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Responses to disturbance of supersonic shear layer: Input-output analysis
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We investigate the perturbation dynamics in a supersonic shear layer using a combina-
tion of large-eddy simulations (LES) and linear-operator-based input-output analysis. The
flow consists of two streams—a main stream (Mach 1.23) and a bypass stream (Mach
1.0)—separated by a splitter plate of nonnegligible thickness. We employ spectral proper
orthogonal decomposition to identify the most energetic coherent structures and bispectral
mode decomposition to explore the nonlinear energy cascade within the turbulent shear-
layer flow. Structures at the dominant frequency are also obtained from a resolvent analysis
of the mean flow. We observe higher gain at the dominant frequency in resolvent analysis,
indicating the dominance of Kelvin-Helmholtz (KH) instability as the primary disturbance
energy-amplification mechanism. To focus on realizable actuator placement locations, we
further conduct an input-output analysis by restricting a state variable and spatial location
of an input and output. Various combinations of inputs and output indicate that the splitter
plate trailing surface is the most sensitive location for introducing a perturbation. Upper
and lower surface inputs are less influential in modulating wavepackets in the shear layer
but introduce pressure instability waves in the main and bypass streams, respectively. The
analysis reveals that the phase speed of pressure waves depends on the state variable and
input location combination. For all combinations, the KH instability plays a key role in
amplification, which reduces significantly as the input location is moved upstream relative
to the splitter plate trailing edge. Furthermore, two-dimensional nonlinear simulations with
unsteady input at the upper surface of the splitter plate show remarkable similarities be-
tween pressure modes obtained through dynamic mode decomposition and those predicted
from linear input-output analysis at a given frequency. This study emphasizes the strength
of linear analysis and demonstrates that predicted coherent structures remain active in
highly nonlinear turbulent flow. The insights gained from the input-output analysis can
be further leveraged to formulate practical flow control strategies.

DOI: 10.1103/PhysRevFluids.9.084603

I. INTRODUCTION

Jet engines have undergone significant evolution, progressing from relatively simple configura-
tions to their advanced modern state. This evolution has been driven by the need for higher thrust
generation, as well as the demand for providing sufficient energy to support advanced avionics and
meet rigorous mission-based requirements. A three-stream nonaxisymmetric, airframe-integrated,
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FIG. 1. (a) Three-stream turbofan engine architecture developed by Air Force Research Laboratory
(AFRL) discussed by Simmons [1]. (b) Instantaneous density and the Q-criterion colored by the streamwise
velocity component of the supersonic shear layer by Stack et al. [12].

variable-cycle engine described by Simmons [1] is shown in Fig. 1(a). The design incorporates a
rectangular single expansion ramp nozzle (SERN) consisting of a core and two bypass streams to
fulfill performance requirements. This design allows better integration with a slender aircraft frame,
hence reducing drag [2], and enhances propulsion efficiency under various flight conditions. A core
and primary bypass (fan) stream produces power, while a secondary bypass (third) stream is utilized
to provide a thermal cooling bed to an aircraft frame from a hot core stream [3] and to reduce overall
noise generation [4–6].

The above-mentioned nozzle configuration has been extensively studied both numerically [7,8]
and experimentally [5,9–11]. These studies have reported the formation of large coherent structures
resulting from the mixing of the core (or “main”) and secondary (“bypass”) streams, leading to a
vortex-shedding instability at the trailing edge of the splitter plate. These large coherent structures
are responsible for producing high surface loading on the aircraft frame and generating a strong
noise signature in the far field. A simplified model of isolated shear-layer flow has been used
to investigate the underlying mechanism of the flow, consisting only of the splitter plate and the
main stream and bypass streams, at the same conditions as in the full configuration [12,13] [see
Fig. 1(b)]. This simplification successfully isolates the genesis of the main phenomena of interest for
detailed study; including the formation and downstream evolution of coherent structures and their
implications on the unsteady shock system. In this paper, we use this isolated shear-layer model
to extend the analysis further to encompass the input-output dynamics of perturbations, which can
provide insights for altering the undesired features of the nozzle flow for an improved design of the
nozzle component of the jet engine.

Canonical supersonic shear layers or mixing layers have been extensively examined due to
their fundamental relevance in supersonic combustion, high-speed civil transport, and other ap-
plications. The mean velocity profile of a shear layer exhibits an inflection point, leading to the
Kelvin-Helmholtz instability and the formation of large-scale coherent structures. The spatiotempo-
ral dynamics of these coherent structures have been extensively studied, including their growth
rate, vortical structures, acoustic interactions, and shock waves, across various Mach numbers
[14–18]. Moreover, linear stability theory indicates that a convective Mach number [15] greater
than 0.6 amplifies three-dimensional disturbances [19], a value significantly higher than our study
(approximately 0.087). Therefore, we focus on the dynamics of two-dimensional disturbances in this
study. Further, the utilization of small amplitude unsteady forcing to modulate shear-layer behavior
through its natural instability mechanism has been well explored [20]. Flow instabilities facilitate
the growth of small-scale disturbances by an order of magnitude or more through their natural
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amplification mechanism, which can be harnessed to develop a low-amplitude yet effective scalable
actuator.

Numerous efforts have been made to control shear-layer instabilities and their subsequent growth
through passive flow control, primarily by modifying the geometry of the splitter plate [16]. The
shear layer of interest in this work, Fig. 1, is distinct in that the properties of the two independent
streams on either side of the splitter plate are influenced by flow events inside the engine and, as
such, are not strictly in equilibrium prior to mixing. The splitter plate is also relatively thick, of
an order of magnitude greater than the boundary layer height, and thus is susceptible to shedding
instability as well. Stack et al. [12] investigated the influence of splitter plate thickness on the
length scale of coherent structures and instability growth. They found that as the thickness of the
plate decreases, the instability mechanism changes. At one-tenth the actual thickness, the coherent
structures were greatly minimized and the impact of the splitter plate on the rest of the flow field
was relatively small. Similarly, Ruscher et al. [21] observed a transition from vortex-shedding-
like to Kelvin-Helmholtz-like instability with a knife-edged plate instead of a flat splitter plate.
Guided by the linear analysis, Doshi et al. [13] conducted high-fidelity simulations with a wavy
splitter plate trailing edge for an isolated shear layer. They demonstrated a breakdown of spanwise
two-dimensional coherent roller vortical structures into small-scale structures and their energy
redistribution through data-driven techniques. Experiments with the same wavy splitter plate for
a full nozzle configuration confirmed a reduction in the dominant peak of far-field acoustic spectra
[22].

While passive flow control designs have demonstrated promising outcomes, they might degrade
for off-design operating conditions. However, active flow control is more flexible and may be tai-
lored for different operating conditions. Nevertheless, developing an optimal design is complicated
due to the prohibitive parameter space, which includes actuator placement, geometry, waveform
characteristics, and amplitudes. To circumvent the tedious trial-and-error process of active flow
design through experimentation or high-fidelity numerical simulation, we employ an operator-based
input-output analysis (or classical resolvent analysis), augmented with select numerical studies, to
gain physical insight into perturbation behaviors that may be leveraged into a coherent strategy.

