (DNS) of turbulent flows at moderate and high Reynolds numbers
is often impractical or even impossible for many turbulent flow applications in science and engi-
neering. This situation is likely to continue for the foreseeable future. Large-eddy simulation (LES)
offers a more tractable alternative for computing turbulent flows with the use of a coarser grid and
larger time step than required for DNS. However, LES inevitably involves non-negligible modeling
error due to the net force of unresolved fluctuations.

The earliest LES model is the eddy viscosity model of Smagorinsky [1] and Lilly [2]. Leonard
[3] introduced the use of a spatial filtering integral operator as the basis for the LES equations,
which was later elaborated by Germano [4]. While sufficient to dissipate resolved kinetic energy
and stabilize coarse grid solutions, it is well known that eddy viscosity models do not accurately
represent the effects of unresolved fluctuations near the grid scale [5,6]. In spite of this, the
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popularity of eddy viscosity models is entrenched, because the accuracy of grid-scale statistics and
flow topologies are often not paramount when simulating simpler flow regimes (e.g., single-phase,
unbounded, nonreacting). This has motivated the development and use of implicit LES (ILES)
models, which tailor the numerical discretization to provide the necessary dissipation while forgoing
any explicit calculation of a residual stress tensor [7–10]. Indeed, dissipative schemes (based on
eddy viscosity or numerical dissipation) can seem effective when the main physical phenomenon
to be represented is simply the energy cascade [11–13]. The challenges of using LES to simulate
complex flow physics (including wall-bounded, multiphase, and/or reacting flows), continues to
motivate work toward more accurate representations of grid-scale turbulence, where there is still
much that can be learned even from simpler flows.

For example, the interaction between the kinetic energy cascade and viscous dissipation is not
trivial even for Navier-Stokes turbulence (e.g., DNS). The energy spectrum typically exhibits a
characteristic spectral bump between the inertial and viscous range of wave numbers, where the
energy spectrum exceeds the inertial range value. This spectral bump, near 0.1 < kη < 0.2, is
observed across different Reynolds numbers. It is shown in Ref. [14] that the location of the bump is
independent of Reλ, and the height of the bump decreases with increasing Reλ. This phenomenon is
widely recognized and often linked to a bottleneck effect in the energy cascade as it approaches the
viscous cutoff scale (η = ν3/4ε−1/4). Additionally, it has been noted that the width of the bottleneck
seems to remain constant regardless of the Reynolds number, suggesting that the bottleneck’s origin
is likely due to a viscous effect rather than an effect from the inertial range.

A number of physical explanations for the spectral bump have been put forward. The bottleneck
phenomenon is commonly thought to be linked with the diminishing presence of nonlinearities
as this range is approached [15]. Reference [16] demonstrated that the EDQNM closure pro-
duces a spectral bump associated with the bottleneck effect and suggested a possible link to an
incomplete thermalization process. The connection between the bottleneck effect and incomplete
thermalization was demonstrated for Navier-Stokes turbulence in Ref. [17]. Another explanation
provided in Ref. [18] attributes the bottleneck effect to helicity dynamics. These dynamics slow
the cascade of both energy and helicity, which are the two conserved quantities in turbulence. In
a more recent study, Ref. [13] proposes an alternative mechanism for energy transfer, attributing
it to vortex thinning in the inverse cascade process observed in two dimensions. Understand-
ing this phenomenon remains challenging, even in simple flows such as homogeneous isotropic
turbulence (HIT) with a Newtonian viscous stress tensor. However, little research has been con-
ducted on the bottleneck effect within the context of LES, where (eddy) viscosity-based stress
tensors are common. A spectral bump or bottleneck effect in LES would presumably hinder the
prediction of residual kinetic energy, motivating possible alternatives to algebraic eddy viscosity
models.

The spatial filtering theory of LES can be used to derive alternatives to the eddy viscosity
assumption, including the scale-similarity model [19] and the nonlinear gradient model [20]. In
a priori tests (i.e., directly testing the accuracy of the model expression by applying a spatial filter
to DNS data), such models provide a stark improvement in accuracy over eddy viscosity models
[5,21,22]. However, the scale-similarity or nonlinear gradient models tend to perform poorly in a
posteriori tests (i.e., applying the model within an LES calculation and evaluating the simulation
result) due to insufficient dissipation [23]. Additionally, deconvolution methods have been used to
derive closure forms by assuming the filter to be invertible [24]. While these models exhibit realistic
results in a priori testing, they tend to produce nonphysical behavior in a posteriori tests due to the
fact that they often do not provide enough dissipation. The result is that structural models tend to
require an extra dissipation term, either an explicit model component such as an eddy viscosity or
an implicit dissipation via truncation error in the numerical scheme.

Broadly speaking, such mixed models can offer an attractive trade-off, with structural models
providing more accuracy in the representation of fluctuations near the grid scale while the dissipative
component can bring stability and robustness. In fact, Johnson [13] demonstrated that an eddy
viscosity approximation more accurately represents multiscale interactions, and thus a mixed model
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consisting of a nonlinear gradient model together with an eddy viscosity has a strong basis in
turbulence physics.

Another application of spatial filtering theory to improve the accuracy of LES modeling is the
Germano identity [4], which offers a robust procedure for determining unknown model coefficients.
A particularly popular instance of this approach uses the Smagorinsky-Lilly eddy viscosity model
with dimensionless coefficient determined on the fly by the Germano-Lilly dynamic procedure
[25,26]. Such dynamic procedures for obtaining coefficients from the resolved fluctuations often
generate negative coefficients and instabilities, introducing the need for ad hoc clipping or averag-
ing. One robust, physically motivated stabilization is the use of Lagrangian averaging [27]. Other
options exist for stabilizing dynamic models, such as choosing a model form based on the full
velocity gradient tensor rather than the strain-rate tensor [28]. In that case, the model does not
conform to the need for a symmetric tensor to describe the residual stress, with side effects such as
the loss of global conservation of angular momentum [29,30].

Given the lack of timescale separation between the smallest resolved scales and the largest unre-
solved scales, it is expected that memory effects could be important for an accurate representation
[31]. The Lagrangian-averaged dynamic procedure [27] encodes some history, but other options
exist. Li et al. [32] introduced a matrix exponential stress closure based on recent Lagrangian
history, and Johnson [33] demonstrated that the nonlinear gradient model naturally encapsulates
some important aspects of Lagrangian physics. Flow history effects can also be incorporated by
solving additional transport equations, most commonly for the residual kinetic energy [34–37].

A more systematic approach to LES modeling can consider the ideal properties that a residual
stress model should fulfill [38]. This often can lead to more elaborate eddy viscosity models
[39,40], but also models with properties similar to the nonlinear gradient model [41]. Indeed,
from the perspective of continuum mechanics, a tensorial approach can be useful to identify a
set of coefficients that can be tuned by a traditional dynamic procedure [42], or more novel ones
[43]. Alternatively, machine learning techniques such as neural networks could be deployed to
learn coefficients for tensor-basis expansions [44]. Desirable invariance properties could also be
encoded into neural-network based models by training in the strain-rate eigenframe [45]. The future
development of data-driven LES models depends, in part, on the effectiveness of the spatial filtering
framework itself, or potential alternatives [46–50], including machine learning approaches that
altogether circumvent the use of explicit filtering for subgrid stress modeling [51].

The spatially filtered Navier-Stokes equation commonly cited as a basis for LES is not without
its shortcomings, however. For example, it is not clear how to conceive of a filter in the near-wall
region, where a standard filtering operation would require information outside of the domain [52].
More generally, filters blur out discontinuities (e.g., two-phase interfaces) and generate “spurious
parasitic contributions” [53] that complicate the modeling task when specific numerical methods
may instead fully-resolve the sharp interface (e.g., sharp interface methods for two-phase flows),
albeit with smaller-scale curvature features unresolved. A more widely recognized difficulty with
spatial filtering is the lack of commutativity between filtering and spatial differentiation with the
filter size is spatially nonuniform [54–56]. This appears to be a relatively practical concern, given
the need for nonuniform computational grids for most practical flow simulations. Indeed, there as
been some effort to treat commutator effects [57,58], but such commutator errors are generally
neglected for convenience in practice.

Johnson [59] proposed an extension of (integral-based) spatial filtering theory based on a differ-
ential representation of flow coarsening. In fact, Germano briefly introduced (elliptic) differential
filters decades ago [60,61]. The physics-inspired approach of Johnson [59] introduced the use
of the Stokes equation as a means of artificially coarsening turbulent flows. This Stokes Flow
Regularization (SFR) technique is equivalent to spatial filtering with a Gaussian kernel for single-
phase unbounded flows with uniform resolution. However, SFR provides a promising approach to
generalize filter-based LES theory to more complex flows. For example, SFR provides governing
equations for a nonuniformly coarsened velocity field that are free of commutator errors. This paper
expands on the preliminary ideas of Ref. [59] and uses SFR to generate a range of LES models that
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FIG. 1. Energy spectra from homogeneous isotropic turbulence for (a) DNS at different Reλ, and (b) LES
dynamic Smagrinsky (dSmag) with clipping (dSmag.clip) and with global averaging (dSmag.avg) compared to
filtered DNS with � = 24η at κmax� = 3.0. A Kolmogorov spectrum, E (κ ) = 1.6 ε

2
3 κ− 5

3 is shown for reference
in both panels. The inset in panels (a) and (b) shows the premultiplied spectrum on a log-linear plot.

are subsequently tested, with an eye toward future extension to more complex flows. For example,
Ref. [62] introduced the use of diffusion equations to coarsen multiphase flows while preserving
sharp interfaces.

In this paper, the interaction between residual stress models and the energy cascade near the
resolution scale is studied by considering the extent of an artificial bottleneck effect and associated
spectral bump in LES predictions. To facilitate a fair comparison, SFR is extended beyond the
results of Ref. [59] as follows. Reference [59] utilized (global) spatial averaging over homogeneous
directions to stabilize SFR-based dynamic coefficients. In this paper, it will be shown that practical
stabilization techniques arise from SFR theory itself, without the need to invent any ad hoc
strategies. It will be shown that this theory-based stabilization is equally applicable to models which
depart from the eddy viscosity assumption, such as mixed models. Also, SFR theory is herein
extended to produce one-equation LES stress models based on a transport equation for residual
kinetic energy. The one-equation models provide the ability to capture basic Lagrangian history
effects and energetic flow physics that can be particularly useful for future extentions to more
complex flows. The result of these extensions is a deeper dive into SFR theory and its implications
for LES modeling with an eye towards addressing the artificial bottleneck effect by connecting it to
kinetic energy dynamics near the resolution scale.

