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Fast and accurate predictions of turbulent flows are of great importance in the sci-
ence and engineering field. In this paper, we investigate the implicit U-Net enhanced
Fourier neural operator (IUFNO) in the stable prediction of long-time dynamics of
three-dimensional (3D) turbulent channel flows. The trained IUFNO models are tested
in the large-eddy simulations (LES) at coarse grids for three friction Reynolds numbers:
Reτ ≈ 180, 395, and 590. The adopted near-wall mesh grids are tangibly coarser than
the general requirements for wall-resolved LES. Compared to the original Fourier neural
operator (FNO), the implicit FNO (IFNO), and U-Net enhanced FNO (UFNO), the IUFNO
model has a much better long-term predictive ability. The numerical experiments show that
the IUFNO framework outperforms the traditional dynamic Smagorinsky model and the
wall-adapted local eddy-viscosity model in the predictions of a variety of flow statistics and
structures, including the mean and fluctuating velocities, the probability density functions
(PDFs) and joint PDF of velocity fluctuations, the Reynolds stress profile, the kinetic
energy spectrum, and the Q-criterion (vortex structures). Meanwhile, the trained IUFNO
models are computationally much faster than the traditional LES models. Thus, the IUFNO
model is a promising approach for the fast prediction of wall-bounded turbulent flow.

DOI: 10.1103/PhysRevFluids.9.084604

I. INTRODUCTION

Turbulent flows are ubiquitous in meteorology, aerospace engineering, air pollution control,
geosciences, and industrial activities [1]. Among many flow prediction methods, computational
fluid dynamics (CFD) is an important tool as it can provide useful estimations of the flow field,
especially when experimental measurements are challenging [2]. Even so, due to the large range
of motion scales involved, the direct numerical simulation (DNS) of turbulence is still impractical
at high Reynolds numbers [3–5]. As a result, coarse-grid simulations are often adopted includ-
ing the Reynolds-averaged Navier-Stokes (RANS) method and the large-eddy simulation (LES).
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The RANS method only solves the mean flow field and has been widely adopted for industrial
applications [6–11]. On the other hand, LES can directly resolve the major energy-containing
large-scale motions, and hence it can predict the flow structures better [12–21]. However, the
computation cost for LES is higher than that for RANS, and it is even close to the computation
cost for DNS in the case of wall-resolved LES [5].

In the recent decade, machine-learning-based flow prediction methods have been extensively
proposed due to the fast development of modern computers and the accumulation of high-fidelity
data [22–27]. These attempts include, but are not limited to, learning the important aerodynamic
forces in the flow field, such as the lifting and dragging force coefficient [28–30], reconstructing
part of the governing equations, such as the modeling of the RANS and LES closure terms [31–45],
wall modeling [46,47], inferring the missing information in the case of measurement constraints or
flow-field damage [48–51], flow-field super-resolution [52,53], and directly predicting the evolution
of the flow field [54–69]. Among these applications, directly predicting the temporal evolution
of the flow field has attracted increasing attention recently, since the trained model does not
require us to solve the Navier-Stokes equations while giving a fast evaluation of the detailed flow
information. The adopted methods mainly include the recursive neural network (RNN) and long
short term memory (LSTM) -based frameworks [60–63,70–72], physics-informed neural networks
(PINNs) -based methods [73–75], and neural operator-based methods [54,56–58,76]. For example,
Bukka et al. combined the proper orthogonal decomposition (POD) and deep learning approach
to predict the flow past a cylinder [60]. Han et al. conducted a series of studies using the con-
volutional neural network (CNN) and the LSTM-based framework in the predictions of flow-field
and fluid-solid interactions [70–72]. Raissi et al. developed a PINN-based framework to predict
the solutions of general nonlinear partial differential equations [73]. In the two-dimensional (2D)
Rayleigh-Bénard convection problem, Wang et al. developed a turbulent flow network (TF-Net)
based on the specialized U-Net with incorporated physical constraints [74].

While many neural networks (NNs) are effective at approximating the mappings between
finite-dimensional Euclidean spaces for a given data set, these NN-based models are difficult
to generalize to different flow conditions or boundary conditions [54,73]. In this considera-
tion, Li et al. proposed a novel Fourier neural operator (FNO) framework that can efficiently
learn the mappings between the high-dimensional features in Fourier space, and it enables
reconstructing the information in infinite-dimensional spaces [54]. In numerical tests, the pro-
posed FNO model achieves outstanding accuracy in the prediction of 2D turbulence. Since
Li et al., many extensions and applications of FNO have emerged [55–58,76–89]. Lehmann
et al. applied the FNO in the prediction of the propagation of seismic waves [82]. To
improve the prediction accuracy of FNO for 2D turbulence at high Reynolds numbers,
Peng et al. introduced the attention mechanism into the FNO framework, resulting in better
statistical properties and instantaneous structures of the flow field [57]. Wen et al. developed a
U-Net enhanced FNO (UFNO) to solve the complex gas-liquid multiphase problems with improved
accuracy compared to the original FNO and the CNN frameworks [83]. You et al. proposed an
implicit Fourier neural operator (IFNO) [85], which can greatly reduce the number of trainable
parameters and memory cost compared to the multilayer structure of the FNO [81].