In the past decade, linear-operator-based resolvent analysis has emerged as a highly effective tool
for extracting crucial features from fluid flows [23]. This method is particularly appealing for flow
control designs as it identifies the optimal input capable of amplifying the flow response effectively
at a specific frequency [24,25]. The classical resolvent analysis has been successfully applied to
various flow configurations, including open cavity flows [26–28], jet flows [29–32], airfoil flows
[33,34], flow over backward-facing steps [35], and channel flows [36]. By considering all state
variables, resolvent analysis reveals the overall amplification mechanisms of the flow. However, in
flow control applications, actuators are typically located near solid surfaces and introduce inputs
in specific forms of forcing [37], such as momentum- [38], acoustic- [39], or thermal-based [40]
disturbances. To model such control-oriented configurations, the classical resolvent analysis has
been extended to examine componentwise amplification mechanics for particular input-output
scenarios, with spatial or variable restrictions [34,41,42]. In this study, we isolate and analyze the
supersonic shear-layer flow associated with the splitter plate of the multistream engine. The global
perturbation dynamics is examined using the classical resolvent analysis considering full-state
variables without spatial restriction, and an input-output analysis is used with state variables and
spatial restrictions to gain insights that lead to more targeted efforts in active flow control strategies.

The paper is structured as follows: The physical model problem of the supersonic shear layer
is presented in Sec. II A, followed by an explanation of the framework for input-output analysis
in Sec. II B. This section covers both the classical resolvent and input-output configurations, along
with a comparison of full singular value decomposition (SVD) and randomized SVD. In Sec. III,
we first characterize the baseline shear-layer flow and then employ the data-driven modal analysis
technique, namely spectral proper orthogonal decomposition (SPOD), to gain further insight into
spatiotemporal dynamics. Subsequently, the results of classical resolvent analysis are presented and
compared with SPOD. Additionally, we elucidate the amplification mechanism and modal structures
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TABLE I. Freestream conditions for the main and bypass streams of the supersonic shear-layer flow.

u∞[m/s] ρ∞[kg/m3] P∞[Pa] M∞ δ99[m] Reδ99

Main stream 373.47 2.78 184 323 1.23 4.51 ×10−4 31 298
Bypass stream 319.05 1.42 101 456 1.00 2.72 ×10−4 7 705

for various combinations of the input variable and spatial location. The validity of input-output
analysis is tested against nonlinear simulations with unsteady forcing by comparing the output
modes to dynamic mode decomposition results for two forcing cases in Sec. III E. Finally, detailed
conclusions and remarks on the present study are provided in Sec. IV.

II. METHODS

A. Physical Model Problem

In the present work, we consider a simplified version of the complex multistream nozzle flow of
Fig. 1 in the region of the splitter plate. Of specific interest is the shear layer forming downstream
of the splitter plate that separates the core and bypass streams. A three-dimensional (3D) unsteady
large-eddy simulation (LES) was performed for the shear-layer flow over a thick splitter plate by
Stack et al. [12]. The results of Fig. 1(b) highlight the growth of coherent structures downstream
of the splitter plate with their general downward inclination due to the flow parameters of the
core and bypass streams (in Table I). In the initial region downstream of the plate, the top view
(right) indicates the relatively two-dimensional evolution of the structures with increasing spanwise
breakdown appearing relatively far downstream.

The numerical domain is shown in Fig. 2(a). The origin of the Cartesian coordinate system is
located at the center of the splitter plate trailing surface. The streamwise (u), transverse (v), and
spanwise (w) velocities are in x, y, and z directions, respectively. Density, pressure, and temperature
are denoted by ρ, P, and T , respectively. The spanwise-uniform free-stream Mach numbers are 1.23
and 1 for the main and bypass streams, respectively, and additional details are listed in Table I. The
Reynolds number is defined as Re = ρrefUrefL/μref = 85 686, where L = 3.175 mm is the splitter
plate thickness, Uref (reference velocity) is the averaged free-stream velocity of the main and bypass
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ū/Uref

(b)

Splitter plate

10L

M∞; bypass = 1.0

M∞; main = 1.23

Spanwise
 perio

dicity

x

y

Input-output domain

z

FIG. 2. (a) Computational domain of the LES and a cropped domain configuration in input-output analysis,
(b) The zoomed-in x-y slice of time-averaged streamwise velocity (u/Uref) interpolated on a relatively coarse
grid used for input-output and stability analyses.
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streams, ρref (reference density) is the averaged free-stream density of the two streams, and the
reference molecular viscosity µref is obtained using Sutherland’s law with a temperature based on
the averaged free-stream temperatures. The velocity components are nondimensionalized by the
reference velocity (Uref ); the length scale (and x-y coordinate systems) is nondimensionalized by L;
and pressure is nondimensionalized by Pref = ρrefU 2

ref. Frequencies are reported as nondimensional
Strouhal numbers, St = f L/Uref, where f is the dimensional frequency.

In the LES simulation, the outflow and bottom boundary are placed far away from the splitter
plate at distances of 45L and 24.7L, respectively, to minimize the boundary effects on the shear-layer
region [Fig. 2(a)]. The top boundary of the numerical domain is prescribed as an inviscid wall
to approximate the full nozzle configuration without resolving the adjacent boundary layer. The
splitter plate width is taken to be ten times its thickness and spanwise periodic boundary conditions
are imposed. In Fig. 2(b), a zoomed-in view x-y plane of time-averaged streamwise velocity is
provided with a grid topology for input-output analysis. The reader is referred to Stack et al. [12]
for more details on the flow configuration, grid strategy and subgrid-scale model used to generate
the base flow dataset.

B. Input-output framework

The supersonic shear-layer flow is homogeneous in the spanwise direction and the primary
coherent structures display spanwise uniformity [12] as shown in Fig. 1(b). This motivates the
decomposition of the flow state q(x, y, z, t ) = [ρ, u, v,w, T ] into a time-averaged two-dimensional
(2D) mean state Q(x, y) and a time-variant perturbation q′(x, y, z, t ) as

q(x, y, z, t ) = Q(x, y) + q′(x, y, z, t ). (1)

Strictly speaking, linearization of the Navier–Stokes (N-S) equation using the above decomposition
is based on the base state Q being in equilibrium [24,41,43], i.e., Q should be a steady solution of
the N-S equations. However, for flows at high Reynolds numbers, the statistically stationary mean
(i.e., time-averaged) state is commonly used for N-S linearization, which serves as a foundation
for the input-output analysis of fluid flow [27,28,34,44,45]. In like manner, in the present work, we
use the statistically stationary time-averaged shear-layer flow (mean flow) as the base state for the
input-output analysis (Sec. II B 1).

The governing equation of the perturbation q′ after substituting Eq. (1) into the compressible
Navier–Stokes equations is

dq′

dt
= L(Q)q′ + h′, (2)

where L(Q) denotes the linearized compressible N-S operator about the mean state Q. Here, h′ is
considered the nonlinear term of perturbation [25] as well as an external forcing. To formulate the
dynamical model Eq. (2) into an input-output framework, we can add an input variable f ′ and an
output variable yo as

h′ = B f ′, yo = Cq′. (3)

Next, the perturbations q′ and forcing f ′ are expressed as Fourier modes with

q′(x, y, z, t ) = q̂(x, y)ei(βz−ωt ),

yo(x, y, z, t ) = ŷo(x, y)ei(βz−ωt ), (4)

f ′(x, y, z, t ) = f̂ (x, y)ei(βz−ωt ).

where q̂(x, y), ŷo(x, y) and f̂ (x, y) denote the 2D amplitude functions of the state perturbation,
output variable and the input variable (i.e., forcing), respectively; β is a real-valued spanwise
wavenumber, and ω is a complex-valued frequency. After utilizing the Fourier representation of
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q′, yo and f ′ [Eq. (4)], the above system of equations yield

ŷo = C[−iωI − L(Q; β )]−1B f̂ = H̃ (Q; ω, β ) f̂ , (5)

where I is the identity matrix and H̃ (Q; ω, β ) = C[−iωI − L(Q; β )]−1B is referred to as the input-
output operator. Here, H̃ (Q; ω, β ) is also a transfer function between the sustained input variable f̂
to the harmonic output variable ŷo associated with the real-valued spanwise wave number β and the
complex-valued frequency ω for the given mean state Q.