A preliminary demonstration of the artificial bottleneck effect is given in Sec. II. Then Sec. III
reviews and extends SFR theory with detailed attention to resolved and residual kinetic energy.
Section IV uses SFR theory to derive a range of models to facilitate a fair comparison of how the
form of a model effects the artificial bottleneck effect. Results of LES of isotropic turbulence are
shown in Sec. V, and conclusions are drawn in Sec. VI.

II. THE ARTIFICIAL BOTTLENECK EFFECT IN LES

Figure 1(a) demonstrates the spectral bump observed in DNS of HIT at three different Reynolds
numbers, shown most visibly in the premultiplied spectrum plotted on a linear scale (see inset). The
spectral bump occurs at a fixed range of wave numbers normalized by the Kolmogorov length scale.
For comparison, energy spectra from LES using a dynamic Smagorinsky (dSmag) model [25,26] are
shown in Figure 1(b). Here a Gaussian test filter is used with a test filter scale 2�, which supplies the
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proper amount of energy dissipation to cause the resulting energy spectra to drop off in an accurate
manner near the resolution scale. A similar spectral bump is observed at scales slightly larger than
the filter scale. The spectral bump is observed both for simulations in which the coefficient is clipped
(dSmag.clip) and when the coefficient is globally averaged (dSmag.avg). The artificial overshoot in
the LES spectra results in an over-prediction of the resolved kinetic energy compared to filtered
DNS (fDNS) by about 10%, despite the fact that the dynamic procedure is successful in choosing a
model coefficient leading to accurate energy removal and spectral roll off at the right wave number.
That is, the shape of the spectrum is not predicted correctly due to the artificial bottleneck effect,
which can be expected for any eddy viscosity model. The dynamic Smagorinsky model alone does
not predict the residual kinetic energy, but could be complimented with a dynamic Yoshizawa model
[63,64] to accomplish it. This is not typically done for incompressible flows.

The existence of an artificial bottleneck effect in LES with the dynamic Smagorinski model
is not surprising, because it is similar to Navier-Stokes turbulence in its use of a Newtonian
viscous stress constitutive law with the local stress tensor proportional to the local strain-rate tensor.
This is expected to be a feature of eddy viscosity models more generally. The spectral bump in
Navier-Stokes turbulence at high Reynolds number makes a negligible contribution to the total
kinetic energy, because the overshoot is associated with length scales near the viscous cutoff. In
LES, however, the grid or filter cutoff is generally much closer to the energetic range of scales,
so that the artificial bottleneck effect demonstrated in Fig. 1 can be important for simulating high
Reynolds number flows. This motivates further investigation into understanding how the form of the
residual stress model, grid resolution, filter scale, and Reynolds number affect this behavior. Our
paper focuses on analyzing the energy spectrum, turbulent kinetic energy, dissipation, and related
statistical parameters such as skewness and flatness. To understand the ability of LES models to
accruately represent the details of the energy cascade, the grid scale flow structure is explored by
looking at the efficiency of vortex stretching and strain rate self-amplification [13].

III. BACKGROUND AND THEORY

This section outline the theoretical framework that will guide our investigation into the artificial
bottleneck effect. Our focus centers on using the Stokes Flow Regularization (SFR), which serves
as a foundational tool for constructing a range of residual stress models using a consistent dynamic
procedure that does not require the use of a test filter. First, the background theory of SFR from
previous work [59], followed by a detailed examination of kinetic energy and the cascade through
the lens of SFR that extends the results of Ref. [59]. Then the SFR-based dynamic procedure for
(LES) modeling is introduced.

A. Stokes flow regularization: The Basics

The main concept of SFR is sketched in Fig. 2. A resolved velocity field, U(x, t, t̂ ), is introduced
as a function of both physical time, t , and a new timelike variable that measures the extent to which
small-scale features are removed from the representation of the flow: the pseudo-time, t̂ .

When t̂ = 0, the resolved velocity field must be equivalent to the physical velocity field,

U(x, t ; 0) = u(x, t ). (1)

This grounds the basis of SFR in physical reality. The physical velocity field obeys the fundamental
laws of mass, momentum, and energy conservation. For incompressible Newtonian flows,

∂ui

∂t
+ u j

∂ui

∂x j
= − ∂ p

∂xi
+ ν∇2ui + fi,

∂u j

∂x j
= 0, (2)

where p(x, t ) is the pressure (divided by density, ρ) and f (x, t ) denotes any additional solenoidal
body forces, e.g., from gravity or artificial stirring. The kinematic viscosity is ν = μ/ρ. For
incompressible flows, the pressure is responsible for enforcing the divergence-free condition during
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FIG. 2. SFR for LES defines a generalized (resolved) velocity field as a function of physical time (t ) and
pseudo-time (t̂ ). The generalized Navier–Stokes equation for the resolved velocity in physical time requires a
closure model.

the evolution of the velocity field in (physical) time. Using the divergence of Eq. (2), the pressure
may be found as the solution of a Poisson equation,

∇2 p = − ∂ui

∂x j

∂u j

∂xi
. (3)

Equations (2) and (3) are considered sufficient to describe the observed velocity field, u(x, t ), of
low-Mach turbulent flows. The implied evolution of kinetic energy is

∂

∂t

(
1

2
uiui

)
+ ∂

∂x j

(
1

2
uiuiu j + ui p − 2νuisi j

)
= −2νsi jsi j + ui fi, (4)

where si j = 1
2 ( ∂ui

∂x j
+ ∂u j

∂xi
) is the rate-of-strain tensor.

In practice, however, it is desirable to have the capability to solve for the dynamics of a coarse-
grained representation of the flow. Dating back to Ref. [3], the basis of LES has been conceived as
the solution for the spatially-filtered velocity field,

u�
i (x, t ) =

∫∫∫
G�(r)ui(x + r, t ) dr, (5)

with a suitable normalized filter kernal, G. The SFR concept generalizes the spatial filtering
approach. More generally, a turbulent flow snapshot may be coarsened by deploying the physical
equations with the energy cascade mechanism removed, namely, the nonlinear inertia term in
Eq. (2), uj ∂ui/∂x j . The result is the Stokes equation, which is physically valid only for low
Reynolds number flows, but is useful here in a different way: as an artificial coarsening procedure.
Thus, the Stokes equation describes the evolution of the generalized velocity in pseudo-time (at a
fixed physical time),

∂Ui

∂ t̂
= − ∂ p̂

∂xi
+ ∂

∂x j
(2ν̂Si j ),

∂Uj

∂x j
= 0, (6)

where Si j = 1
2 ( ∂Ui

∂x j
+ ∂Uj

∂xi
) is the generalized strain-rate tensor. The orange lines in Fig. 2 represent

Eq. (6). A pseudo-viscosity, ν̂, introduced to accomplish the coarsening during pseudo-time, may
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be made into a anisotropic tensorial pseudo-viscosity for anisotropic grid resolution and may be
made a function of space to accomodate spatially nonuniform grid resolution. Note that the pseudo-
viscosity is an element of the coarsening procedure that generalized spatial filtering. It is different
than the physical viscosity, and it is not the same as an eddy viscosity commonly used in turbulence
modeling. The pseudo-pressure, p̂, is responsible for enforcing the divergence free condition during
pseudo-time evolution, and may be found by solution of a Poisson equation resulting from the
divergence of Eq. (6). The local resolution of the generalized velocity field at pseudo-time t̂ may be
estimates as � ∼

√
ν̂t̂ .

According to Eq. (1), the dynamics of the resolved velocity at zero pseudo-time, U(x, t ; 0), must
adhere to the incompressible Navier-Stokes dynamics of Eqs. (2) and (3) during their evolution in
physical time for t̂ = 0. The corresponds to the green arrow in Fig. 2. However, the physical time
evolution at a nonzero pseudo-time must inevitably differ from the Navier-Stokes equation. Thus,
a residual force, �(x, t ; t̂ ), is introduced to create a generalized Navier-Stokes equation capable of
describing resolved flow dynamics at a finite pseudo-time,

∂Ui

∂t
+ Uj

∂Ui

∂x j
= − ∂P

∂xi
+ ν∇2Ui + Fi + �i,

∂Uj

∂x j
= 0. (7)

Equation (7) represents the effective evolution of a coarse-grained representation of the velocity
field, and must reduce to the Navier-Stokes equation, Eq. (2), in the limit t̂ → 0. The generalized
(resolved) pressure, P(x, t ; t̂ ), enforces the divergence-free condition during physical time evolution
at finite pseudo-time; it can be found using a Poisson equation generated by taking the divergence
of Eq. (7). Therefore, the reduction of Eq. (7) to Eq. (2) in the limit t̂ → 0 requires

P(x, t ; 0) = p(x, t ). (8)

The generalized body force, F(x, t ; t̂ ), likewise represents the effective body force at coarse resolu-
tion, thus,

Fi(x, t ; 0) = fi(x, t ). (9)

Finally, the residual force, �(x, t ; t̂ ), represents the residual error of the Navier-Stokes equation ap-
plied at coarse resolution (finite pseudo-time), therefore,

�i(x, t ; 0) = 0. (10)

In general, this residual force may be specified by enforcing the equality of mixed partial derivatives
in the t-t̂ phase space shown in Fig. 2,

∂

∂t

(
∂Ui

∂ t̂

)
= ∂

∂ t̂

(
∂Ui

∂t

)
. (11)

B. A special case: Uniform resolution of unbounded flows

For demonstration purposes, let us proceed with the derivation assuming uniform, isotropic
resolution of a flow on an unbounded domain. Therefore, the Stokes equation, Eq. (6) with initial
condition given by Eq. (1), simplifies to a diffusion equation,

∂Ui

∂ t̂
= ν̂∇2Ui, Ui(x, t ; 0) = ui(x, t ). (12)

In this case, the solution to the diffusion equation is straightforward,

Ui(x, t ; t̂ ) =
∫∫∫

G(r; t̂ )ui(x + r, t ) dr, where G(r; t̂ ) = 1

(4πν̂t̂ )3/2 exp

(
−|r|2

4ν̂t̂

)
, (13)

which is equivalent to a Gaussian spatial filter with �2 = 2ν̂t̂ . This establishes a formal mathematical
equivalence between SFR and spatial filtering in the special case of unbounded flows with uniform
resolution.
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Equations (12) and (7) may be substituted in Eq. (11) on the left and right hand side, respectively,
and further simplifications and substitutions lead to

∂�i

∂ t̂
= ν̂∇2�i + ∂

∂x j

[
−2ν̂AikA jk +

(
∂P

∂ t̂
− ν̂∇2P

)
δi j

]
−

(
∂Fi

∂ t̂
− ν̂∇2Fi

)
, (14)

where Ai j (x, t ; t̂ ) = ∂Ui
∂x j

is the resolved velocity gradient tensor at pseudo-time t̂ . It is most natural
to separate the body force from the residual force by choosing

∂Fi

∂ t̂
= ν̂∇2Fi, Fi(x, t ; 0) = fi(x, t ), (15)

where the initial condition comes from Eq. (9). Similarly, the generalized (resolved) pressure can
absorb the isotropic part of the velocity gradient product to form

∂P

∂ t̂
= ν̂∇2P + 2

3
ν̂AikAik, P(x, t ; 0) = p(x, t ). (16)

This equation is a linear force diffusion equation, and the solution can be written via superposition
as P = P(1) + P(2) where

∂P(1)

∂ t̂
= ν̂∇2P(1), P(1)(x, t ; 0) = p(x, t ), (17)

∂P(2)

∂ t̂
= ν̂∇2P(2) + 2

3
ν̂AikAik, P(2)(x, t ; 0) = 0. (18)

The first component, P(1), is the Gaussian-filtered pressure while the second component, P(2),
relates to the portion of residual kinetic energy that may be lumped into the effective pressure for
incompressible flows.