Even though many NN-based flow prediction methods have been proposed, we should note that
most of these methods are developed for laminar flows or 2D turbulent problems. In comparison,
the NN-based predictions for 3D turbulence are investigated to a much lesser extent. The nonlinear
interactions in 3D turbulence are fundamentally more complex than 2D turbulence. Consequently,
modeling 3D turbulence is more challenging, considering the increased model complexity, memory
usage, and the number of NN parameters [76]. In the prediction of 3D homogeneous isotropic
turbulence and scalar turbulence, Mohan et al. proposed two reduced models based on the
convolutional generative adversarial network (C-GAN) and the compressed convolutional long-
short-term-memory (CC-LSTM) network [61,62]. The reconstructed statistics are close to the DNS
results. Peng et al. proposed a linear attention mechanism-based FNO (LAFNO) to predict the
3D homogeneous isotropic turbulence and turbulent mixing layer with improved accuracy and
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efficiency [58]. Recently, to enable the modeling of 3D turbulence at high Reynolds numbers, Li
et al. have trained the FNO and implicit U-Net enhanced FNO (IUFNO) using the coarse-grid
filtered DNS (fDNS) data of 3D isotropic turbulence and a turbulent mixing layer [76,81]. In their
implementation, the obtained NN model can be viewed as a surrogate model for LES, and it can
predict the long-term dynamics of 3D turbulence with adequate accuracy and stability [81]. While
these NN models are certainly useful in the prediction of 3D turbulence, most of them are limited
to the unbounded flow situations (i.e., in the absence of a solid wall).

For wall-bounded flows, Nakamura et al. combined a 3D CNN autoencoder (CNN-AE) and a
LSTM network to predict the 3D turbulent channel flow [63]. The model is tested at low friction
Reynolds number (Reτ ≈ 110), and the predicted statistics agree with the DNS results. Using
the PINN framework, Jin et al. developed Navier-Stokes flow nets (NSFnets) [75], which can be
applied to turbulent channel flows. In their work, the PINN-based solutions can be obtained in small
subdomains, given the initial and boundary conditions of the subdomain. To date, developing a
NN model to predict all scales of turbulence (i.e., a surrogate model for DNS) for wall-bound 3D
turbulence at moderately high Reynolds numbers is still challenging due to the potentially huge
number of NN parameters. Hence, we aim to predict the dominant energy-containing scales, i.e.,
constructing a surrogate model for LES of wall-bounded 3D turbulent flow. In the current work, the
FNO-based LES strategies are explored and tested for 3D turbulent channel flows at three friction
Reynolds numbers, Reτ ≈ 180, Reτ ≈ 395, and Reτ ≈ 590. To the best of our knowledge, this is the
first attempt to construct surrogate LES models for wall-bounded 3D turbulent flows at moderately
high Reynolds numbers. As will be seen, the present model is very promising compared to the
traditional LES models.

The rest of the paper is organized as follows. The governing equations of incompressible
turbulence and traditional LES are introduced in Sec. II, followed by a brief discussion on the
solution strategies for the LES equations and their respective advantages and shortcomings. The
FNO and IUFNO frameworks are introduced in Sec. III. In Sec. IV, the performances of the FNO
and IUFNO frameworks are evaluated in the LESs of turbulent channel flows at different friction
Reynolds numbers. Finally, a brief summary of the paper and some future perspectives are given in
Sec. V.

II. GOVERNING EQUATIONS OF INCOMPRESSIBLE TURBULENCE
AND THE LARGE-EDDY SIMULATION

The governing equations of incompressible turbulence are first introduced in this section, fol-
lowed by a brief description of the traditional LES strategy and some classical LES models.

For an incompressible Newtonian fluid, the mass and momentum conservation are governed by
the 3D Navier-Stokes (NS) equations, namely [90,91]

∂ui

∂xi
= 0, (1)

∂ui

∂t
+ ∂uiu j

∂x j
= − ∂ p

∂xi
+ ν

∂2ui

∂x j∂x j
+ Fi, (2)

where ui is the ith velocity component, ν is the kinematic viscosity, p is the pressure divided by the
constant density ρ, and Fi accounts for any external forcing. Throughout this paper, the summation
convention is used unless otherwise specified. For wall-bounded turbulence, the friction Reynolds
number is defined as

Reτ = uτ δν

ν
, (3)

where δν = ν/uτ is the viscous lengthscale, and uτ = √
τw/ρ is the wall-shear velocity. Here the

wall-shear stress is calculated as τw = μ∂〈u〉/∂y at the wall (y = 0), with 〈·〉 denoting a spatial
average over the homogeneous streamwise and spanwise directions.
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Even though the NS equations were discovered more than a century ago, seeking the full-scale
solutions of these equations using DNS is still impractical at high Reynolds numbers [1,3–5].
Unlike DNS, LES only solves the major energy-containing large-scale motions using a coarse grid,
leaving the subgrid motions handled by the subgrid scale (SGS) models [12–17]. The governing
equations for LES are obtained through a filtering operation as follows:

f (x) =
∫

D
f (x − r)G(r, x; �)dr, (4)

where f can be any physical quantity of interest, G is the filter kernel, � is the filter width, and D is
the physical domain. Applying Eq. (4) to Eqs. (1) and (2) yields [3,15]

∂ui

∂xi
= 0, (5)

∂ui

∂t
+ ∂uiu j

∂x j
= − ∂ p

∂xi
− ∂τi j

∂x j
+ ν

∂2ui

∂x j∂x j
+ F i, (6)

where the unclosed SGS stress τi j is defined by

τi j = uiu j − uiu j, (7)

and it represents the nonlinear interactions between the resolved and subgrid motions. Apparently,
to solve the LES equations, the SGS stress must be modeled in terms of the resolved variables.