1. Classical resolvent analysis

When the input matrix B and output matrix C are identity matrices, no special constraints, such
as spatial extent or restriction to specific variables, are imposed on the input or output. The input-
output operator then reduces to the classical resolvent operator H (Q; ω, β ) = [−iωI − L(Q; β )]−1.
The resolvent analysis can be cast in the framework of singular value decomposition (SVD) of
the resolvent operator to determine the harmonic forcing f̂ and the corresponding response q̂. The
decomposition of the resolvent operator is given by

H (Q; ω, β ) = Uq�V∗
f , (6)

where, Uq = [q̂1, q̂2, . . . , q̂k] is a set of left singular vectors q̂ j denoting response modes, and V f =
[ f̂ 1, f̂ 2, . . . , f̂ k] contains a set of right singular vectors f̂ j denoting the forcing modes, with the
superscript ∗ representing the Hermitian transpose. The diagonal matrix � = diag(σ1, σ2, . . . , σk )
yields the gain, with σ 2

k representing the amplification ratio of the response and forcing modes,
depending on the norm specified. The singular values are arranged in descending order (σ1 � σ2 �
... � σk ), and the first singular value σ1 is referred to as the optimal resolvent gain. If σ1 � σ2,
a rank-1 assumption can often be appropriately made, meaning that the input-output process is
dominated by the leading forcing-response pair [26,34,46,47]. The above expression can also be
rewritten in terms of HV f = Uq�, which facilitates interpretation of each column of V f as an input
vector that is mapped into the corresponding column of the output Uq through the transfer function
H [48].

In the present work, the resolvent gain is studied in the context of Chu′s energy norm [49] of
perturbations given by

E =
∫

�

[
RT

ρ
ρ ′2 + ρu′

iu
′
i + Rρ

(γ − 1)T
T ′2

]
d�, (7)

where R is the gas constant, � is the entire domain used in the resolvent analysis. (.) and (.)′ indicate
the time-averaged and the perturbation states of the variables, respectively. The norm can be related
to the induced 2-norm of the state vectors through a weight matrix W , such that ||q̂||2E = ||W q̂||22
[48]. The weight matrix W can be constructed based on the discretization scheme adopted in the
numerical configuration. We obtain the optimal ratio of Chu′s energy norm of response to forcing
modes via calculation of the largest singular value of the resolvent operator, which is the induced
2-norm of the weighted resolvent matrix W 1/2HW −1/2. Since we use the weight matrix W to induce
the 2-norm evaluation, the resulting forcing and response modes shown later are scaled by W −1/2 to
present the correct flowfield.

The SVD inherent to the procedures used in this work can become prohibitively expensive in both
memory and number of calculations when the input-output operator is of large size. To efficiently
capture the dominant modes representing the prevailing coherent structures and dynamics, we
leverage the randomized algorithm described in Ribeiro et al. [50] to perform the SVD of the
input-output operator. The algorithm and its comparison with full SVD are briefly described in
Appendix B.
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2. Input-output analysis configuration

The mapping of specific inputs to corresponding outputs is performed by manipulating B and C
matrices, thus providing the response of the flow to specific inputs that mimic the physical process
of active flow control. This type of analysis is referred to as a componentwise input-output analysis
[41].

The input variables and location are motivated by challenges and constraints in active flow
control designs. In practice, the actuator can only be placed on a solid surface with specific forcing
input such as a unidirectional momentum jet or thermal or acoustic wave [37–40]. Moreover, the
pressure is observed in the output as the pressure fluctuations are responsible for loading on an
aircraft structure and generating far-field noise. This motivates the use of various input variables
such as x-, y-direction momentum forcing, and pressure while the output variable is the pressure.
Thus, each input variable individually maps to the output pressure. In addition to the input variable,
spatial restriction is also imposed on the inputs to a square box of the splitter plate thickness (L)
near the trailing edge. Three locations, upper surface (US), trailing surface (TS), and lower surface
(LS), are selected as input locations. The various state variable and location combinations can be
achieved through the input matrix B. No spatial restriction is imposed on the output.

Similar to the resolvent analysis, an SVD is performed on the operator H̃ (Q; ω, β ) to obtain the
output modes ŷo and the input modes f̂ . Because not all the flow state variables are considered, the
amplification (gain) is studied in the context of L2-norm for the input-output analysis.

3. Linear Operator Construction

To construct the linear operator L(Q; β ) used in the classical resolvent and input-output anal-
ysis, the time-averaged base flow states on the center x-y plane from the 3D domain are used.
We only consider β = 0 (i.e., 2D modes) for the current work, and, furthermore, to reduce the
computational expense while focusing on capturing coherent structures perform the analysis on a
smaller domain, as shown in Fig. 2(a), whose values are obtained by interpolation from the finely
resolved LES. The grid used in the input-output analysis is refined in the shear-layer region and
stretched gradually downstream. The discretized linearized Navier-Stokes equations [27] generate
the operator L(Q; β = 0) using the interpolated base flow on the coarse grid. The inlet perturbation
variables for both main and bypass streams are prescribed with zero Dirichlet boundary conditions
for the density, velocity components, and normal pressure gradients. On the splitter plate surfaces,
all the velocity components, density, and pressure normal gradients are set to zero. For top, bottom,
and outflow boundaries, zero Neumann boundary conditions are applied for density, velocity, and
pressure. In addition, sponge zones are applied along the bottom and outflow boundaries to damp
perturbations to weaken the influence of boundaries on the inner domain results. The top boundary
is prescribed as an inviscid wall in the LES to mimic a solid wall of the nozzle. As the interaction of
the reflected shock from the top boundary and shear layer is not the focus of the current work, we
apply a thin sponge layer at the top boundary for the classical resolvent and input-output analyses,
focusing on the perturbation dynamics near the splitter plate. Based on the grid-independence
study (see Appendix A), a grid with approximately 0.176 million control volumes is chosen, which
yields the input-output operator in the form of a matrix with an approximate size of 0.88 million
×0.88 million. To efficiently perform the input-output analysis for a large-scale matrix, we use the
randomized algorithm to compute the SVD of the input-output operator H (Q; ω).

III. RESULTS

A. Baseline flow

1. Instantaneous and mean flow properties

In the baseline flow [12] shown earlier in Fig. 1(b), the large-scale and clockwise rotating vortical
structures roll up and convect downstream along the shear layer due to the Kelvin-Helmholtz (KH)
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FIG. 3. (a) Normalized instantaneous pressure fluctuation (P′/Pref), (b) time-averaged streamwise velocity
(u/Uref), and (c) power spectral density (PSD) of pressure data from probes indicated by subplot (b).

instability. For the purposes of the current work, additional features of the flow are now described.
The normalized pressure fluctuation and time-averaged streamwise velocity flowfield are shown in
Figs. 3(a) and 3(b), respectively. A total number of 2,598 snapshots covering the convective time
of tUref/L ≈ 260 is used to generate the mean flow. Observed from the instantaneous and mean
flow features, the supersonic main stream expands at the corner of the SPTE due to the downward
deflection, which results in an expansion fan on the upper side of SPTE. The supersonic main stream
then interacts with the sonic bypass stream (near probe P1), and an oblique shock redirects the flow
back to the streamwise direction. This oblique shock propagates upward and reflects from the top
boundary of the domain and interacts with the shear layer further downstream, far away from the
SPTE. We note that the region of interaction between this reflected shock and the shear layer is not
included in the domain visualized here. Moreover, a recirculation zone is observed in the vicinity
of the SPTE, similar to a wake flow behind a bluff body and the two streams form a shear layer
as the flow mixes further downstream. On the lower side of the splitter plate, the bypass stream
also experiences a slight expansion due to the sudden increase in the flow area at the SPTE, but
no distinct shock is apparent in the mean flowfield. Meanwhile, the weaker compression waves
propagating into the bypass stream from SPTE are observed in the unsteady fluctuating pressure P′,
as shown in Fig. 3(a).