With this choice for the generalized (resolved) body force and pressure, the remaining source
term in the forced diffusion equation for the residual force, Eq. (14), is inside of a divergence. It
follows that the residual force must be a divergence of a residual stress,

�i = −∂σi j

∂x j
. (19)

Physically, this must be true because the Stokes equation globally conserves momentum during
pseudo-time evolution, so the residual force it gives rise to must likewise globally conserve
momentum. The result is a generalized Navier-Stokes equation for the resolved velocity dynamics,

∂Ui

∂t
+ Uj

∂Ui

∂x j
= − ∂P

∂xi
+ ν∇2Ui − ∂σi j

∂x j
+ Fi,

∂Uj

∂x j
= 0, (20)

where F represents the coarsened body force and the resolved pressure, P, may be found by
enforcing the divergence-free condition using a Poisson equation. Enforcing Eqs. (15), (16), and
(19), then Eq. (14) becomes

∂

∂x j

(
∂σi j

∂ t̂
− ν̂∇2σi j − 2ν̂(AikA jk )(d )

)
= 0,

∂σi j

∂x j
(x, t ; 0) = 0, (21)

where the superscript (d ) denotes the deviatoric component of a tensor. While any σi j satisfying
Eq. (21) is sufficient, it can simplify the modeling process to consider a more strict criterion, namely,
that the residual stress tensor is defined as the solution to a forced diffusion equation,

∂σi j

∂ t̂
= ν̂∇2σi j + 2ν̂(AikA jk )(d ), σi j (x, t ; 0) = 0. (22)
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The ability to add (or subtract) divergence-free tensor fields to the residual stress tensor has been
discussed in detail by Ref. [65]. The formal solution for unbounded flow with uniform resolution is

σi j (x, t ; t̂ ) = 2ν̂

∫ t̂

0

(∫∫∫
(AikA jk )(d )(x + r, t ; t̂ ′)G(r, t̂ − t̂ ′) dr

)
dt̂ ′, (23)

where the function G(r, t̂ ) is the same as used in Eq. (13). Thus, the residual stress at scale � =
√

2ν̂t̂
arises from velocity gradients at all scales 0 � �′ � �.

C. Kinetic energy in Stokes flow regularization

Turbulent flows are famous for their rapid mixing capability, driven by an enhanced ability to
dissipate kinetic energy. The enhanced dissipation in turbulence is understood as the outcome of a
chaotic cascading processes in which small-scale fluctuations are rapidly energized from large-scale
excitation by the inherent nonlinearity of high Reynolds number fluid dynamics. The kinetic energy
cascade is one of the hallmark concepts in turbulence theory, dating at least back to Richardson’s
[66] rhyming description of the interaction between “big whirls,” “little whirls,” and “lesser whirls.”
In a footnote of Kolmogorov’s seminal paper introducing his hypotheses about locally homogeneous
and isotropic turbulence, a similar description is given in terms of a hierarchy of “pulsations”
[67]. Around the same time, Taylor studied the dynamics of turbulence generated behind a grid
in a wind tunnel and concluded that “the stretching of vortex filaments must be regarded as the
principal mechanical cause of the high rate of dissipation which is associated with turbulent motion”
[68]. Onsager [11] coined the terminology of “cascade” [69] and tied it to the vortex stretching
mechanism of Taylor. Thus, a common understanding that emerged from these early works on
turbulence theory was that the energy cascade is driven by multiscale vortex stretching [70].

More recent studies have highlighted a second cascade mechanism at work: strain-rate self-
amplification [71]. Carbone and Bragg [72] used the dynamical equations for velocity increments to
estimate that strain-rate self-amplification is responsible for 75% of the energy cascade rate while
vortex stretching is only responsible for the remaining 25%. Similar estimates can be obtained using
spatial filtering [73]. It is encouraging to observe the fundamental agreement between increment-
based and filtering-based estimates of how much vortex stretching and strain-rate self-amplification
contribute to the the energy cascade rate. This lends some evidence that these conclusions are
features of the underlying physics, independent of the particulars of the analysis method. However,
the 75%:25% partition between strain-rate self-amplification and vortex stretching contributions
to the energy cascade rate relies on the truncation of an infinite series expansion, regardless of
the analysis method, which leaves uncertainty as to the role of higher-order terms in such an
approximation. This is precisely the point at which SFR provides a pivotal breakthrough.

Although SFR was introduced for LES as a “physics-inspired coarsening” technique in Ref. [59],
the use of similar techniques for theoretical fluid mechanics predates this recent work. In un-
published notes, Onsager appears to have considered Stokes flow as a natural basis for analysis
and modeling of turbulent channel flow [69]. Isett and Oh [74] used a “geometric heat flow”
regularization for proofs about the nature of weak Euler solutions on a more general class of
Riemannian manifolds. Johnson [13,75] demonstrated the use of SFR for analyzing the physics
of the energy cascade in terms of vortex stretching and strain-rate self-amplification, which is
summarized here before returning to the application of SFR to LES modeling. To do so, the transport
equations for kinetic energy within the SFR framework are developed.

The Stokes flow regularization, Eq. (12), removes kinetic energy as pseudo-time increases,

∂E

∂ t̂
= ν̂∇2E − ν̂Ai jAi j, E (x, t ; t̂ = 0) = 1

2
uiui(x, t ), (24)

where E = 1
2UiUi is the kinetic energy of the resolved velocity field at any pseudo-time. It represents

the kinetic energy of fluid motions larger than the resolution scale � =
√

2ν̂t̂ . From observation of
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Eq. (18), a residual (or small-scale) kinetic energy can be defined as e = 3
2 P(2), so that

∂e

∂ t̂
= ν̂∇2e + ν̂Ai jAi j, e(x, t ; t̂ = 0) = 0, (25)

such that the sum of these two energies, T = E + e, is globally conserved in pseudo-time,

∂T

∂ t̂
= ν̂∇2T, T (x, t ; t̂ = 0) = 1

2
uiui(x, t ). (26)

In this way SFR provides a convenient separation of kinetic energy into large- and small-scale
components, E and e, respectively. Equations (24) and (25) show how the energy is being removed
from resolved scales to unresolved scales by the term ν̂Ai jAi j in pseudo-time.

The evolution of large-scale kinetic energy, E , in physical time (at fixed pseudo-time) can be
directly inferred from the resolved dynamics, Eq. (20),

∂

∂t

(
1

2
UiUi

)
+ ∂

∂x j

(
1

2
UiUiUj + UjP − 2νUiSi j + Uiσi j

)
= σi jSi j − 2νSi jSi j + UiFi. (27)

The evolution of total energy, T = E + e, in physical time may be found using a similar procedure
as for the momentum. The total kinetic energy must equal the physical kinetic energy when t̂ = 0,
so its evolution equation can be written as the physical kinetic energy transport equation, Eq. (4),
plus a to-be-determined residual error (W ),

∂T

∂t
+ ∂

∂x j

(
1

2
UiUiUj + UjP

(1) − 2νUiSi j

)
= −2νSi jSi j + UiFi + W. (28)

The residual work, W , can be specified by requiring the equality of mixed partial derivatives,
following Eq. (11),

∂

∂t

(
∂T

∂ t̂

)
= ∂

∂ t̂

(
∂T

∂t

)
. (29)

After substitution of Eqs. (26) and (28) into Eq. (29), with further manipulation, a superposition
solution for the residual work may be written, where

W = − ∂

∂x j

(
q(1)

j + q(2)
j + q(3)

j

) + W (4) + W (5), (30)

∂q(1)
j

∂ t̂
= ν̂∇2q(1)

j + 2ν̂
∂Ui

∂xk

∂σi j

∂xk
+ 2ν̂

∂Uj

∂xk

∂e

∂xk
, (31)

∂q(2)
j

∂ t̂
= ν̂∇2q(2)

j + 2ν̂
∂Uj

∂xk

∂P

∂xk
, (32)

q(3)
j = −ν

∂e

∂x j
, (33)

∂W (4)

∂ t̂
= ν̂∇2W (4) − 2νν̂

∂Ai j

∂xk

∂Ai j

∂xk
, (34)

∂W (5)

∂ t̂
= ν̂∇2W (5) + 2ν̂

∂Ui

∂xk

∂Fi

∂xk
. (35)

The first residual flux, q(1), represents the flux of residual kinetic energy by unresolved turbulent
velocity fluctuations. The second residual flux, q(2), represents the flux of residual kinetic energy
by unresolved pressure-velocity coupling. The third flux, q(3), is the viscous diffusion of residual
kinetic energy (this term is closed and requires no modeling). The first residual work, W (4),
represents viscous dissipation of residual kinetic energy. Finally, the remaining residual work term,
W (5), includes the direct production of residual kinetic energy by unresolved body forces.
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A transport equation for residual kinetic energy may be obtained by subtracting the transport
equation for large-scale kinetic energy, Eq. (27), from the total kinetic energy transport equation,
Eq. (28). Then, using the decomposition of residual work, Eq. (30), it is obtained that

∂e

∂t
+ ∂

∂x j

(
Uje − ν

∂e

∂x j
+ q(1)

j + q(2)
j

)
= −σi jSi j + W (4) + W (5). (36)

Comparing Eq. (36) with Eq. (27), it is evident that � = −σi jSi j represents the rate at which large-
scale kinetic energy is converted into small-scale kinetic energy. This may be thought of as the rate
at which large-scale motions do work on small-scale motions [6,70]. Invoking Onsager’s “cascade”
imagery, the quantity �(x, t ; t̂ ) represents the kinetic energy cascade rate across scale � =