A very well-known SGS model is the Smagorinsky model (SM) [12], which can be written as

τA
i j = τi j − δi j

3
τkk = −2C2

Smag�
2|S|Si j, (8)

with � being the filter width and Si j the filtered strain rate. |S| =
√

2Si jSi j is the characteristic
filtered strain rate. The classical value for the Smagorinsky coefficient is CSmag = 0.16, which can
be determined through theoretical arguments for isotropic turbulence [1,12,13].

The Smagorinsky model is known to be overdissipative in the nonturbulent regime, and it should
be attenuated near walls [1]. To resolve this issue, a dynamic version of the model, the dynamic
Smagorinsky model (DSM), has been proposed [17]. In the DSM, an appropriate local value of
the Smagorinsky coefficient is determined using the Germano identity [1,3,15–17,92]. Through a
least-squares method, the coefficient C2

Smag can be calculated as

C2
Smag = 〈Li jMi j〉

〈Mkl Mkl〉 , (9)

where Li j = ũiu j − ũĩu j, αi j = −2�
2|S|Si j, βi j = −2�̃

2 |̃S|̃Si j, and Mi j = βi j − α̃i j . Here the
overbar denotes the filtering at scale �, and a tilde denotes a coarser filtering (�̃ = 2�).

For wall-bounded turbulent flows, another widely used model is the wall-adapting local eddy-
viscosity (WALE) model [93], which can recover well the near-wall scaling without any dynamic
procedure. The WALE model can be written as

τA
i j = τi j − δi j

3
τkk = 2νt Si j, (10)

where

νt = (Cw�)2

(
Sd

i jSd
i j

)3/2

(Si jSi j )5/2 + (
Sd

i jSd
i j

)5/4 . (11)

Here, Cw = 0.5, Sd
i jSd

i j = 1
6 (S2S2 + 
2
2) + 2

3 S2
2 + 2IVS
, where S2 = Si jSi j , 
2 = 
i j
i j,

and IVS
 = SikSk j
 jl
li.
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FIG. 1. The configurations of (a) Fourier neural operator (FNO), and (b) implicit U-Net enhanced Fourier
neural operator (IUFNO).

More detailed derivations of these models can be found in the literature and are not reproduced
[17,40,93,94]. In the current work, both the DSM and WALE models will be tested in the LES of
turbulent channel flows.

III. THE FOURIER NEURAL OPERATOR AND THE IMPLICIT U-NET
ENHANCED FOURIER NEURAL OPERATOR

While many NN-based methods focus on reconstructing the nonlinear mappings of a flow
field in the physical domain, the FNO framework learns the mappings of the high-dimensional
data in the frequency domain. In this case, the nonlinear operators can be approximated by the
learned relationships between the Fourier coefficients. More importantly, FNO can truncate the
less important high-frequency modes and only evolve the dominant large-scale modes [76]. In this
section, the FNO and IUFNO are introduced.

A. The Fourier neural operator

Given a finite set of input-output pairs, the FNO aims to map between two infinite-dimensional
spaces. Denote D ⊂ Rd as a bounded, open set, and A = A(D;Rda ) and U = U (D;Rdu ) as separa-
ble Banach spaces of function taking values in Rda and Rdu , respectively [95]. The construction of a
mapping, parametrized by θ ∈ �, allows the FNO to learn an approximation of A → U . The FNO
architecture is shown in Fig. 1(a), and is described as follows:

(1) The input variables a(x), being the known states in the current work, are projected to a
higher-dimensional representation v(x) through the transformation P parametrized by a shallow
fully connected neural network.
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(2) The higher-dimensional variables v(x), which take values in Rdv , are updated between the
Fourier layers by

vm+1(x) = σ (W vm(x) + (K(a; φ)vm)(x)), ∀x ∈ D, (12)

where m denotes the mth Fourier layer, K : A × �K → L(U (D;Rdv ),U (D;Rdv )) maps to bounded
linear operators on U (D;Rdv ) and is parametrized by φ ∈ �K, W : Rdv → Rdv is a linear transfor-
mation, and σ : R → R is a nonlinear local activation function.

(3) The output function u ∈ U is obtained by u(x) = Q(vm(x)), where Q : Rdv → Rdu is the
projection of vm and it is parametrized by a fully connected layer [54].