The unsteadiness of the vortical structures is analyzed using data from four probes [indicated
by red dots in Fig. 3(b)] placed at representative locations in the flowfield. The power spectral
density (PSD), calculated using the time-history of pressure, is shown in Fig. 3(c). Probes P1 and
P2 are located in the shear layer downstream of the SPTE, while P3 and P4 are located on the upper
and lower sides of the shear layer, respectively. As shown in Fig. 3(c), a distinct peak is observed
at St = 0.273 for all the probes, and the pressure fluctuations in the shear layer (i.e., P1 and P2)
are larger than those on the upper (P3) and lower (P4) sides of the shear layer. Moreover, the fact
that all probes capture the same peak frequency, indicates that the far-field acoustics [5,6] is highly
influenced by the formation of the vortical structures after the splitter plate.

2. Spectral proper orthogonal decomposition

Spectral analysis methods can identify coherent structures associated with each frequency in tur-
bulent flows [47,51–53]. In the present work, we use the spectral proper orthogonal decomposition
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FIG. 4. (a) SPOD eigenvalue spectrum of the supersonic shear layer. Decreasing eigenvalues are shown in
lighter shades, i.e., λ1 � λ2 � · · · � λN at each frequency. The dashed orange line indicates the −5/3 power
law of the energy spectrum. (b) The leading SPOD mode (first mode) of the streamwise velocity ψu and the
pressure ψP over a frequency range from St = 0.156 to 0.546.

(SPOD) algorithm discussed in detail by Towne et al. [47], Schmidt and Colonius [54]. Modes
calculated from this method are orthogonal to other modes at the same frequency and optimally
represent spatio-temporal flow statistics.

To investigate coherent structures of the most energetic modes in the supersonic shear layer,
the SPOD analysis is conducted on the centerplane x-y flowfield data, interpolated to a rela-
tively uniform coarse grid. A rectangular domain (−3.2 � x � 30,−10 � y � 8.7) discretized
by approximately 0.25 million grid points is used for the interpolation and the state variables
[ρ ′, u′, v′,w′, T ′] are used to perform SPOD. 2,598 snapshots spaced at equal time intervals of
�tUref/L = 0.1 are used. We perform the SPOD analysis for 128, 256, 512, and 1024 snapshots per
block with 50% overlap to capture the dominant physics. Based on the convergence of the modal
structures and frequency resolution, we select 512 snapshots per block with 50% overlap, resulting
in 9 blocks, for further discussion.

In SPOD analysis, the eigenvalues represent the energy of the modal structures based on a norm
weight. In this study, Chu’s energy norm Eq. (7) is considered. The SPOD eigenvalue spectrum of
the supersonic shear-layer flow is shown in Fig. 4(a). The peak in the eigenspectra is observed at
St = 0.273 for the leading mode (λ1), which is significantly larger than the second mode energy
(λ2). This indicates that the leading mode is much more energetic than the other modes, and the
primary physical mechanism is dominated by the leading mode. In other words, the flow exhibits
a low-rank behavior at frequency St = 0.273. The low-rank mechanism is also observed at the
frequencies St = 0.117, 0.156, 0.429, along with the first harmonic of 0.429 and the first two
harmonics of the dominant frequency. All these peak frequencies are also captured in the spectral
analysis of the baseline flow probes data [see Fig. 3(c)].

Figure 4(b) shows the streamwise velocity ψu and pressure ψP leading SPOD modes at four
representative frequencies. The pressure modes are obtained by using a linearized ideal gas law,

ψP = R(ρψT + T ψρ ). (8)

The streamwise velocity field is located in the shear-layer region with alternative positive and
negative lobe structures for the dominant frequency St = 0.273. These structures resemble the
Kelvin-Helmholtz shear-layer instability of the mean flow. The pressure mode takes the form of the
wavepacket in the shear-layer region with far-field traveling acoustic waves along the oblique shock
and the compression waves in the upper and lower stream, respectively. For the other high-frequency
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FIG. 5. Two-dimensional eigenmodes of stability analysis. (a) Eigenvalues of L(Q; β ) with β = 0. The red
line indicates the discounted parameter value. (b) Modal structures of two representative eigenmodes, the real
component of û.

peaks at St = 0.429, and 0.546, the velocity and pressure mode structures are similar to those
of the dominant frequency but with a smaller wavelength along the streamwise direction. The
far-field traveling waves are also observed at these frequencies, revealing the global spatiotemporal
consequences of the supersonic shear layer. The mode structures at low frequency St = 0.156 do
not exhibit clear wavepacket structures in the layer; these highly distorted structures may be affected
by diminished convergence of low-frequency statistics. The eigenspectra and modes obtained from
SPOD are compared with the optimal gain and modes of classical resolvent analysis in Sec. III C.

B. Classical resolvent analysis

1. Two-dimensional instabilities of the base flow

A 2D stability analysis is first performed on the time-averaged mean flow [27,46,55–57]. The
eigenvalues of the linear operator L(Q) are shown in Fig. 5(a). The frequency ωr (the real compo-
nent of the eigenvalue ω) is reported using a normalized Strouhal number as St = ωrL/(2πUref),
and the growth/decay rate ωi (the imaginary component of the eigenvalue ω) is normalized as
ωiL/Uref. The black dashed line separates the stable and unstable regions of the complex plane.
The linear operator L(Q) is unstable as the leading eigenvalue is with a positive growth rate of
ωiL/Uref = 0.0365 at St = 0.27. The frequency of this most unstable 2D eigenmode agrees well
with the peak frequency captured in the power spectra density and SPOD analyses.

The modal structures of the streamwise velocity û for the two representative dominant eigen-
modes are shown in Fig. 5(b). The most unstable eigenmode with eigenvalue of (St, ωiL/Uref ) =
(0.27, 0.0365) presents a distinctive structure distributed along the shear layer, again resembling
the pattern of Kelvin-Helmholtz vortex street, whereas the subdominant (least stable) mode with
eigenvalue of (St, ωiL/Uref ) = (0.045,−0.0371) displays elongated structures in the shear layer as
well as upstream propagating waves on the lower side of the splitter plate. Comparing the eigenmode
structures in the shear layer, the lower-frequency mode has a larger streamwise wavelength. The
spurious eigenmodes that are associated with unphysical flow patterns [58] are not discussed here.