√
2ν̂t̂ at

any location and time in the flow.
Using the formal solution for the residual stress tensor, Eq. (23), it can be seen that

�(x, t ; t̂ ) =
∫∫∫

2ν̂

(∫ t̂

0
−Aik (x + r, t ; t̂ ′)Ajk (x + r, t ; t̂ ′)Si j (x, t ; t̂ )dt̂ ′

)
G(r, t̂ − t̂ ′) dr. (37)

Thus, the kinetic energy cascade rate across scale � =
√

2ν̂t̂ is formally connected to the interac-
tion between the strain rate at scale � and the velocity gradients at all scales 0 � �′ � �, where
�′ =

√
2ν̂t̂ ′, within the neighborhood of the larger-scale strain rate. More specifically, a small-scale

velocity gradient may be defined as

A′
ikA′

jk (x, t ; t̂ ; r, t̂ ′) = AikA jk (x + r, t ; t̂ ′) − AikA jk (x, t ; t̂ ) (38)

so that � = �1 + �2, where

�1(x, t ; t̂ ) = −�2AikA jkSi j (x, t ; t̂ ) (39)

and

�2(x, t ; t̂ ) =
∫∫∫

2ν̂

(∫ t̂

0
−A′

ikA′
jk (x + r, t ; t̂ ; r, t̂ ′)Si j (x, t ; t̂ ) dt̂ ′

)
G(r, t̂ − t̂ ′) dr. (40)

The first term, �1, represents the kinetic energy cascade rate driven by single-scale velocity gradient
interactions at scale � =

√
2ν̂t̂ , whereas the second term, �2, represents the kinetic energy cascade

rate due to two-scale interactions between the strain rate at scale � =
√

2ν̂t̂ and the smaller-scale
velocity gradient fluctuations at scale �′ =

√
2ν̂t̂ ′, where 0 � �′ � �.

This result answers the question of how vortex stretching and strain-rate self-amplification relate
to the energy cascade. Further decomposing the velocity gradient tensor into its symmetric and
antisymmetric components, Ai j = Si j − 1

2εi jk�k , where � is the resolved vorticity vector. Inserting
this decomposition, �1 = �s1 + �ω1 and �2 = �s2 + �ω2 + �c2, where

�s1 = −�2Si jS jkSki, �ω1 = 1

4
�2�iSi j� j, (41)

�s2 =
∫∫∫

2ν̂

(∫ t̂

0
−S′

ikS′
k j (x + r, t ; t̂ ; r, t̂ ′)Si j (x, t ; t̂ ) dt̂ ′

)
G(r, t̂ − t̂ ′) dr, (42)

�ω2 =
∫∫∫

1

2
ν̂

(∫ t̂

0
�′

i�
′
j (x + r, t ; t̂ ; r, t̂ ′)Si j (x, t ; t̂ ) dt̂ ′

)
G(r, t̂ − t̂ ′) dr, (43)

�c2 =
∫∫∫

2ν̂

(∫ t̂

0
(S′

ikR′
k j − R′

ikS′
k j )(x + r, t ; t̂ ; r, t̂ ′)Si j (x, t ; t̂ ) dt̂ ′

)
G(r, t̂ − t̂ ′) dr, (44)

where Ri j = − 1
2εi jk�k is the resolved rotation-rate tensor.

The two single-scale terms, �s1 and �ω1, represent the strain-rate self-amplification and vortex
stretching contributions to the cascade rate. The Betchov relation for the third invariant [76] of
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the velocity gradient tensor (at any scale), requires that 〈�s1〉 = 3〈�ω1〉, so that 75% of 〈�1〉 may
be attributed to strain-rate self-amplification, 〈�s1〉. The remaining 25% is attributable to 〈�ω1〉.
This decomposition of the cascade rate corresponds to that previously obtained by truncation of an
infinite series [72,73].

The first two multiscale terms, �s2 and �ω2, represent smaller-scale strain-rate amplification
and vortex stretching interactions by larger-scale strain rates. Johnson [13,75] observed that the
average values of these two terms were nearly equal in the inertial range of homogeneous isotropic
turbulence using direct numerical simulation at Reλ ≈ 400. Moreover, the final term, �c2, represents
vortex thinning, and its average values was found to be very small compared with the other four
terms [13,75].

The average cascade rate was found to be evenly distributed between 〈�1〉 and 〈�2〉 in the
inertial range of scales. Therefore, on the whole, strain-rate amplification, 〈�s1 + �s2〉 accounts
for approximately 5

8 of the average energy cascade rate in the inertial range and vortex stretching,
〈�ω1 + �ω2〉, supplies the remaining 3

8 . Considering that � = �s1 + �ω1 + �s2 + �ω2 + �c2 is
a point-wise exact relationship for the energy cascade rate, thus SFR provides basic insight into the
physics of the energy cascade.

D. Stokes flow regularization as a basis for LES modeling

Equation (20) describes the physical-time evolution of the resolved velocity field, U(x, t ; t̂ ),
at any fixed pseudo-time, t̂ . As such, beyond its use for physics inquiry exemplified above, SFR
provides a basis for numerical solution of a coarse-grained representation of a flow (i.e., LES) with
numerical grid resolution proportional to � =

√
2ν̂t̂ . Equation (22), together with its formal solution

in Eq. (23), defines the residual stress tensor. The stress tensor requires modeling, because an exact
solution of Eqs. (22) or (23) requires knowledge of the flow field at equivalent resolution to DNS to
accurately specify the velocity gradient down to scale t̂ = 0.

Any proposed model form may be substituted into Eq. (22) to form an equation to determine
model coefficients. For example, an eddy viscosity model may be assumed, with K41 scaling for
the eddy viscosity,

σi j = −2νT Si j where νT = cT �4/3. (45)

In this case, with substitution, neglecting the spatial variation of the coefficient cT (i.e., ∇2cT ≈ 0),
the following equation is obtained:

2
3 cT (2ν̂t̂ )−1/3Si j = −2(AikA jk )(d ).

The proposed model form has a single scalar coefficient, cT , yet is required to satisfy a tensor
equation. Thus, a least-squares fit can minimize the error in the proposed model, resulting in

νT = 3

4

�1

‖S‖2
, σi j = −2νT Si j, (46)

where �1 is given by Eq. (39). The steps used to generate this model resemble those of the
dynamic procedure of Germano [25] and Lilly [26] that has become quite popular. However,
the current SFR-based dynamic procedure uses Eq. (22) in place of the Germano identity [4].
The advantage of the current approach is that the model coefficient, 3/4, can be determined
analytically using pen-and-paper and does not require the calculation of a test filter. In this case, with
the K41-scaled eddy viscosity assumption, the resulting model resembles the minimum dissipation
model [77], except that the current model includes both strain-rate self-amplification and vortex
stretching. A straightforward extension to anisotropic grids can be accomplished with a tensorial
pseudo-viscosity having eigenvectors and eigenvalues corresponding to the grid orientation and
aspect ratio, respectively. The resulting SFR-based dynamic model would resemble the anisotropic
minimum dissipation model [40], but with an additional inclusion of vorticity stretching.
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IV. A NEW CLASS OF SFR-BASED STRESS MODELS USING RESIDUAL KINETIC ENERGY

Johnson [59] proposed and validated the performance of Eq. (46) in HIT using (global) spatial
averaging over homogeneous directions, as sometimes done with Germano-based dynamic models.
The results confirmed that the analytical dynamic coefficient, 3/4, provided an accurate dissipation
rate with the resolved kinetic energy spectrum closely matching that of Gaussian-filtered DNS;
see Eq. (13). In this section the SFR theory for LES modeling is extended to incorporate kinetic
energy considerations, thereby eliminating the need for global spatial averaging. This is achieved
by introducing theory-based stabilization for a range of SFR-based dynamic models, including
a new one-equation model with an SFR-based transport equation for residual kinetic energy.
These advancements, relative to Ref. [59], will enable a careful and detailed study of the artificial
bottleneck effect in LES.

A. Eddy viscosity model via local equilibrium of residual kinetic energy

The scaling of the eddy viscosity in Eq. (45) results from dimensional analysis on the residual
stress tensor assuming dependence on the resolution length scale consistent with Kolmogorov’s
1941 theory with local equilibrium and scale-independent dissipation rate of (resolved) kinetic
energy. Another possibility is to consider the eddy viscosity as a function of the residual kinetic
energy, e, whose evolution in pseudo-time and physical time is given by Eqs. (25) and (36),
respectively. Assuming νT = νT (�, e), dimensional analysis leads to

νT = cν

√
e�. (47)

Substituting this form into Eq. (22), and applying least-squares minimization, the following model
is obtained:

cν = �
√

e(
e + 1

2�2‖A‖2
)(

�
√

e∇2cν − AikA jkSi j

‖S‖2

)
, σi j = −2νT Si j . (48)

In Eq. (48), the spatial variation of the coefficient cν is retained (i.e., ∇2cν). The local value of
the residual kinetic energy, e, may be determined by solving its transport equation, Eq. (36), with
appropriate models for unclosed terms. Alternatively, a local equilibrium of residual kinetic energy
may be assumed.

A local equilibrium of residual kinetic energy implies a local balance of sources and sinks in
Eq. (36). If direct forcing at unresolved scales may be neglected, W (5) = 0, local equilibrium implies

� = ε, (49)

where � = −σi jSi j is the modeled production rate of residual kinetic energy and ε = W (4) is the
viscous dissipation rate of residual kinetic energy. In this approximation, spatio-temporal variation
of e is neglected. Likewise neglecting spatial variation of e in the pseudo-time equation for residual
kinetic energy, Eq. (25), results in

∂eeq

∂ t̂
= ν̂Ai jAi j, eeq(x, t ; t̂ = 0) = 0. (50)

Now, the local equilibrium assumption itself leads to scaling arguments via dimensional analysis
and Kolmogorov’s similarity hypotheses, thus,

eeq = ce�
2/3. (51)

Substitution of Eq. (51) into Eq. (50), with �2 = 2ν̂t̂ leads to

eeq = 3
2�2‖A‖2. (52)
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Then substitution of this equilibrium residual kinetic energy, Eq. (52), into Eq. (48) yields

νT = 3

4

(
�2∇2νT + �1

‖S‖2

)
. (53)

This result agrees with the previous K41 approximation, Eq. (46). The only difference is the reten-
tion of an additional term proportional to ∇2νT , which creates an elliptic differential equation for
the eddy viscosity coefficient that acts as a local averaging operator on the viscosity. Such localized
averaging (on the scale of �) acts as a stabilizing feature of the model that directly emerges from
the SFR theory. (Note that, since we are here dealing with sufficiently inaccurate models, the
substitution of a more computationally efficient local averaging method is appropriate and unlikely
to significantly affect the model’s performance.)