By letting F and F−1 denote the Fourier transform and its inverse transform of a function f :
D → Rdv , respectively, and substituting the kernel integral operator in Eq. (12) with a convolution
operator defined in Fourier space, the Fourier integral operator can be written as

(K(φ)vm)(x) = F−1(Rφ · (Fvm))(x), ∀x ∈ D, (13)

where Rφ is the Fourier transform of a periodic function K : D̄ → Rdv×dv parametrized by φ ∈ �K.
The frequency mode k ∈ Zd . The finite-dimensional parametrization is obtained by truncating the
Fourier series at a maximum number of modes kmax = |Zkmax | =| {k ∈ Zd : |k j | � kmax, j , for j =
1, . . . , d} |. F (vm) ∈ Cn×dv can be obtained by discretizing domain D with n ∈ N points, where
vm ∈ Rn×dv [54]. By simply truncating the higher modes, F (vm) ∈ Ckmax×dv can be obtained, where
C is the complex space. Rφ is parametrized as a complex-valued-tensor (kmax × dv × dv ) containing
a collection of truncated Fourier modes Rφ ∈ Ckmax×dv×dv . By multiplying Rφ and F (vm), we have

(Rφ · (Fvm))k,l =
dv∑

j=1

Rφk,l, j (Fvm)k, j, k = 1, . . . , kmax, j = 1, . . . , dv. (14)

B. The implicit U-Net enhanced Fourier neural operator

The U-Net structure is a CNN-based network featured by the symmetrical encoder and decoder
structure [96]. By incorporating skip connections, the U-Net enables direct transmission of feature
maps from the encoder to the decoder. Since its appearance, U-Net has attracted increasing attention
due to its ability to access low-level information and high-level features simultaneously [56,96,97].
To better utilize the small-scale information, Li et al. have incorporated a U-Net structure to the FNO
framework [81]. Meanwhile, the consecutive Fourier layers have also been replaced by an implicit
looping Fourier layer, leading to the IUFNO. Consequently, the number of trainable parameters and
memory cost can be effectively reduced while the accuracy is still maintained [81]. The architecture
of IUFNO is shown in Fig. 1(b). The lifting layer P and final projecting layers Q are the same
as those in the FNO. The iterative updating procedure of v(x) in the IUFNO framework can be
written as

v(x, (l + 1)dT ) = LIUFNO(v(x, ldT )) := v(x, ldT ) + dT σ (c(x, ldT )), ∀x ∈ D, (15)

where dT denotes the implicit iteration steps for the Fourier layer, l stands for the lth iteration [81],
and

c(x, ldT ) := W v(x, ldT ) + F−1(Rφ · (Fv(x, ldT )))(x) + U∗s(x, ldT ), ∀x ∈ D, (16)

with

s(x, ldT ) := v(x, ldT ) − F−1(Rφ · (Fv(x, ldT )))(x), ∀x ∈ D. (17)

As can be seen, c(x, ldT ) ∈ Rdv contains both the large-scale information of the flow field learned
by the Fourier layer, and the small-scale information U∗s(x, ldT ) learned by the U-Net, which is
denoted by U∗. Here, s(x, ldT ) ∈ Rdv is obtained by subtracting the large-scale information from
the full-field information v(x, ldT ) as given by Eq. (17).

084604-6



PREDICTION OF TURBULENT CHANNEL FLOW USING …

TABLE I. Parameters for the direct numerical simulation of turbulent channel flow.

Reso. Reτ Lx × Ly × Lz ν �X + �Y +
w �Z+

192 × 129 × 64 180 4π × 2 × 4π/3 1/4200 11.6 0.98 11.6
256 × 193 × 128 395 4π × 2 × 4π/3 1/10500 19.1 1.4 12.8
384 × 257 × 192 590 4π × 2 × 4π/3 1/16800 19.3 1.6 12.9

IV. NUMERICAL TESTS IN THREE-DIMENSIONAL TURBULENT CHANNEL FLOWS

To predict the LES solution using the FNO for wall-bounded turbulence, the coarsened flow
fields of the fDNS for 3D turbulent channel flows are used for the training of the FNO and IUFNO
models. In the a posteriori tests, we evaluate the FNO- and IUFNO-based solutions using initial
conditions different from those in the training set, and we compare the performance against the
benchmark fDNS results as well as the traditional LES models.

In the current section, the DNS database and training data set are first introduced, followed by
the a posteriori test in the LES.

A. DNS database and the configuration of the training data set

The DNS database of turbulent channel flows is obtained using the open-source framework
Xcompact3D, which is a high-order compact finite-difference flow solver [98,99]. The details of
the DNS parameters are shown in Table I. Lx, Ly, and Lz are the sizes of the 3D computational
domain. �X + and �Z+ are the normalized spacings in the streamwise and spanwise directions,
respectively, and �Y +

w is the distance of the first grid point off the wall. Here the superscript “+”
indicates a normalized quantity in wall (viscous) units, e.g., y+ = y/δν , u+ = u/uτ , where δν and
uτ are the viscous length and wall-friction velocity, respectively. To check the accuracy of the DNS
results, we compare the velocity statistics with the benchmark results by Moser et al. [100]. As
Fig. 2 shows, both the mean and fluctuating velocities agree well with the reference data at all
three Reynolds numbers. Meanwhile, the linear law within the viscous sublayer (y+ < 5) is well
recovered, suggesting the near-wall behavior is adequately captured by the current DNS.