2. Resolvent spectra and modes

The classical resolvent analysis is performed for the full-state variables [ρ ′, u′, v′,w′, T ′] by us-
ing the time-averaged mean data from the center x-y plane. As indicated by the eigenvalue spectrum
from the stability analysis (Fig. 5), the linear operator L(Q) built about the turbulent mean flow is
unstable. Hence, the resolvent analysis should be modified by incorporating a real-valued parameter
α such that α > max(ωi ). This discounted resolvent analysis was proposed by Jovanovic [59] to
analyze unstable dynamical systems. To avoid unbounded energy amplification in performing the
resolvent analysis, the original resolvent operator H (Q; ω) = [−iωI − L(Q)]−1 is then modified
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FIG. 6. First (σ1) and second (σ2) singular values of the resolvent analysis using Chu-norm-based gain for
full state variables without any spatial window.

as [57]

Hα (Q; ω) = [−i(ω + iα)I − L(Q)]−1 = [−iωI − (L(Q) − αI)]−1. (9)

The expression provides the discounted resolvent operator Hα (Q; ω) by shifting the linear operator
as (L(Q) − αI); in other words, the eigenspectrum of L(Q) is now shifted by −α along the
imaginary axis, and all eigenvalues of the shifted linear operator lie on the stable plane. An
equivalent exercise may be performed by directly evaluating the pseudospectrum of L(Q) on a raised
frequency axis of ωr + iα. Thus, α may also be viewed as a finite-time window, characterized by
1/α, to investigate the flow response. For α → 0+, the time window becomes infinite such that
Eq. (9) reduces to the original resolvent operator H (Q; ω). Because the most unstable mode of
L(Q) has a normalized growth rate of ωiL/Uref = 0.0365, the resolvent computation is carried over
a temporal window characterized by a discounted parameter of αL/Uref = 0.1 added to the original
formulation of the resolvent operator as given in Eq. (9). The imaginary frequency axis about which
the resolvent analysis is carried out is shown by the red line in Fig. 5(a). Appendix D demonstrates
that the discounted parameter does not affect the amplification mechanism, thereby justifying the use
of the discounted resolvent in the present study. The SVD is performed on the discounted resolvent
operator Hα (Q; ω) for the following discussion.

The first (σ1) and second (σ2) singular values (gain) are shown in Fig. 6. The qualitative trend of
the optimal gain is similar to past studies carried out to the same shear layer by Doshi et al. [13] to
motivate a passive control strategy, though the values are not equivalent due to the use of different
discounted parameter values and state variables [60]. The highest gain (σ1) is observed at St = 0.27,
which is the vortex roll-up frequency in the shear layer observed in the baseline flow. σ1 decreases
sharply at frequencies away from St = 0.27, indicating that the dominant mechanism of energy
amplification is the KH instability in the shear layer. The suboptimal gain (σ2) shows approximately
an order of magnitude lower amplification compared to the optimal gain (σ1) around the dominant
frequency of St = 0.27. Hence, the flow exhibits a rank-1 behavior at the dominant frequency. The
σ1 and σ2 are comparable at the lower frequencies (St � 0.1) and higher frequencies (St � 0.4). In
these frequency ranges, the rank-1 behavior is not valid.

The spatial structures of the optimal resolvent modes (forcing and response modes) at three
different frequencies, St = 0.1, 0.27, and 0.45, are shown in Fig. 7. Here, we only focus on the
first optimal mode as the suboptimal modes are not fully resolved. The pressure mode is obtained
using the same linearized gas law as described above. The streamwise velocity û and pressure
P̂ response modes show that the disturbance propagates primarily along the shear layer and the
oblique shock region close to the trailing edge. As the frequency increases, the number of lobes
per unit distance along the shear layer increases because smaller wavelengths are associated with
higher frequencies. The strength of the disturbance propagating along the shock is comparable to
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FIG. 7. Spatial structures of optimal resolvent modes. From left to right, x-direction forcing modes ( f̂x),
response mode of streamwise velocity (û) and response mode of pressure perturbation (P̂) at (top to bottom)
three different frequencies of St = 0.1, 0.27, and 0.45.

shear-layer wavepackets for the low frequency St = 0.1, which suggests that the shock pattern is
more responsive to lower-frequency excitation. At the dominant frequency of the flow St = 0.27,
the streamwise forcing structures ( f̂x) are primarily located in the vicinity around the splitter plate,
including its upper, lower, and trailing areas. At the lower (St = 0.1) and higher (St = 0.45)
frequencies St = 0.1, the forcing structure stretches further in the shear layer compared to the
locally concentrated forcing of St = 0.27.

The type of amplification mechanism in the flow at particular frequencies can be identified by the
degree of spatial overlap between the forcing and response modes [61]. At the resonant frequency
of St = 0.27, the forcing mode is centered around the SPTE, while the response mode extends
downstream along the shear layer. This indicates that the convective Kelvin-Helmholtz instability
is the dominant energy-amplification mechanism at St = 0.27. Despite this, a small region of
absolute instability exists near the SPTE, where the forcing and response modes overlap, resulting
in a nonzero projection. The primary amplification mechanism for St = 0.1 and 0.45 is absolute
instability, as there is no zero projection at any spatial location along the shear layer.

Leveraging the natural amplification mechanism of the flow identified in classical resolvent anal-
ysis poses a challenge for flow control. The forcing modes from the resolvent analysis are globally
distributed in the shear layer and far from the splitter plate surface (Fig. 7), making it technically
difficult to introduce perturbations that match the predicted forcing modes and effectively trigger
flow dynamics. Given that current active control techniques can only place actuators on the surfaces
of a bluff body to affect the base flow, we adopt the input-output analysis with a constrained spatial
window for the input, as discussed in Sec. III D.

C. Comparison between the resolvent and SPOD

In this section, we compare the resolvent and SPOD results to facilitate the interpretation of
the input-output analysis below in terms of their implication on coherent structures and implicit
modulation of nonlinear forcing. This comparison is motivated by a recent theoretical connection
between resolvent and SPOD [47,62]. Towne et al. [47] demonstrated that the resolvent modes
are identical to the SPOD modes if the forcing is uncorrelated with equal amplitude in the entire
flowfield, representing unit variance white-noise forcing. In the case of high-speed turbulent flows,
nonlinear forcing terms are correlated, deviating from white-noise forcing. As a result of these
correlated nonlinear forcing terms, the resolvent modes often differ from the SPOD modes at the
same frequency.
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(a () b)

FIG. 8. (a) The leading SPOD energy spectrum (λ1) shown in zoomed-in window from Fig. 4(a). (b) The
optimal energy amplification (σ 2

1 ) is obtained through classical resolvent analysis.

We first compare the leading energy SPOD spectrum (λ1) and optimal resolvent energy amplifi-
cation (σ 2

1 ) in Fig. 8. The distribution of resolvent energy amplification closely matches that of the
leading SPOD energy. Both the SPOD and resolvent spectra peak at the dominant frequency St =
0.27, indicating low-rank behavior. However, the other peaks in the SPOD spectra at St = 0.117,
0.156, 0.429, and 0.546 are absent in the resolvent spectrum. The nonlinear energy transfer in the
shear layer may result in peaks other than St = 0.273 in SPOD that are not well-captured by the
linearized resolvent analysis. In the following discussion, we will inspect the nonlinear interactions.
Additionally, the 2D resolvent analysis may overlook the three-dimensionality inherent in the center
plane. This is beyond the scope of our current work, and we focus on the dominant linear dynamics
of the flow in the following section.

Next, we evaluate the mode alignment coefficient by projecting the resolvent modes onto SPOD
modes to compare the resolvent and SPOD modal structures. The mode alignment coefficient
A = |ψ∗

1W q̂1| is computed between the leading SPOD mode (ψ1) and optimal resolvent response
mode (q̂1) with all state variables. The projection is computed in the spatial window (0 � x �
15,−10 � y � 5) to focus on the downstream region of the SPTE with Chu′s energy (W ). The
alignment coefficient A ranges from 0 to 1, with perfect alignment occurring when A = 1. Three
frequencies, St ≈ 0.27, 0.43, and 0.55 are selected based on the peaks observed in the SPOD spectra
to compute the alignment coefficient. The lower frequencies are avoided as SPOD modes show
distorted structures. The alignment coefficients A are 0.541, 0.293, and 0.155 for St ≈ 0.27, 0.43,
and 0.54, respectively. For the higher frequencies, the coefficient is lower than at the dominant
frequency (St = 0.27). From the comparison between SPOD and resolvent results, the resolvent is
able to capture the dominating mechanism in the real flow at the frequency St = 0.27.