From the perspective of energy equilibrium, another consideration emerges. At locations where
νT < 0, the viscosity is negative and the modeled production rate of residual kinetic energy �

is negative. While this should occur at a strong minority of points in the domain, it should be
appreciated that the above model is constructed with a pointwise assumption of equilibrium via � =
ε, Eq. (49). Where νT < 0, this is only possible if � = ε = 0, because ε is a non-negative quantity
by definition. At such points in the modeled flow, the local equilibrium energy is thus eeq = 0. That
is, the local equilibrium assumption precludes the possibility of local backscatter, � < 0, because
that would lead to a unbalanced sink on the right-hand side of the residual kinetic energy transport
equation, Eq. (36). Therefore, following a consistent assumption of local equilibrium,

eeq = 3
2�2‖A‖2 H(νT ), (54)

where H denotes the Heaviside step function,

H(x) =
{

1 if x > 0
0 otherwise . (55)

Thus, an eddy viscosity model with consistent application of a local equilibrium (K41) assumption
is

σi j = −2H(νT )νT Si j, � = 2νT ‖S‖2. (56)

In effect, this implements a clipping of the dynamic viscosity, νT , which is a common trick used
to stabilize a Germano-based dynamic eddy viscosity model. However, we are arguing here that
the clipping in Eqs. (54) and (56) arises naturally as a consequence of local equilibrium, eeq = 0.
The stabilization of the above SFR-based equilibrium eddy viscosity model is a consequence of the
theory itself, not an ad hoc imposition.

B. Eddy viscosity model via transport equation for residual kinetic energy

If it is desirable to capture departures of residual kinetic energy from local equilibrium and
potentially capture local backscatter events, an additional transport equation can be considered to
determine a nonequilibrium value of e to be used with Eq. (48). To do this, a transport equation for
residual kinetic energy is solved in the LES, from Eq. (36),

∂e

∂t
+ ∂

∂x j

(
w je − ν

∂e

∂x j
+ q j

)
= � − ε, (57)

where direct forcing of small-scale energy, W (5) is assumed negligible. The production rate, � =
−σi jSi j , does not require additional closure beyond what is needed for the resolved momentum
equation, Eq. (20). Thus, two new modeling approximations are needed [34]. First, the residual
flux, q, must be modeled. In most existing kinetic energy transport models, a gradient diffusion
hypothesis is applied. This would certainly be commensurate with the use of an eddy viscosity
model for the residual stress tensor, σ. Second, a model for the viscous dissipation rate is required.
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The dissipation rate can be modeled as

ε = Cε

e3/2

�
. (58)

Then enforcing � = ε for e = eeq at equilibrium leads to

ε =
(

e

eeq

)3/2

�eq, (59)

where �eq represents the modeled production rate of residual kinetic energy at equilibrium, Eq. (56).
The modeled dissipation rate may be thought as a nonlinear relaxation toward equilibrium that
follows standard dissipation scaling. Furthermore, the residual flux q is evaluated via a gradient
diffusion hypothesis,

q j = −αT
∂e

∂x j
, (60)

where αT is the eddy diffusivity, modeled as

αT = cα

√
e�. (61)

Then adding Eqs. (31) and (32) leads to

∂q j

∂�2
= 1

2
∇2q j + ∂Uj

∂xk

(
∂e

∂xk
+ ∂P

∂xk

)
+ ∂Ui

∂xk

∂σi j

∂xk
. (62)

Substitution of Eqs. (60) and (61) into Eq. (62) with further simplifications and applying least-
squares minimization, the following αT model is obtained:

cα = �
√

e(
e + 1

2�2‖A‖2
)
(

�
√

e∇2cα − 2
∂e
∂x j

Si j
∂e
∂xk

‖∇e‖2

)
, (63)

where − ∂e
∂x j

Si j
∂e
∂xk

depends on how the strain rate is aligned with the unresolved energy gradient vec-
tor, which is conceptually similar to the strain-rate self-amplification and vortex stretching, Eq. (41).
The negative sign accounts for the fact that scalar gradients preferentially align with compressive
strain-rate eigenvectors [78], so that the diffusivity given by Eq. (63) will be predominantly positive
throughout the simulated flow.

C. Mixed model via local equilibrium of residual kinetic energy

Mixed models are built by combining a structure-based nonlinear model and a functional eddy
viscosity model to provide better alignment with the actual stress tensor as proved via filtered DNS
(a priori testing),

σi j = σ
(1)
i j + σ

(2)
i j = �2(AikA jk )(d ) − 2νT Si j . (64)

The first component, σ (1), comes from the resolved part of the formal solution to Eq. (22); see
Eq. (39). The eddy viscosity component, σ (2), models the unresolved portion; see Eq. (40). From
dimensional analysis, νT = νT (�, e) following Eq. (47). Substituting this form into Eq. (22), and
applying least-squares minimization, the eddy viscosity is obtained,

νT = e�2

e + 1
2�4‖B‖2

(
∇2νT − �2 Bmkl Bnkl Smn

‖S‖2

)
, (65)

where Bi jk = ∂2Ui/∂x j∂xk is the Hessian of the resolved velocity. (The appearance of second
derivatives is mathematically similar to the test filter calculation mentioned in Refs. [79,80] where
a small-scale activity sensor is constructed by evaluating the ratio of the test-filtered to grid-filtered
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velocity gradient tensor. If the two filters are close together, the leading-order term in Taylor
series expansion would contains second derivatives of the velocity field. On a related note, in
the previous two eddy viscosity models in Secs. IV A and IV B, a scale-dependent eddy viscosity
coefficient [81,82] could be sought instead of the scale similarity assumptions; this would also lead
to second-derivatives.) The residual kinetic energy can be expressed as the energy contribution of
each model separately,

e = e(1) + e(2) = 1
2�2‖A‖2 + e(2), (66)

where e(1) = 1
2�2‖A‖2 is the residual kinetic energy due to the resolved part of the formal solution

to Eq. (25), i.e., the energy related to the nonlinear gradient stress component, and e(2) is associated
with the eddy viscosity component. The scalewise derivative of e(1) is

∂e(1)

∂�2
= 1

2
‖A‖2 + �2

2

(
1

2
∇2‖A‖2 − Bi jkBi jk

)
. (67)

To find e(2), we refer back to Eq. (25), and using Eq. (67) leads to

∂e(2)

∂�2
= 1

2
∇2e(2) + 1

2
�2Bi jkBi jk . (68)

The equilibrium argument for e(2) follows the same K41 scaling as Eq. (51), yields to

e(2)
eq = 3

2�4‖B‖2. (69)

Thus, substitution of Eq. (69), into Eq. (65) leads to

νT = 3�2

4

(
∇2νT − �2 Bmkl Bnkl Smn

‖S‖2

)
, σi j = �2(AikA jk )(d ) − 2H(νT )νT Si j . (70)

The modeled production rate of residual kinetic energy is obtained from Eq. (71),

� = −σi jSi j = �2AikA jkSi j + 2νT ‖S‖2 = �1 + �2. (71)

Local equilibrium for e(2) implies

�2 = ε2. (72)

At locations where νT < 0, �2 is negative, and according to the local equilibrium argument Eq. (72),
this requires clipping of e(2) via �2 = ε2 = 0, inline with Sec. IV A. The local equilibrium value at
such points is thus e(2)

eq = 0.

V. RESULTS

In this section, the artificial bottleneck effect that leads to a spectral overshoot is inspected in
a posteriori LES results. The numerical methods utilized are briefly described before a detailed
comparison of various residual stress models. Then, the effect of filter width, grid resolution, and
Reynolds number arepresented.

A. Numerical methods

DNS of HIT are carried out to provide baseline results for comparison with SFR-based models.
The incompressible Navier-Stokes equation, Eq. (2), is solved using a pseudo-spectral method in
a triply periodic domain of size (2π )3. The pressure maintains a divergence-free velocity field as
a projection tensor applied to the other right-hand side terms in the Navier-Stokes equation. Time
advancement is accomplished with a second-order Adams-Bashforth scheme. The nonlinear terms
are dealiased using the 2

√
2/3 rule with phase shifting.

The body force is activated for only the first two wave shells are forced at each time step with
magnitude linearly proportional to the velocity. The coefficient of proportionality is determined at
each time step to maintain constant kinetic energy spectrum for the first two wave shells. In this case
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TABLE I. Numerical details for the DNS simulation used in this paper.

N Reλ ε ν η τη �t kmaxη

10243 395 0.113 2 × 10−4 2.89 × 10−3 0.042 2 × 10−4 1.4

the initial velocity field is chosen using a random number generator to create one instance from a
Gaussian random field ensemble satisfying the divergence-free condition. The initial velocity field
is set to have a model energy spectrum, and the simulation is allowed to run for six large-eddy
turnover times to allow for the solution to become statistically representative of fully developed
turbulence before statistics are recorded for six more turnover times. For this paper, DNS at Reλ ≈
400 (scale separation of L/η ≈ 460, where L is the integral length scale) is used with grid resolution
κmaxη = 1.4 using 10243 collocation points. Important parameters for the DNS simulation are given
in Table I.

LES are computed for HIT with the same numerical approach as above with a few modifications.
Of course, the residual stress models are activated for LES according to the equations laid out in
Sec. IV. Moreover, the nonlinear terms both in the momentum and subgrid equations are dealiased
using the 2/3 rule (instead of phase-shift dealiasing). The LES averages are computed over ∼20
large-eddy turnover times. The DNS results are filtered with a Gaussian kernel for direct comparison
with the LES results from each model.