As discussed, the fDNS data are the benchmark for the resolved variables in LES. To obtain
the training data set, the DNS data of turbulent channel flows are filtered and then coarsened to
the LES grids. To reduce the computational cost, the adopted LES grids are tangibly coarser than
the general requirements for wall-resolved LES, which can be close to the grid requirement for
DNS [5]. In current work, the LES grids are 32 × 33 × 16, 64 × 49 × 32, and 64 × 65 × 32 for
Reτ ≈ 180, 395, and 590, respectively. The details of the LES parameters are shown in Table II. As
can be seen, the grid sizes are larger compared to those for wall-resolved LES [5,101]. The DNS
data are filtered in the homogeneous x and z directions using a box filter [1], and the corresponding
filter widths are equal to the LES grid sizes �x and �z, respectively. In the training data set, 400
snapshots of the fDNS data are extracted at every �T = 200�t , where the DNS time step �t =
0.005. Hence, �T = 1 in nondimensional units. Defining the wall viscous time unit as τv = δv/uτ ,
we have �T = 7.5τv , 14.6τv, and 20.7τv for Reτ ≈ 180, 395, and 590, respectively. Based on our
test, such a configuration can give the best long-term performance. Meanwhile, 20 groups of fDNS
data sets are generated using different initial conditions to enlarge the training database.

It is important to note that the FNO can accommodate nonperiodic boundary conditions in the y
normal direction of channel flow, thanks to the bias term W (cf. Fig. 1). However, to further alleviate
the effects of the nonperiodicity, the mean velocity field of fDNS is subtracted from the training data
such that only the fluctuations are used for training. Meanwhile, to apply the fast Fourier transform
(FFT), the original coordinates in the wall-normal y direction should be remapped onto uniform
coordinates [55,56,80]. For channel flow, while the mesh is nonuniform in the y direction, it is still
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FIG. 2. The mean streamwise velocity and the three fluctuating velocity components for the present DNS of
turbulent channel flow and the corresponding results in Ref. [100]: (a) mean streamwise velocity at Reτ ≈ 180;
(b) velocity fluctuations at Reτ ≈ 180; (c) mean streamwise velocity at Reτ ≈ 395; (d) velocity fluctuations at
Reτ ≈ 395; (e) mean streamwise velocity at Reτ ≈ 590; (f) velocity fluctuations at Reτ ≈ 590.

a structured mesh and can be transformed into a uniform mesh by the mapping [y1, y2, y3, . . .] �−→
[y1/r1, y2/r2, y3/r3, . . .] [55]. Hence the FFT can still be conveniently applied.

For both the FNO and IUFNO, the known velocity fields of several time nodes are taken as
the input to the model. Meanwhile, the increment of the fluctuating field is learned [76,81]. By
letting Um denote the mth time-node velocity, the mth increment (i.e., the difference of velocity
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TABLE II. Parameters for the large-eddy simulation of turbulent channel flow.

Reso. Reτ Lx × Ly × Lz ν �X + �Y +
w �Z+

32 × 33 × 16 180 4π × 2 × 4π/3 1/4200 69.6 3.93 46.4
64 × 49 × 32 395 4π × 2 × 4π/3 1/10500 76.4 5.6 51.2
64 × 65 × 32 590 4π × 2 × 4π/3 1/16800 115.8 6.4 77.4

field between two adjacent time nodes) can be written as �Um = Um+1 − Um. The fDNS data of the
previous five time nodes [Um−4,Um−3,Um−2,Um−1,Um] are taken as the model input, and �Um is
taken as the output. Then Um+1 can be obtained by Um+1 = Um + �Um. In this case, 400 time-nodes
in each of the 20 groups can generate 395 input-output pairs. 80% of the data are used for training,
and the rest are for on-line testing.

The training setups are configured as follows: For both the FNO and IUFNO models, two
fully connected layers (i.e., P and Q in Fig. 1) are configured before and after the Fourier layer(s).
For the FNO model, four consecutive Fourier layers are adopted [76]. For the IUFNO model, the
consecutive Fourier layers are replaced by an implicit Fourier layer with embedded U-Net structure,
and the numbers of internal iterations for the Fourier layer in the IUFNO model are 40, 20, and
20 for Reτ ≈ 180, 395, and 590, respectively. In the U-Net structure of the IUFNO model, three
consecutive encoders are configured, followed by three decoders with skip connections [96]. For
all the trainings, the cutoff wave numbers for the Fourier mode truncation are based on half of the
minimum grid numbers (i.e., in the z direction). Hence, we set kmax = 8, 16, and 16 for Reτ ≈ 180,

FIG. 3. The evolutions of the loss curves: (a) FNO; (b) IFNO; (c) UFNO; (d) IUFNO.
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FIG. 4. The mean streamwise velocities at Reτ ≈ 180 for different FNO-based LES models: (a) t = 10�T ;
(b) t = 25�T ; (c) t = 29�T ; (d) t = 40�T ; (e) t = 600�T ; (f) t = 800�T .

395, and 590, respectively. The Adam optimizer is used for optimization [102], the initial learning
rate is set to 10−3, and the GELU function is chosen as the activation function [103]. The training
and testing losses are defined as

Loss = ‖�u∗ − �u‖2

‖�u‖2
, where ‖A‖2 = 1

n

√√√√ n∑
k=1

|Ak|2. (18)
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FIG. 5. The evolutions of the testing loss with different amounts of training data.

Here, �u∗ denotes the prediction of velocity increments, and �u is the ground truth. The evolution
curves of the training and testing losses at Reτ ≈ 180 are shown in Fig. 3. Here, we also present
the corresponding results for the IFNO [85] which does not incorporate the U-Net structure, and
the results for the UFNO [83] which uses consecutive U-Net embedded Fourier layers instead of
the implicit looping structure. As can be seen, the IUFNO model has the lowest loss compared to
the other FNO models. We also observe that the U-Net-based models (UFNO and IUFNO) converge
faster compared to the other models.