As the resolvent spectrum is not able to capture peaks other than the KH instability St = 0.27,
we employ the bispectral mode decomposition (BMD) to uncover nonlinear physical mechanisms
by examining higher-order flow statistics (for a detailed algorithm, refer to Schmidt [63]). The u
velocity is considered using the L2 energy norm, with the same number of snapshots per block as
the SPOD for spectrum estimation.

Figure 9(a) displays the mode bispectrum over the regions of sum interactions (St1 + St2 =
St3) and difference interactions (St1 − St2 = St3). The global peak occurs when a fundamental
KH frequency (St = 0.273) interacts with itself in a difference manner to generate mean flow
deformation, i.e., {St1, St2, St3} = {0.273,−0.273, 0}. Along the St2 = 0 line, which represents
the linear evolution of the mean flow, local maxima are observed at St = 0.273, indicating the
dominance of the KH instability. The first harmonic of St = 0.273 is primarily generated through
a nonlinear energy transfer of the KH instability with itself, represented by {0.273, 0.273, 0.546}.
The dotted line indicates the constant frequency (St = 0.429) line. Along this line, the two most
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FIG. 9. (a) Mode bispectrum (magnitude) in the sum and difference regions. Dash (- -) and dotted (...)
lines represent the constant frequencies St = 0.273 and 0.429, respectively. (b) Bispectral modes (real part
of u−velocity) and interaction maps for the frequency triads are marked in (a). The values in the bottom left
corner of the bispectral mode display the value of log(|λ1|) for the corresponding triads.

dominant triads are {0.429, 0, 0.429} and {0.273, 0.156, 0.429}. This shows that the frequency
St = 0.429 is fed energy from the mean flow and a strong nonlinear interaction between the
KH instability and St = 0.156. We also observe other dominant triads at {0.273,−0.117, 0.156},
{0.273,−0.156, 0.117}, {0.156, 0.117, 0.273}, and {0.546,−0.273, 0.273}.

Before examining the energy cascade among these frequencies, the bispectral mode (φSt1+St2 ) and
the interaction map are depicted in Fig. 9(b) for the triads marked in Fig. 9(a). The bispectral modes
closely resemble the SPOD u-velocity modes at the same frequency. The mode at St = 0.429, gen-
erated by the interaction between St = 0.273 and 0.156, displays insignificant distorted structures.
Moreover, the interaction maps indicate that the dominant and higher (St = 0.429) frequencies
interact with the mean flow on the upper side of the shear layer. In contrast, the low frequencies
(St = 0.117 and 0.156) interact with the fundamental KH instability (St = 0.273) on the lower side
of the shear layer.

To conclude the discussion on the nonlinear energy cascade using BMD, we plot an interaction
map among frequencies that show a peak in the SPOD spectra in Fig. 10. The frequencies
St = 0.117 and St = 0.156 mainly interact with the fundamental KH instability (St = 0.273) to
produce St = 0.156 and 0.117, respectively. The KH instability is prominently fed energy from
the mean flow. Additionally, St = 0.117 and 0.156 contribute to the energy cascade to St = 0.273.
The frequency St = 0.429 receives energy almost equally from the mean flow and the nonlinear
interaction between St = 0.156 and the KH instability. BMD reveals that the frequencies St = 0.117
and St = 0.156 are primarily produced by nonlinear interactions, whereas both the mean flow and
nonlinear interactions are almost equally responsible for generating the frequency St = 0.429. The
BMD results show that the energetic frequencies St = 0.117, 0.156, 0.429, and 0.546 in SPOD
mainly arise from the nonlinear energy cascade of the KH instability with the other frequencies or
itself. Hence, it is reasonable that the linearized resolvent spectrum is unable to capture peaks at
those frequencies.

D. Componentwise input-output analysis

We now investigate different combinations of forcing components as inputs and flow responses
as outputs. To quantify the flow unsteadiness in the shear-layer region, the pressure is examined as
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FIG. 10. The nonlinear energy cascade of dominant triads for the generation of St = 0.117, 0.156, 0.273,
and 0.429. The arrows are colored by the absolute value of mode bispectrum |λ1|.

the output variable. Considering feasible control techniques that can introduce perturbation into the
flow through a surface, suitable regions of velocity components and pressure are chosen separately
as inputs to the fluid dynamical system.

1. Velocity as an input

We first examine the effect of input velocity forcing, deemed spatial momentum-based forcing,
on output pressure fluctuations. Since the output depends on spatial restrictions of the forcing,
different spatial restrictions on forcing are considered. The largest amplification (σ 2

1 ) from input
to output is quantified using the L2 norm.

The optimal gains (σ1) for three different locations, informed by the prior analyses, with
momentum components as input variables, are shown in Fig. 11. The input forcing is spatially
constrained around the surfaces of the splitter plate: upper surface (US), trailing surface (TS), and
lower surface (LS), as indicated by a green box in Fig. 11. The highest gain is observed at the
dominating KH frequency St = 0.27 regardless of input location and variable. The trend of σ1 is
qualitatively similar to the classical resolvent spectrum.

When forcing is applied at different locations on the splitter plate—US, TS, and LS—the optimal
input direction (either f̂x or f̂y) varies depending on the frequency range. At lower frequencies
(0 < St � 0.15), f̂x tends to yield higher gains when introduced at the US. Conversely, f̂y pro-

US TS

LS

(a () b () c)

FIG. 11. L2-norm-based gain with x- and y-direction input variable and pressure as output variable. Input
is constrained at the (a) upper surface (US), (b) trailing surface (TS), and (c) lower surface (LS) of the splitter
plate. The green boxes denote an input applied area. H̃ f̂x→P denotes the case with x-direction input while
pressure is output variable.
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FIG. 12. The spatial structures of the optimal input-output modes at three different frequencies: St = 0.1,
0.27, and 0.45. The top and bottom columns show the output pressure perturbation P̂ for the x-direction f̂x

and y-direction f̂y input, respectively, in each subplot. (a) Splitter plate trailing surface (TS), (b) upper surface
(US), and (c) lower surface (LS) input locations. The green dashed lines denote the forcing location.

duces a higher gain at the TS for frequencies up to St � 0.3. However, for the higher frequency
region (St � 0.3), gains become comparable between f̂x and f̂y for both US and TS input. When
introducing forcing at the LS [Fig. 11(c)], the amplifications in the pressure are almost identical
regardless of the forcing direction. Across all scenarios, the TS consistently shows the highest
amplification, particularly with f̂y, suggesting it is the optimal location for inducing significant
pressure fluctuations in the flow.

Figure 12 presents the spatial structures of optimal input-output mode pairs at three frequencies
(St = 0.1, 0.27, and 0.45) for different input locations. At the TS [Fig. 12(a)], both f̂x and f̂y

inputs exhibit similar responses in the pressure perturbation P̂ across frequencies. The dominant
response occurs in the shear-layer region, with additional responses observed along the lower side
of the shear layer as propagating waves and along the oblique shock. The flow pattern is consistent
with the phenomenon of stacked compression waves induced by the vortical structures convecting
downstream captured in the LES.