B. The artificial bottleneck effect at Reλ = 400 and �/η = 24

First, an a posteriori comparison of the artificial bottleneck effect in SFR-based dynamic LES
models in forced isotropic turbulence at Reλ ≈ 400 is carried out with a filter width �/η = 24,
which is at the small-scale end of the inertial range identified in the a priori tests [59]. The SFR-
based models tested are (i) equilibrium eddy viscosity (eq.dvisc), Eq. (56), (ii) equilibrium mixed
model (eq.dmix), Eq. (70), and (iii) nonequilibrium eddy viscosity (noneq.dvisc), Eqs. (48) and (57).
Using a numerical resolution of κmax� = 3.0 for the LES models, Fig. 3(a) compares the energy
spectra from DNS, Gaussian-filtered DNS, and the SFR-based models introduced in this paper. The

FIG. 3. Energy spectra for a posteriori testing: (a) using three different models with � = 24η at κmax� =
3.0, and (b) using the equilibrium eddy viscosity model with different model coefficient. A Kolmogorov spec-
trum E (κ ) = 1.6 ε

2
3 κ− 5

3 is shown for reference in both panels. The inset in panel (a) shows the premultiplied
spectrum on a log-linear plot.
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models shown here are all SFR-based dynamic models, meaning that the model coefficients are
determined from an identical dynamic procedure using SFR instead of the well known Germano
dynamic procedure [25]. It is emphasized that the SFR-based dynamic procedure provides a pen-
and-paper derivation of the dynamic coefficient and does not require a test filter. Additionally, the
coefficients are calculated locally without requiring averaging along homogeneous directions. The
difference in computational cost for these models is briefly explored in the Appendix.

Figure 3(a) demonstrates that the SFR-based dynamic models produce LES spectra that roll off at
the correct wave number, indicating the success of the dynamic procedure in determining an accurate
model coefficient for each model. To further emphasize the success of the SFR-based dynamic
procedure in this regard, Fig. 3(b) shows that changing the SFR-based dynamic eddy viscosity
coefficient 3/4 in Eq. (53) to (0.5 × 3/4 = 3/8) and (2 × 3/4 = 3/2), which shifts the roll-off to the
right and left. That is, increasing the coefficient above the SFR-based value introduces too much dis-
sipation into the LES model and causes the spectrum to roll off at a lower wave number. On the other
hand, decreasing the coefficient below its SFR-based value reduces the dissipation and causes the
roll-off of the spectrum to occur at a higher wave number. This demonstrates that the SFR-based dy-
namic procedure produces a coefficient that provides an accurate amount of dissipation to the LES.

The inset of Fig. 3(a) shows the premultiplied energy spectra of the SFR models. The observed
spectral overshoot produced by the SFR-based eddy viscosity models is with a wave number and
amplitude similar to that produced by the dynamic Smagorinsky model based on Germano-Lilly
dynamic procedure [25,26] in the inset of Fig. 1(b). It is thus evident that the artificial bottleneck
effect is not caused by a deficiency in the dynamic procedure for the model coefficient, nor by
under- or over-prediction of the energy dissipation rate. The introduction of history/memory effects
through the residual kinetic energy tranport equation does not impact the artificial bottleneck effect,
as observed in the results of the nonequilibrium dynamic eddy viscosity model. However, the height
of the spectral bump is reduced in the dynamic mixed model results compared to the eddy viscosity
models. The observation suggests that the introduction of a nonlinear gradient component in the
residual stress closure improves the interaction between the residual stress model and the resolved
energy cascade in LES.

The nonlinear gradient component, �2AikA jk , of the dynamic mixed model, Eq. (64), represents
the direct calculation of the resolved single-scale component of the energy cascade in Eq. (41),
�1 = �s1 + �ω1. To understand the relative success of the dynamic mixed model in reducing the
magnitude of the spectral overshoot, the SFR-based LES models are compared with filtered DNS in
terms of the following two quantities:

s∗ = −
√

6Si jS jkSki

(SmnSmn)3/2
= �s1

|�s1,max| , ω∗ =
√

6�iSi j� j

2�k�k (SmnSmn)1/2
= �ω1

|�ω1,max| . (73)

The s∗ parameter quantifies the efficiency of the single-scale strain-rate self-amplification contri-
bution to the energy cascade, −1 � s∗ � 1, based on the ratio of the three strain-rate eigenvalues.
The most efficient flow structure, s∗ = 1, is given by two equal positive (stretching) eigenvalues and
one negative (compressing) eigenvalue with twice the magnitude. Note that s∗ is equivalent to the
Lund-Rogers parameter [83] applied to the resolved strain-rate tensor. The ω∗ parameter indicates
the efficiency of the single-scale vorticity stretching contribution to the cascade, −1 � ω∗ � 1,
based on the alignment of the vorticity vector with the three strain-rate eigenvectors (and their
associated eigenvalues). The most efficient flow structure for the vorticity stretching, ω∗ = 1, is
given by parallel alignment of the vorticity vector with the strain-rate eigenvector corresponding
to one positive eigenvalue, with the other two strain-rate eigenvalues being equal with half the
magnitude of the first. Further discussion of cascade efficiencies can be found in Refs. [6,13].

Figure 4 compares the PDFs of s∗ and ω∗ produced by the SFR-based LES models compared with
DNS and filtered DNS results. The DNS and filtered DNS provide qualitatively similar distributions
of s∗ and ω∗ because the same restricted Euler dynamics (coming from nonlinear self-advection)
are active in both cases. Turbulence tends to favor positive values (forward cascade) for both, but
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FIG. 4. PDF of ω� and s�, Eq. (73), for LES with three different models compared with DNS and filtered
DNS.

the vortex stretching process tends to favor less efficient flow topologies (based on alignment of
vorticity with the strain-rate eigenvectors). However, there are noticeable quantitative differences in
the PDFs, particular for ω∗. As one might expect, the eddy viscosity models (both equilibrium and
nonequilibrium) produce flow topology statistics similar to those seen in DNS. The interaction of
an eddy viscosity in LES with the resolved energy cascade is evidently similar to the interaction of
the cascade with viscous dissipation in DNS, even if the LES models do allow for spatial variation
of the viscosity. In contrast, the mixed model is in better agreement with filtered DNS distributions
of s∗ and ω∗, presumably due to its ability to more accurately represent the tensorial structure of
the residual stress. Thus, the reduction in the spectral overshoot by the dynamic mixed model in
Fig. 3(a) can be explained by its ability to more faithfully represent the structural details of the
energy cascade, especially near the resolution scale �.

Table II provides a quantitative comparison of the models in terms of common statistics of
interest for homogeneous isotropic turbulence (HIT). In addition to the SFR-based models, a class of
traditional LES models are tested and shown alongside the newly proposed models for comparison:
(i) the constant Smagorinsky model (Smag), (ii) the dynamic Smagorinsky model with clipping
(dSmag.clip), and (iii) the dynamic Smagorinsky model with global averaging (dSmag.avg). The
coefficient for the static Smagorinsky model (Smag) is tuned to match the wave number at which
the filtered DNS spectra rolls off, to simulate a “perfect” dynamic Smagorinsky model (with global
coefficient) while the coefficient for dSmag.clip and dSmag.avg are obtained through a dynamic pro-
cedure [25,26]. Also included are the SFR-based models with globally averaged coefficients [59].

The first column of the table compares the normalized resolved dissipation rate, 〈Si jSi j〉τ 2
η , which

is over-predicted by all the eddy viscosity models compared to the filtered DNS results due to the
artificial bottleneck effect. Given that the resolved dissipation rate can be calculated by integrating
the spectrum weighted by κ2, the nature of these over-predictions can be inferred from the energy
spectra. As expected, the mixed model provides a better prediction. The next two columns compare
the LES prediction of resolved strain-rate self-amplification (�s1) and resolved vortex stretching
(�ω1), as defined in Eq. (41), as a fraction of the total energy cascade rate. All the eddy viscosity
models show a significant over-prediction of these quantities, with a larger percent error compared
with the aforementioned 〈Si jSi j〉 over-prediction, attributable to the fact that the energy cascade rates
are a triple product of velocity gradients. Together, these first three columns demonstrate that the
eddy viscosity models tend to over-predict the magnitude of velocity gradients in the resolved field
despite their accurate prediction of the roll-off wave number, Fig. 3. This observation underscores
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TABLE II. Statistical comparison of LES models with Gaussian-filtered DNS at � = 24η with 1283

resolution (κmax� = 3.0). The abbreviation equation refers to the local equilibrium assumption, Eq. (49).

Model 〈Si jSi j〉τ 2
η 〈�s1〉/〈�〉 〈�ω1〉/〈�〉 〈

A3
11

〉
/
〈
A2

11

〉3/2 〈
A4

11

〉
/
〈
A2

11

〉2 〈
A4

12

〉
/
〈
A2

12

〉2
Unfiltered DNS (DNS) 0.5 – – −0.59 8.1 12.7
Filtered DNS (fDNS) 1.7 × 10−2 0.37 0.12 −0.42 3.9 4.7
SFR Eq. mixed (eq.dmix) 1.8 × 10−2 0.41 0.14 −0.39 3.8 4.6
SFR mixed (dmix.avg) [59] 1.9 × 10−2 0.45 0.15 −0.41 4.0 4.9
SFR Eq. eddy viscosity

(eq.dvisc)
2.2 × 10−2 0.53 0.18 −0.41 3.6 4.5

SFR eddy viscosity
(dvisc.avg) [59]

1.9 × 10−2 0.50 0.17 −0.46 4.8 6.8

SFR non-eq.eddy viscosity
(noneq.dvisc)

2.3 × 10−2 0.58 0.19 −0.40 3.7 4.8

Constant Smagorinsky
(Smag)

2.3 × 10−2 0.58 0.19 −0.44 3.6 5.0

Dynamic Smagorinsky
(dSmag.clip)

2.2 × 10−2 0.59 0.20 −0.44 3.8 4.7

Dynamic Smagorinsky
(dSmag.avg)

2.2 × 10−2 0.58 0.19 −0.43 3.7 5.1

some of the consequences of the artificial bottleneck effect in addition to the ∼10% over-prediction
of resolved kinetic energy for this case.

The final three columns compare LES predictions for skewness and flatness values of longitu-
dinal and transverse filtered velocity gradient components. Recall that the skewness and flatness
of a Gaussian random variable are 0 and 3, respectively, and the skewness of tranverse velocity
gradients is zero by symmetry arguments, i.e., 〈A3

12〉 = 0. The filtering at � = 24η significantly
reduces the non-Gaussianity of the DNS results (here, at Reλ ≈ 400). Most LES models generally
produce realistic skewness and flatness values for the filtered velocity gradient, except for the eddy
viscosity model with globally averaged coefficient (dvisc.avg) [59]. This suggests that the spatial
variation of the eddy viscosity is important for reproducing the correct amount of intermittency
in the resolved scales. The development of SFR-based dynamic model stabilization in Sec. IV to
enable local determination of the eddy viscosity shows important advantages in this respect.