B. The a posteriori tests in the LES

In the a posteriori tests, the initial turbulent fields are taken from a new fDNS field that is different
from those in the training set, such that we can test whether the trained model can be generalized
to different initial conditions. Meanwhile, the no-slip condition is reinforced in FNO and IUFNO in
the a posteriori tests. To compare the performances of different FNO-based frameworks, we show
the predicted mean streamwise velocity profiles at different time instants for Reτ ≈ 180 in Fig. 4.
It can be seen that all the FNO models predict the velocity profile well initially (at t = 10�T ).
However, as the solutions evolve, the predictions of the FNO, IFNO, and UFNO models diverge
from the fDNS benchmark sooner or later, while the IUFNO model remains adequately accurate.
At t = 25�T , the FNO result starts to strongly deviate from the fDNS benchmark, while the other
models are still reasonably accurate. At t = 29�T , FNO diverges, and UFNO strongly deviates
from the fDNS result, while IFNO deviates only slightly. At t = 40�T , all models diverge except
the IUFNO model. Most importantly, at t = 600�T and 800�T , both of which are far beyond
the time range of the training set (t < 400�T ), the IUFNO model remains numerically stable and
accurate. In a physical sense, 800�T allows the bulk flow to pass through the channel approximately
42.5 times, demonstrating the long-term predictive ability of the IUFNO model. Hence, in the rest
of the work, only the results of IUFNO will be presented and compared against the traditional LES
models including the DSM and WALE models.

Since the IUFNO framework is trained on DNS data, it is interesting to study how the model
converges with different amounts of training data. Figure 5 displays the evolutions of the testing
loss with different amounts of training data at Reτ = 180. As can be seen, when the amount of
training data is small (5 and 10 groups of DNS), the testing losses only decrease to the level of
0.2–0.25. As the training data set increases to 15 groups, a significant reduction of the testing loss
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FIG. 6. The evolutions of the loss curves for IUFNO: (a) Reτ ≈ 395; (b) Reτ ≈ 590.

can be observed as it decreases from 0.2 to about 0.1. Further enlargement of the training data set
does not alter much the testing loss, which remains at the level of 0.1. Hence, 20 groups of the
training DNS data are adopted in the current work.

FIG. 7. The mean streamwise velocity and rms fluctuating velocities at Reτ ≈ 180: (a) mean streamwise
velocity; (b) rms fluctuation of streamwise velocity; (c) rms fluctuation of transverse velocity; (d) rms
fluctuation of spanwise velocity.
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FIG. 8. The mean streamwise velocity and rms fluctuating velocities at Reτ ≈ 395: (a) mean streamwise
velocity; (b) rms fluctuation of streamwise velocity; (c) rms fluctuation of transverse velocity; (d) rms
fluctuation of spanwise velocity.

The training and testing losses for Reτ = 395 and 590 are shown in Figs. 6(a) and 6(b),
respectively. It can be seen that as Reτ increases, the loss goes up, indicating the increased difficulty
in learning high Reynolds number turbulent flow. Meanwhile, to avoid overfitting of the model, we
have applied early stopping, which is widely used in gradient descent learning [104,105]. In both
cases, the model parameters are extracted after 30 epochs before the performance on the testing set
starts to degrade.

In Figs. 7–9, the mean streamwise velocity and root-mean-squared (rms) fluctuating velocities
predicted by the IUFNO model are displayed for Reτ ≈ 180, 395, and 590, respectively. Also shown
in the figures are the corresponding predictions by the DSM and WALE models. As can be seen, the
IUFNO model performs reasonably better at all three Reynolds numbers compared to the DSM and
WALE models. Nevertheless, the prediction of the mean velocity by IUFNO at Reτ ≈ 590 is not as
good as that at Reτ ≈ 180 and 395. This also reflects the increasing difficulty in predicting turbulent
flows at high Reynolds number. For the traditional LES models, we observe that the WALE model
performs tangibly better than the DSM. Meanwhile, the WALE model diverges at Reτ ≈ 590, thus
the results of WALE are not presented for Reτ ≈ 590. Here, it should be emphasized that the current
LES grids are coarser than the general requirements for wall-resolved LES [5,101]. At the expense
of additional computational cost (i.e., using sufficiently fine grids or a carefully configured wall
model), the traditional LES models can also achieve reasonably accurate LES predictions, which is
not the concern of the current work.
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FIG. 9. The mean streamwise velocity and rms fluctuating velocities at Reτ ≈ 590: (a) mean streamwise
velocity; (b) rms fluctuation of streamwise velocity; (c) rms fluctuation of transverse velocity; (d) rms
fluctuation of spanwise velocity.

The probability density functions (PDFs) of the three fluctuating velocity components are shown
in Fig. 10 for different friction Reynolds numbers. The PDFs of the velocity fluctuations are all
symmetric, and the ranges of the PDFs are in agreement with the corresponding rms values in
Figs. 7–9. It can be seen that the IUFNO model gives reasonably good predictions of the PDFs
at all three Reynolds numbers. Notably, the advantage of the IUFNO model is more pronounced
for the streamwise components of the fluctuating velocity compared to the normal and spanwise
components, whose predictions by the WALE model are also satisfying. The DSM gives the worst
predictions among all models.