Figures 12(b) and 12(c) show the pressure output when the input location is constrained to the
US and LS, respectively. At the dominant frequency St = 0.27, the pressure response is situated
in the shear-layer region for both f̂x and f̂y inputs, with very weak waves observed on the upper
side of the SPTE for both the input location. The shear-layer instability remains the most responsive
mechanism. However, for frequencies deviated from the resonant frequency (i.e., lower frequency
input at St = 0.1 and higher frequency at St = 0.45), response modes of pressure perturbation
P̂ concentrate near the forcing location. In contrast, the response in the shear layer is relatively
weak. For both US and LS inputs, strong pressure waves emanating from the input location travel
downstream, and their propagating direction aligns with the input forcing direction at St = 0.1, and
0.45. Interestingly, St = 0.45 input in f̂x and f̂x at the US and LS mainly influence the pressure wave
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FIG. 13. (a) L2-norm-based gain with pressure as input and output. Forcing is constrained at the upper
surface (US), trailing surface (TS), and lower surface (LS) of the splitter plate. (b)–(d) Modal structures of the
output and input pressure perturbation for three representative frequencies: St = 0.1, 0.27 and 0.45; (b) TS,
(c) US, (d) LS spatial inputs.

and do not impact the wavepackets in the shear layer. Low amplitude wavepackets are observed in
the shear layer at the low frequency St = 0.1 input.

In summary, the shear layer exhibits a strong response to perturbation inputs applied at the splitter
plate trailing surface across all frequencies. Input at the upper and lower surface locations introduces
strong pressure waves emanating from the input location when the forcing frequency deviates
from the resonant frequency of St = 0.27. The pressure perturbation output is only consistently
observed in the shear layer at the dominant frequency of St = 0.27. This behavior is attributed to
the convective nature of KH instabilities, indicating that regardless of spatial location and variable
inputs, the shear layer is particularly responsive at St = 0.27. The analysis here also provides
insights into the choice of input configuration to excite particular flow regions precisely.

2. Pressure as an input

In addition to the momentum-based forcing, we also examine pressure-based forcing, again
using the pressure variable to characterize the output. Figure 13(a) illustrates that pressure-based
forcing exhibits higher gains at the dominant frequency St = 0.27 across all locations considered.
Specifically, the TS emerges as the optimal location for inducing the largest amplification compared
to the US and LS. The energy amplification for the pressure-based input is relatively lower than
the momentum-based forcing. These results indicate that momentum-based actuators may be more
efficient in an active flow control design to affect the original flow behaviors. However, the results
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can be biased based on the norm used in the current study. The nonlinear simulations will be helpful
in shedding light in this direction.

As shown in Fig. 13, the output pressure modal structure resembles the features observed in the
cases when the forcing is applied in x direction f̂x for the respective input location and frequency. All
the observations from the previous discussion on momentum-based input have also been captured
for the pressure input. For example, the shear-layer wavepackets and the pressure waves traveling
far-field are responsive for all the frequencies while input is given at TS [see Fig. 13(b)]. Due to
the convective nature of the KH instabilities, the optimal pressure response is located in the shear
layer at dominant frequency St = 0.27, regardless of the location of an input. A major distinct
feature is noticed for the LS input at St = 0.45 with pressure input compared to f̂x input, in which
the pressure waves traveling to the far field are located mainly in the bypass stream for input f̂P

[Fig. 13(d)], whereas those waves are in both the main and bypass stream for the input f̂x [Fig.
12(c)].

3. Isolating the far-field traveling waves

The pressure output modes obtained for the different inputs are observed in wavepackets in the
shear-layer region or far-field traveling instability waves. These waves are linked to the acoustic
far-field through a Mach-wave-like mechanism in supersonic flows [64]. A small disturbance input
placed upstream can trigger a supersonic instability wave downstream that contributes to noise
generation. This instability process is well captured by parabolized stability equations (PSE) [65]
and input-output analysis [42] for a jet flow.

In the present study, to compute the speed of wavepackets and instability waves, we consider a
wave in the radial direction represented by e−ikr r [66]. Here, kr denotes the radial wavenumber,
and the phase speed is given by cr = ω/kr , where ω (= 2πStUref/L) is an angular frequency.
The normalized projection between the first output pressure modes and this radial wave is
determined by

BP = 〈P̂(r, θ, St ), e−ikr r〉
‖P̂‖2 ‖e−ikr r‖2

. (10)

The phase speed is varied cr/c∞ = [0.1, 3], where c∞ is the ambient speed of sound. The center of
the radial coordinate is approximately at (x, y) = (0.75, 0).

Figure 14 illustrates the absolute value of the projection BP for representative cases. At
St = 0.27 across all input locations and variables, the highest projection occurs at a phase speed
of approximately cr/c∞ ∼ 0.8 for shear-layer wavepackets, characteristic of Kelvin-Helmholtz
instability modes [29]. Meanwhile, pressure instability waves in the bypass stream exhibit phase
speeds greater than c∞, specifically around cr/c∞ ∼ 1.6, indicative of Mach-wave-like mechanisms
[67,68]. At a higher frequency of St = 0.45, prominent pressure waves are observed for f̂y input
at US and f̂ x input at LS (see Figs. 12(b) and 12(c), respectively). These waves propagate at
supersonic speeds in both the main and bypass streams, with phase speeds exceeding cr/c∞ > 1.
Notably, for f̂ x input at LS, the phase speed of pressure waves nearly exceeds cr/c∞ > 2, indicating
potential significant far-field noise generation. At the low-frequency scenario of St = 0.1, the
projection spans a broader range within 1.5 < cr/c∞ < 2.5 in the bypass stream due to wider
lobe structures associated with lower frequencies. Overall, the phase speed of pressure instability
waves, which strongly influences far-field noise, is notably sensitive to both the input variable and
its location.

4. Effect of upstream input location

In this section, we evaluate the effect of an input location on the pressure output response by
moving the spatial location of the input upstream of the SPTE as shown in Fig. 15(a). Input is
constrained at three locations on the upper surface with δx = 0, L, and 2L, where δx is the distance
from SPTE.
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FIG. 14. The absolute value of projection between the optimal pressure output mode and radial waves with
varied phase speed cr/c∞ = [0.1, 3] for three frequencies St = 0.1, 0.27, and 0.45. (a) f̂y input at the trailing
surface (TS), (b) f̂y input at the upper surface (US), and (c) f̂x input at the lower surface (LS). A green box
indicates an input location.

The y-direction momentum forcing f̂y is prescribed. As the input location moves upstream
from the trailing edge, σ1 is significantly reduced at St = 0.27. However, σ1 is almost identical
for St � 0.1 and St � 0.35. Figure 15(c) shows the shear-layer wavepackets remain responsive at
the upstream locations δx = L and 2L mainly due to the dominating KH instability at St = 0.27.
Additionally, the upstream input shows the strong pressure waves produced from the input. For
St = 0.1 and 0.45, the shear-layer response becomes less dominant compared to the pressure wave
response produced from the local input f̂y as it is moved upstream, away from SPTE [Figs. 15(b)
and 15(d)].

E. Two-dimensional nonlinear simulation with perturbations

Simulations are conducted for the baseline and perturbed supersonic shear-layer flow using a
compressible Navier-Stokes flow solver CharLES [69]. An unstructured grid is employed with a
second-order finite-volume method and third-order Runge–Kutta time integration. The incoming
flow conditions for the main and bypass streams are detailed in Table I. To mitigate reflected
waves, a sponge layer is applied at the outlet and bottom boundaries, while the top boundary
is treated with an inviscid wall condition to replicate the original 3D LES dataset. The baseline,
represented by a 2D simulation without perturbations, is compared with the center plane of the 3D
LES data in Appendix A, demonstrating a good agreement in the mean flow profile. Following a
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FIG. 15. (a) L2-norm-based gain with y-direction forcing f̂y as an input variable and pressure as output
variable. The blue box indicates the location of an input. Modal structures of the output pressure and input f̂y

perturbations for three upstream locations at a frequency of (b) St = 0.1, (c) St = 0.27, and (d) St = 0.45.

grid-independence study presented in Appendix A, a grid comprising 0.76 million control volumes
is selected for further investigation.