C. Effect of filter width

The a posteriori LES results in the previous section were shown at a filter width of � = 24η

with a grid resolution of κmax� = 3.0 for isotropic turbulence at Reλ = 400. To further test the
SFR-based models, results at different filter scales are discussed in this section. Figure 5 shows the
energy spectra comparison at κmax� = 3.0 for the equilibrium eddy viscosity and mixed models at
different filter scales, �, compared with the DNS energy spectrum filtered at �. The nonequilibrium
eddy viscosity model was also compared in this way (not shown), and its results were very similar to
the equilibrium eddy viscosity model shown here. As expected, the SFR-based models successfully
capture the change in roll-off wave number as the filter scale is varied. The spectral overshoot
is observed for the eddy viscosity results in Fig. 5(a) for � = 12η and less so for � = 48η. The
mixed model reduces the magnitude of the spectral overshoot for all filter widths. This is explored
quantitatively in Table III.

First, the resolved dissipation rate, 〈Si jSi j〉, is over-predicted by all models tested at all filter
widths shown in Table III. The middle column for � = 24η is the same data from Table II,
renormalized in terms of the inertial range timescale τ� = ε−1/3�2/3. The model predictions gen-
erally improve with decreasing filter width, except for the constant Smagorinsky model (Smag)
where the coefficient was tuned to match the spectrum roll off. The improvement in the models,
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FIG. 5. Energy spectra for a posteriori testing at κmax� = 3.0: (a) using equilibrium eddy viscosity, and
(b) using equilibrium mixed model. The dashed lines represent the Gaussian-filtered DNS. A Kolmogorov
spectrum E (κ ) = 1.6 ε

2
3 κ− 5

3 is shown for reference in both panels.

particularly for � = 12η, appears to stem from potential cancellation effects in the prediction of the
energy spectrum, Fig. 5. That is, the LES spectra at � = 12η show alternative over-prediction and
under-prediction compared with the filtered DNS results.

Upon closer inspection of Fig. 5, it is possible to detect a slight change in the model performance
as � becomes closer to η (and further from L) and enters the viscous range of scales. Namely, the
model results show a spectrum that falls off at a wave number that is slightly below the filtered DNS
for � = 12η. This indicates that the self-similar (inertial range) scaling assumptions used to derive
the dynamic model coefficients are less accurate if � is not sufficiently large compared to η. One
way to address this shortcoming could be to introduce scale dependence into the dynamic coefficient
calculation, which for the Germano-based filtering approach requires a second test filter [81,82]. In
the SFR formulation, this would require the use of higher-order derivatives of the velocity field (e.g.,
second derivatives of the velocity for the equilibrium eddy viscosity model).

Perhaps more so than the magnitude of velocity gradient fluctuations, the prediction of kinetic
energy is an important criteria in a posteriori testing of LES models. Of course, both the kinetic

TABLE III. Statistical comparison of SFR-based models resolved dissipation rate with Gaussian-filtered
DNS and Smagorinsky models at κmax� = 3.0 with different filter width � at Reλ = 400. Lbox is the simulation
domain box size (2π ) where L/Lbox = 0.21 (L is the integral length scale), and τ�/τη = (5.24, 8.33, 13.2) for
DNS respectively. The energy spectrum comparison for a posteriori testing is shown in Fig. 5.

� = 0.005Lbox � = 0.01Lbox � = 0.02Lbox

Filter width � = 12η � = 24η � = 48η

Model 〈Si jSi j〉τ 2
� 〈Si jSi j〉τ 2

� 〈Si jSi j〉τ 2
�

fDNS 1.22 1.14 1.13
eq.dmix 1.24 1.27 1.29
eq.dvisc 1.41 1.49 1.53
noneq.dvisc 1.51 1.59 1.63
Smag 1.54 1.53 1.48
dSmag.clip 1.46 1.54 1.58
dSmag.avg 1.46 1.51 1.55
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TABLE IV. Statistical comparison of SFR-based models kinetic energy with Gaussian-filtered DNS and
Smagorinsky models at κmax� = 3.0 with different filter width � at Reλ = 400; Lbox is the box size. The energy
spectrum comparison of both eddy viscosity and mixed models in a posteriori testing is shown in Fig. 5.

� = 0.005Lbox � = 0.01Lbox � = 0.02Lbox

Filter width � = 12η � = 24η � = 48η

Model 〈e〉 〈E〉 〈T 〉 〈e〉 〈E〉 〈T 〉 〈e〉 〈E〉 〈T 〉
fDNS 0.07 0.66 0.73 0.12 0.61 0.73 0.20 0.53 0.73
eq.dmix 0.09 0.68 0.77 0.15 0.63 0.78 0.24 0.55 0.79
eq.dvisc 0.11 0.74 0.85 0.16 0.67 0.83 0.24 0.57 0.81
noneq.dvisc 0.11 0.74 0.85 0.17 0.68 0.85 0.25 0.58 0.83
Smag – 0.73 – – 0.67 – – 0.57 –
dSmag.clip – 0.73 – – 0.68 – – 0.56 –
dSmag.avg – 0.73 – – 0.67 – – 0.56 –

energy and the resolved dissipation rate can be calculated as integrals of the energy spectrum with
different weighting, so an error in one metric may in principle show up as an error in the other.
Thus, just as the artificial spectral bump leads to an over-prediction of the resolved dissipation rate,
so also the LES models over-predict the resolved kinetic energy, 〈E〉, as seen in Table IV. For
applications, of course, it is more important for LES to accurately predict the total kinetic energy,
〈T 〉 = 〈E〉 + 〈e〉, than any filtered quantity. Therefore, Table IV shows each of these three quantities
(total, resolved, and residual kinetic energy) for the LES results compared with filtered DNS. Of
course, the total kinetic energy, 〈T 〉 = 0.73, is established by unfiltered DNS and does not depend
on the filter. The table shows that the over-prediction in resolved kinetic energy leads to a similar
over-prediction of residual kinetic energy (due to the model’s assumption of equilibrium and inertial
range scaling) and thus an over-prediction of the total kinetic energy in the flow. This is particularly
true for the eddy viscosity models, although it should be noted that Smagorinsky models make no
prediction of the residual kinetic energy unless supplemented with, e.g., a Yoshizawa model. One
benefit of SFR theory is that it naturally provides a prediction of the residual kinetic energy, even
for algebraic (equilibrium) models, e.g., Eq. (54) for the dynamic eddy viscosity model.

The over-prediction of kinetic energy in the eddy viscosity models is relatively similar at � = 12η

and � = 24η. At � = 48η, there is less over-prediction in the eddy viscosity models, which can be
attributed to a smaller magnitude of the spectral overshoot, see Fig. 5(a). At this coarsest filter
width, only about 70% of the total kinetic energy is resolved in the filtered velocity field, so the
energy cascade is less robust. This may explain why the bottleneck effect is less evident. These over-
predictions of kinetic energy may be traced, thus, to the artificial bottleneck effect seen in Fig. 3.
As expected, the mixed model shows a smaller over-prediction of kinetic energy that improves
(slightly) as the filter scale decreases.

Note that the kinetic energy over-prediction in the eddy viscosity models grows as � decreases
while the resolved dissipation rate over-prediction decreases. This is because there is cancellation of
errors at � = 12η where the bottleneck causes over-prediction of energy at lower wave numbers but
the spectrum rolls off too soon so there is under-prediction of energy at higher wave numbers, but the
energy at such high wave numbers is too low, so the cancellation of errors will not be important; see
Fig. 5. However, the cancellation of errors plays a role in the resolved dissipation rate calculated via∫ κmax

0 κ2E (κ ) dκ where the energy discrepancy at higher wave number is more influential compared
to the energy calculation.

In summary, the artificial bottleneck in LES leads to an over-prediction of the resolved turbulent
kinetic energy by ∼10% for eddy viscosity models. The resolved velocity gradient magnitudes are
over-predicted by and even greater extent, leading to more over-prediction of the residual kinetic
energy. In the end, an over-prediction of ∼15% in total kinetic energy is observed for these cases
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FIG. 6. Energy spectra for a posteriori testing using equilibrium eddy viscosity model: (a) under-resolved
LES with κmax� = 1.5, and (b) over-resolved LES with κmax� = 6.0. In (a) and (b) the dashed lines represent
the Gaussian-filtered DNS. A Kolmogorov spectrum E (κ ) = 1.6 ε

2
3 κ− 5

3 is shown for reference in both panels.

when an eddy viscosity model is used. This over-prediction descrease to ∼3% for resolved kinetic
energy and ∼6% for total kinetic energy when the dynamic mixed model is used. Given that the
LES resolution scale is usually set proportionally to the integral length scale rather than the viscous
scale, the artificial bottleneck represents a potentially important feature of LES model inaccuracies
even at high Reynolds numbers.

D. Effect of numerical resolution

Next, the numerical resolution relative to the filter width κmax� is varied for the LES models.
Figure 6 shows the energy spectra for the SFR-based equilibrium eddy viscosity model at different
κmax� for under-resolved LES (κmax� = 1.5) and over-resolved LES (κmax� = 6.0). When under-
resolved, the models continue to produce reasonable results but do not capture the roll-off of the
spectrum. The spectral overshoot is observed at all resolutions, highlighting the fact that it is a
feature of modeling errors in the residual stress, not numerical discretization errors.

The over-resolved LES simulation captures very low energy modes deep into the roll-off of the
spectrum. There is some additional error in the shape of the spectral roll-off that becomes more
apparent (compared with the Gaussian-filtered DNS) at these high wave numbers, but it is relatively
insignificant because the energy content at this region is too low. The nonequilibrium eddy viscosity
and equilibrium mixed models show an energy pile-up for the over-resolved case (κmax� = 6.0),
which can be mitigated by increasing the local averaging coefficient (i.e., the coefficient in front of
the Laplacian term) in Eqs. (48) and (70) (not shown).

When considering the effect of grid resolution at a fixed filter width, it is interesting to document
a minimum recommended resolution. For DNS, a resolution of κmaxη between 1 and 2 is generally
considered minimally sufficient for capturing the viscous energy dissipation (though perhaps not
higher-order moments of the velocity gradient). The above results suggest a grid resolution of
κmax� ≈ 3.0. To explore this further, an ideal infinite-Re spectrum can be filtered at a length scale
� = c�η and compared with the (unfiltered) DNS spectrum. The filtered ideal infinite-Re spectrum
is given as

E (κ ) = 1.6 ε
2
3 κ− 5

3 exp(−κ2�2). (74)

Figure 7 shows different filtered K41 spectrum (fk41) at different choices of filter width c�. In
terms of matching the roll-off wave number of the spectrum, the best agreement with the DNS
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FIG. 7. Filtered K41 spectrum at different filter width � = c� η. A Kolmogorov spectrum E (κ ) =
1.6 ε

2
3 κ− 5

3 is shown for reference.

occurs at c� ≈ 2. Using this result, the LES resolution of kmax� = 3.0 is comparable to a DNS
resolution of κmaxη ≈ 1.5, which is a typical value. Note that a resolution of κmax� = 3.0, when
using 2/3-rule dealiasing, translates to a grid spacing (i.e., distance between collocation points) of
�x = 0.71�. Note that our SFR-based definition of the filter scale (�) differs from the traditional
filter width (e.g. Ref. [5]) by a factor of � = √

20�, so our finding corresponds to �x = 0.16�. The
traditional filter width definition (�) is based on the width of a tophat filter with second moment
equal to that of the Gaussian filter, but SFR theory defines the filter width (�) directly based on the
second moment of the Gaussian (i.e., variance of a Gaussian PDF). At coarser grid resolutions
(relative to the filter width), numerical errors will play a significant role in determining model
performance.