The predicted shear Reynolds stresses by different LES models are shown in Fig. 11. The
maximum shear Reynolds stresses are located near the upper and lower walls where both the mean
shear effects and the velocity fluctuations are strong. The distribution between the two peaks is
approximately linear, which is consistent with the literature [106]. Both the IUFNO and WALE
models can predict the Reynolds stress well at Reτ ≈ 180 and 395 while an apparent discrepancy
can be observed for the DSM. At Reτ ≈ 590, the IUFNO model still performs better than the DSM,
but it has some instability in the linear region.

To further explore the behavior of the turbulent shear stress, quadrant analysis is performed
[107,108]. We examine the joint PDF of the normalized streamwise and wall-normal fluctuating
velocities. The results are displayed in Fig. 12. On the basis of quadrant analysis, four events
are identified: Q1: u′ > 0, v′ > 0; Q2: u′ < 0, v′ > 0; Q3: u′ < 0, v′ < 0; and Q4: u′ > 0, v′ < 0.
Importantly, Q2 represents the ejection event characterized by the rising and breaking up of the
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FIG. 10. The probability density functions (PDFs) of the velocity fluctuation components at different
Reynolds numbers: (a) u′, Reτ ≈ 180; (b) v′, Reτ ≈ 180; (c) w′, Reτ ≈ 180; (d) u′, Reτ ≈ 395; (e) v′, Reτ ≈
395; (f) w′, Reτ ≈ 395; (g) u′, Reτ ≈ 590; (h) v′, Reτ ≈ 590; (i) w′, Reτ ≈ 590.

FIG. 11. The variation of the shear Reynolds stress 〈u′v′〉 at various Reynolds numbers: (a) Reτ ≈ 180;
(b) Reτ ≈ 395; (c) Reτ ≈ 590.
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FIG. 12. The joint PDFs of the normalized streamwise and transverse fluctuating velocities at various
Reynolds numbers: (a) Reτ ≈ 180, near the wall (y/Ly = 0.15); (b) Reτ ≈ 395, near the wall (y/Ly = 0.12);
(c) Reτ ≈ 590, near the wall (y/Ly = 0.15); (d) Reτ ≈ 180, near the channel center (y/Ly = 0.5); (e) Reτ ≈
395, near the channel center (y/Ly = 0.5); (f) Reτ ≈ 590, near the channel center (y/Ly = 0.5).

near-wall low-speed streaks under the effect of rolling vortex pairs, and Q4 describes the sweeping
down of the upper high-speed streaks to the near-wall fluid. Both the ejection and sweep events are
gradient-type motions that make the largest contributions to the turbulent shear stress. In contrast,
Q1 and Q3 denote the outward and inward interactions that are countergradient-type motions [107].

As shown in Fig. 12, at all three Reynolds numbers, the joint PDFs close to the wall are much
wider in the second and fourth quadrants, indicating that shear events (ejection and sweep) are more
dominant near the wall rather than the center of the channel. It can be seen that the IUFNO results
agree well with the fDNS benchmark. Meanwhile, the predictions by the WALE and DSM models
are also satisfying.

To examine the energy distribution at different scales, we calculate the kinetic energy spectrum
in the LES. The streamwise spectra are shown in Figs. 13(a)–13(c) for Reτ ≈ 180, 395, and
590, respectively. At Reτ ≈ 180, the predicted spectrum by the IUFNO model agrees well with
the fDNS result. Both the DSM and WALE models overestimate the energy spectrum while the
WALE model outperforms the DSM. This is also consistent with the results for the rms fluctuating
velocity magnitude in Fig. 7. At Reτ ≈ 395, the spectrum predicted by IUFNO deviates slightly
from the fDNS result, but it still outperforms the DSM and WALE models. For the spectrum
at Reτ ≈ 590, the IUFNO model still outperforms the DSM; however, some nonphysical dis-
continuities in the IUFNO spectrum can be observed. The cause of such a phenomenon is still
unclear.

The spanwise kinetic energy spectra are shown in Figs. 13(d)–13(f) for Reτ ≈ 180, 395, and 590,
respectively. Unlike the streamwise spectrum, the maximum energy in the spanwise spectrum is not
contained in the first wave number, presumably because there are no dominant largest-scale motions
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FIG. 13. The streamwise energy spectrum at various Reynolds numbers: (a) streamwise spectrum, Reτ ≈
180; (b) streamwise spectrum, Reτ ≈ 395; (c) streamwise spectrum, Reτ ≈ 590; (d) spanwise spectrum, Reτ ≈
180; (e) spanwise spectrum, Reτ ≈ 395; (f) spanwise spectrum, Reτ ≈ 590.

in the spanwise direction. Overall, the IUFNO model is in closer agreement with the fDNS result
compared to the WALE and DSM models.

To visualize the vortex structure in the turbulent flow field, we examine the Q-criterion defined
by [109,110]

Q = 1
2

[

i j
i j − (

Si j − 1
3δi jSkk

)(
Si j − 1

3δi jSll
)]

, (19)

where 
i j = 1
2 (∂ui/∂x j − ∂u j/∂xi ) is the filtered rotation rate. The instantaneous isosurfaces of

Q for Reτ ≈ 180, 395, and 590 are displayed in Figs. 14–16, respectively. The isosurfaces are
colored by the streamwise velocities. As the figures depict, the IUFNO models are in overall closer
agreement with the fDNS results compared to the traditional LES models. Hence, the ability of the
IUFNO model to predict the vortex structures is confirmed.

Finally, we compare the computation cost in the LES for different models in Table III. The values
in the table are the time consumption (in seconds) for an equivalent 10 000 DNS time steps. The
IUFNO models are tested on the NVIDIA A100 GPU, where the CPU type is AMD EPYC 7763
@2.45 GHz. The DSM and WALE simulations are performed on the CPU, which is Intel Xeon Gold
6148 @2.40 GHz. As can be seen in Table III, among the FNO-based models, the original FNO
has the lowest computational cost. IUFNO has the largest computational cost as it combines the

TABLE III. Computational cost of different LES models per 10 000 DNS time steps.

Reτ DSM WALE FNO IFNO UFNO IUFNO

180 97.4 s (×16 cores) 52.1 s (×16 cores) 1.3 s 2.9 s 1.6 s 5.0 s
395 287.2 s (×32 cores) 146.3 s (×32 cores) 4.5 s 9.1 s 5.3 s 12.1 s
590 315.3 s (×64 cores) NA 5.9 s 11.6 s 6.7 s 14.9 s
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FIG. 14. The isosurface of the Q-criterion in the LESs of turbulent channel flow at Reτ ≈ 180. Here Q =
0.02 and the isosurface is colored by the streamwise velocity: (a) fDNS; (b) DSM; (c) WALE; (d) IUFNO.

structures of both the IFNO and UFNO. Nevertheless, the computational efficiency of the IUFNO
model is still considerably higher than those of the traditional LES models (i.e., DSM and WALE),
considering that the runtimes of the traditional models are not multiplied by the number of adopted
computation cores (shown in parentheses).

Apparently, the current work shows the potential of IUFNO in the long-term prediction of
turbulent channel flow. Nevertheless, it is worth noting that there are still many challenges for
machine-learning-based flow predictions, such as high Reynolds number turbulence, turbulent
flows with complex geometries, irregular and non-Cartesian grids, etc. On the other hand, it is
noticeable that the neural operator-based methods are also quickly evolving and improving these
days [55,65,78,88]. For example, incorporating physical constraints to FNO can lower the required
amount of the training data [88]. The recently proposed geometry-informed neural operator can
handle complex geometries by combining the FNO with a graph neural operator, which can
transform irregular grids into uniform ones [78]. Meanwhile, the transformer-based frameworks
and their combination with FNO have been developed recently, which are also potentially suitable
for complex flows [87,111]. These are several new aspects that deserve future investigations for
complex turbulent flows at high Reynolds numbers.

V. CONCLUSIONS

In the present study, the FNO and IUFNO are investigated in the LES of 3D turbulent channel
flows. In the preliminary test, the IUFNO model outperforms the FNO model in both the training
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FIG. 15. The isosurface of the Q-criterion in the LESs of turbulent channel flow at Reτ ≈ 395. Here Q =
0.2 and the isosurface is colored by the streamwise velocity: (a) fDNS; (b) DSM; (c) WALE; (d) IUFNO.

loss and the long-term predictions of velocity statistics. In the a posteriori LES tests, the predictive
ability of IUFNO is comprehensively examined and compared against the fDNS benchmark as well
as the classical DSM and WALE models at various friction Reynolds numbers, namely Reτ ≈ 180,
395, and 590.

In comparison with the classical DSM and WALE models, the predicted profiles of mean velocity
and the fluctuating velocity magnitude by the IUFNO model are closer to the fDNS results even
though the performance at the higher Reynolds number is less satisfying. For the PDFs of the
fluctuating velocity, both the IUFNO and WALE models reconstruct well the fDNS results, while
the DSM results are slightly worse.

Additionally, quadrant analysis is performed by calculating the joint PDF of the normalized
streamwise and wall-normal fluctuating velocities. The results indicate that the shear event is quite
strong in a region close to the wall, while it is very weak in the center of the channel, which is
also consistent with the shear Reynolds stress profiles. Overall, the IUFNO model can give quite
satisfying predictions for the joint PDFs.

Further, the streamwise and spanwise kinetic energy spectra are examined. At all three Reynolds
numbers, the IUFNO model gives the best predictions. Finally, the Q-criterion is calculated to ex-
amine the vortex structures of the turbulent field, and the IUFNO model can predict reasonably well
the vortex structures. Considering the relatively low computational cost, these results demonstrate
that the IUFNO model is a promising framework for the fast prediction of wall-bounded turbulent
flows.

084604-19



WANG, LI, YUAN, PENG, LIU, AND WANG

FIG. 16. The isosurface of the Q-criterion in the LESs of turbulent channel flow at Reτ ≈ 590. Here Q =
0.1 and the isosurface is colored by the streamwise velocity: (a) fDNS; (b) DSM; (c) IUFNO.

Looking forward to future works, several aspects deserve further investigations, which include
augmenting the generalization ability of the model at different Reynolds numbers, the application
of the model to more complex wall-bounded flows, and the development and incorporation of wall
models in the case of very coarse LES grids.

The code and dataset of the current work are available at [112].
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