E. Visualization of vortical structures

Figure 8 illustrates the out-of-plane vorticity on a 2D slice, comparing the SFR-based LES mod-
els (the equilibrium eddy viscosity model and the mixed model) against the Gaussian-filtered DNS
with a filter width � = 24η at Reλ = 400 and DNS at a lower Reynolds number (Reλ = 65). The
vorticity field has been renormalized using the inertial range timescale τ� = ε−1/3�2/3. Figure 8(b)
shows that the mixed model produces flow structures (e.g., vortex tubes) with strong qualitative
similarity to those of the filtered DNS [Fig. 8(d)]. In contrast, the eddy viscosity model produces a
significantly different flow structure containing more shear layer-like structures (i.e., vortex sheets
rather than vortex tubes). The flow structures from the eddy viscosity LES seen in Fig. 8(a) closely
resemble those observed in a lower Reynolds number DNS in Fig. 8(c) inline with the observation
in Figure 4, both of which differ substantially from the filtered DNS. The flow structures seen in
simulations using the other eddy viscosity models such as the classical dynamic Smagorinsky and
the nonequilibrium SFR-based are very similar to those in Fig. 8(a).

The shear layers produced by the eddy viscosity models are potentially associated with the
inverse cascade vortex thinning mechanism in 2D turbulence, suggesting a possible connection
between the (artificial) bottleneck effect in 3D turbulence and the inverse cascade in 2D turbulence
[13]. In combination with Fig. 4, these visualizations provide further evidence that the mixed model
is able to diminish the artificial bottleneck effect because of its more accurate representation of
flow structure and energy cascade dynamics near the filter scale. While the a priori advantages of
mixed models are well-known, these results suggest that mixed models can also provide significant
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FIG. 8. The z component of vorticity along xy plane in the HIT simulation: (a) equilibrium eddy viscosity
model with � = 24η at κmax� = 6.0, (b) equilibrium mixed model with � = 24η at κmax� = 3.0, (c) unfiltered
DNS at Reλ = 65, and (d) Gaussian-filtered DNS with � = 24η at Reλ = 400.

a posteriori advantages which should be considered, particularly as one moves to more complex
flow regimes.

F. Infinite Reynolds number simulations

At Reλ = 400, the trends in LES predictions with respect to changing the filter width may be
caused by two potential effects. First, as �/L decreases, and a larger percent of the kinetic energy is
resolved. On the other hand, as �/η decreases, viscous effects become resolved and the self-similar
(inertial range) scaling assumptions built into the dynamic procedure for the SFR-based models
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FIG. 9. Infinite Reynolds number energy spectra for a posteriori testing at κmax� = 3.0: (a) using equi-
librium eddy viscosity model and (b) using an equilibrium mixed model. A Kolmogorov spectrum, E (κ ) =
1.6 ε

2
3 κ− 5

3 is shown for the ideal infinite-Re spectrum in both panels.

become inaccurate. To distinguish between these two effects, it is useful to run the LES models
at infinite Reynolds number. While it precludes a direct comparison with (filtered) DNS, it can be
useful to test the SFR-based LES models at infinite Re (ν = 0) to check the models performance at
�/L � 1 together with �/η = ∞, in an inertial range where the flow is approximately independent
of large scale forcing and there are no viscous effects.

Figure 9 shows the comparison between the ideal infinite-Re filtered spectrum and the LES
models at different filter width �. The grid resolution in each LES case is set to κmax� = 3.0.
The spectral bump stemming from an artificial bottleneck effect is similar to the finite-Re case
and is especially noticeable in the eddy viscosity models. The mixed model continues to show a
significantly reduced bottle neck effect. This confirms that the molecular viscosity (ν) is not involved
in causing the observed spectral bump. The spectral bump shifts to larger wave numbers when the
filter scale is reduced, suggesting that it happens at particular wave numbers normalized by the filter
width, κ�. Comparing Fig. 9 with Fig. 5, it may be observed that the roll-off wave number is slightly
over-predicted by the LES models when run at infinite Reynolds number. This shows that the results
in Fig. 5 are slightly influenced by the viscosity, most notably for � = 12η. The SFR-based dynamic
coefficients appear to be slightly under-dissipative based on the infinite Re results. The authors have
observed that the dynamic Smagorinsky model also shows a similar under-dissipative behavior (data
not shown).

Furthermore, a statistical comparison of the normalized resolved dissipation rate 〈Si jSi j〉τ 2
� at

infinite Re is shown in Table V. Table V demonstrates that the resolved dissipation rate over-
prediction decreases as � decreases in line with the finite Re results in Fig. 5 and Table III. The
model predictions generally improve with decreasing filter width, though this trend is not as strong
as in the finite Reynolds number case in Table III which had the benefit of error cancellation effects
at different wave numbers. In the comparison between the tuned Smagorinsky model and the eddy
viscosity models, the Smagorinsky model gives more accurate predictions across all scales. This
advantage stems from the fact that the coefficient of the Smagorinsky model has been meticulously
tuned, through trial and error, to match the wave number at which the ideal filtered spectrum rolls off.
Conversely, the dynamic eddy viscosity models display a slight tendency towards under-dissipation
across all filter scales. This disparity underscores the effectiveness of the finely-tuned coefficient in
the Smagorinsky model, and a slight under-prediction of the coefficient by the SFR-based dynamic
procedure.
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TABLE V. Statistical comparison of SFR-based models resolved dissipation rate 〈Si jSi j〉τ 2
� with the ideal

infinite-Re filtered spectrum and Smagorinsky models at κmax� = 3.0 with different filter width � at Reλ = ∞;
Lbox is the box size.

Filter width � = 2.5e-3Lbox � = 0.005Lbox � = 0.01Lbox � = 0.02Lbox

Model 〈Si jSi j〉τ 2
� 〈Si jSi j〉τ 2

� 〈Si jSi j〉τ 2
� 〈Si jSi j〉τ 2

�

fDNS 1.08 1.08 1.07 1.05
eq.dmix 1.25 1.27 1.29 1.30
eq.dvisc 1.51 1.53 1.55 1.55
noneq.dvisc 1.49 1.53 1.57 1.64
Smag 1.34 1.37 1.39 1.48
dSmag.clip 1.56 1.58 1.58 1.57
dSmag.avg 1.53 1.55 1.55 1.55

VI. CONCLUSIONS

This paper investigates the artificial bottleneck effect in large-eddy simulations (LES) of turbu-
lent flows. In Navier-Stokes turbulence, the bottleneck effect is a well-known physical phenomenon
related to the interaction of the kinetic energy cascade and viscous dissipation, leading to a pile up
of energy at scales slightly larger than the Kolmogorov scale. The same effect is observed to occur
in LES when an eddy viscosity model is used, leading to ∼10% error in resolved kinetic energy and
15% error in total kinetic energy for the cases analyzed.

Stokes Flow Regularization (SFR), a physics-inspired coarsening technique originally introduced
to analyze the kinetic energy cascade [13,59,75], is herein extended to incorporate detailed consid-
erations related to the residual kinetic energy, leading to the development of stabilization techniques
that emerge directly from the SFR theory and allow for the local determination of dynamic coeffi-
cients. This also leads to the introduction of a one-equation model based on residual kinetic energy
transport using SFR theory, which captures some backscatter and other nonequilibrium effects. The
present extention of SFR theory for LES modeling facilitates a fair comparison between different
model types with respect to the artificial bottleneck effect and over-prediction of kinetic energy.

A posteriori tests of eddy viscosity and mixed models in homogeneous isotropic turbulence
at Reλ = 400 indicate that the mixed model significantly reduces the artificial bottleneck effect
by providing an improved representation of grid-scale topology and resolved energy cascade
efficiencies compared to the eddy viscosity models. The study also examined the effects of filter
width, numerical resolution, and Reynolds number. Tests at infinite Reynolds number suggest that
the bottleneck effect arises from modeling errors in the residual stress tensor rather than viscous
effects or numerical discretization errors.

Even in the simple case of isotropic turbulence, the interaction between the resolved energy
cascade and residual stress modeling errors is not straightforward. This type of effect is expected
to be more important for more complex flows, where errors in closure approximations play an even
more central role in the accuracy of the LES prediction. This motivates further research expanding
SFR theory to include boundary effects and wall models, particle-laden and multiphase flows, and
density-stratified flows, for example.
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TABLE VI. Computational cost comparison of LES models normalized by the
static Smagorinsky at � = 24η with 1283 resolution (κmax� = 3.0).

Model 1000�t

SFR Eq. mixed (eq.dmix) 3.8
SFR Eq. eddy viscosity (eq.dvisc) 1.2
SFR non-eq.eddy viscosity (noneq.dvisc) 2.2
Constant Smagorinsky (Smag) 1.0
Dynamic Smagorinsky (dSmag.clip) 3.1

APPENDIX: A COMPARISON OF COMPUTATIONAL COST FOR SFR-BASED
AND TRADITIONAL LES MODELS

We conducted a computational cost analysis comparing SFR models to traditional LES models
like the dynamic Smagorinsky model and reported the time required to run 1000�t in Table VI.
The time is normalized by the the time needed to calculate LES using the constant Smagorinsky
model, which serves as the fastest model for reference. As expected, the test filter calculation in
the dynamic Smagorinsky model is more computationally expensive than our SFR eddy viscosity
models. However, the mixed model proves to be the most expensive due to the additional tensor
contractions of second derivatives. It is important to note that this comparison is specific to the
pseudo-spectral method used, and the relative computational cost may be quite different for finite-
difference, finite-volume, and finite-element codes. Pseudo-spectral methods typically incur lower
computational costs for the enforcement of the zero-divergence condition on the velocity field while
calculating more accurate spatial derivatives compared to physical-domain solvers. However, the
calculation of nonlinear products in a pseudo-spectral method requires a fast Fourier transform
and dealiasing, which will generally require additional computational cost compared with physical-
domain methods.
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