We have selected two cases of particular interest based on the linearized input-output analysis in
the previous section for determining perturbation parameters. Notably, the upper surface forcing
in the y-direction at frequencies St = 0.27 and 0.45 exhibit distinct features. At the dominant
frequency St = 0.27, the pressure wavepackets in the shear layer display a higher response, whereas
the input at St = 0.45 yields a dominant response in the pressure wave emanating from the US input
location and propagating far-field as traveling waves [refer to Fig. 12(b)]. Therefore, we introduce
perturbations at the upper surface of the splitter plate within a square box with δx = 0. A harmonic
forcing is applied in the y-momentum equation, featuring a flux amplitude of approximately 12% at
two different frequencies, Sta = 0.2545 and 0.45, where Sta represents the frequency of a forcing.

The instantaneous pressure fluctuations (P′) depict the strong pressure wave introduced by the
forcing location for both cases, as shown in Fig. 16(a). Since the instantaneous field contains
coherent structures at multiple frequencies, identifying those associated with specific frequencies
can be challenging. To address this, we employ the dynamic mode decomposition (DMD) method to
extract the dynamically important mode. The DMD segregates time-resolved snapshots into modes,
each associated with a single frequency [70,71]. This is an appropriate choice for our analysis as
it computes the mode related to a single frequency without a need for a long-time dataset, which
is necessary for SPOD. The pressure flowfield is sampled with a time interval of �tUref/L ≈ 0.19,
and 600 snapshots are used to perform the DMD for both perturbed flow simulations.
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FIG. 16. Two-dimensional simulations with a perturbation introduced in y-momentum equation at the
upper surface of the splitter plate. (a) Instantaneous pressure fluctuation (P′/Pref), (b) pressure DMD mode
from the nonlinear simulation dataset, (c) The output pressure mode-1 and mode-2 predicted from linearized
input-output analysis with the f̂y forcing at the upper surface of the splitter plate.

In Fig. 16(b), the DMD pressure modes are presented, and Fig. 16(c) depicts the corresponding
output pressure modes obtained from input-output analysis. Significant similarities are observed
between the DMD modes and output modes. The DMD pressure mode reveals higher fluctuations
in the shear-layer wavepackets at St = 0.25, accompanied by a low-amplitude pressure wave
introduced from the forcing location. These features closely resemble those of the leading output
mode-1. For the Sta = 0.45 case, the DMD mode exhibits very strong pressure waves originating
from the forcing location, along with relatively low-amplitude pressure waves in both the main and
bypass streams. These features align well with the leading output pressure mode-1 at St = 0.45.
Additionally, the wavepackets in the shear layer near SPTE, as evident in the DMD mode, are
present in the output mode-2 with relatively low amplitude as compared to those pressure waves
originating from the forcing location.

Since DMD analysis does not provide a rank to its mode at each frequency, the dynamics captured
by DMD can be observed as a superposition of the multiple output modes [47]. We can further
relate it to the amplification obtained from the linear analysis. Near the dominant frequency of
St = 0.25, the leading energy amplification σ 2

1 is significantly higher than σ 2
2 , i.e., σ 2

1 /σ 2
2 ≈ O(10),

indicating the rank-1 behavior. Hence, the leading amplification mechanism—wavepacket response
in the shear-layer—as predicted by the output pressure mode-1 is sufficient to capture the shear-layer
dynamics as reflected by DMD mode. At St = 0.45, the σ 2

1 and σ 2
2 are very comparable (σ 2

1 /σ 2
2 ≈

O(1)), indicating that the suboptimal modes are equally important. In consequences, the features
observed in the output mode-1 and mode-2 are superimposed in the DMD mode, where the pressure
waves originating from the forcing mechanism are still the leading amplification mechanism. The
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downstream (x � 10) wavepackets, which may result from the nonlinear interactions, observed in
DMD are not captured in all output modes. The absence of downstream shear-layer wavepackets
identified in the DMD mode at St = 0.45 is attributed to nonlinear turbulence interactions beyond
x � 10, which are not adequately captured by linear analysis methods. Despite this, it is noteworthy
that predictions from the input-output analysis correlate effectively with nonlinear simulations
within the region x � 10.

IV. CONCLUSIONS

We use a combination of linear and data-driven techniques together with scale-resolving simu-
lations to investigate the effect of perturbations on the development of a globally significant shear
layer in a multistream rectangular nozzle flow. Previous studies have indicated that the mixing of
the main (M∞ = 1.23) and bypass (M∞ = 1.0) streams near the trailing surface of the splitter plate
cause high-frequency loading on the airframe and generate a prominent farfield noise signature. The
baseline flow exhibits large-scale vortical structures that roll up and convect downstream along the
shear layer due to Kelvin-Helmholtz (KH) instability. Spectral analysis reveals the dominant fre-
quency of these structures at St = 0.27; at this frequency, spectral proper orthogonal decomposition
(SPOD) of streamwise velocity displays KH instabilities along the shear layer, while modes of the
pressure variable reveal wavepackets along the shear layer and pressure waves traveling in the main
and bypass streams. In addition, bispectral mode decomposition (BMD) is utilized to reveal the
dominant nonlinear energy exchanges. The BMD analysis illustrates the energy cascade from the
KH instability to frequencies that exhibit significant energy in the SPOD apart from St = 0.27.

The leading gain obtained from the classical resolvent, modified with a discounting parameter
to account for the instability, highlights higher energy amplification at the dominant frequency,
with an order of magnitude higher than the first suboptimal gain. The forcing and response modes
showcase the convective nature of instability at St = 0.27. These observations corroborate the KH
instability as the primary energy amplification mechanism in the supersonic shear-layer flow. The
interpretation of these dynamics is further explored by comparing SPOD and resolvent analyses. A
key observation is that the leading SPOD energy spectra and optimal resolvent energy amplification
spectra follow similar trends. However, the resolvent gain spectrum misses peaks at the few
energetic frequencies in SPOD; this is attributable to nonlinear interactions, as shown by BMD,
in turbulent flows that are not captured in linear resolvent analysis. Moreover, the alignment of the
leading SPOD and optimal resolvent response modes at the dominant frequency suggests that the
coherent structures predicted by the linear analysis remain active in the highly turbulent flow.

The results are then used to guide componentwise input-output analysis by restricting inputs to
feasible locations where the solution is sensitive to forcing, including the upper (US), lower (LS),
and trailing (TS) surfaces. The effects of x and y momentum, as well as pressure inputs (forcing),
are explored on the output (response) pressure field. All combinations of state variables and spatial
restrictions display higher amplification occurring at the dominant frequency and indicate the
dominance of the KH instability as the primary amplification mechanism. The splitter plate trailing
surface emerges as the most sensitive location for introducing perturbations.

At the dominant frequency, the shear-layer wavepackets and oblique shock exhibit high response
regardless of the input location. The US and LS surface inputs introduce additional high-amplitude
pressure waves originating from the input location in the main and bypass streams, respectively,
while the shear layer shows a weaker response. The phase speed analysis reveals that the speed
of the KH mode in the shear layer is 0.8 times the ambient speed of sound, consistent with past
studies. Conversely, pressure waves traveling in the main and bypass streams convect at supersonic
speed, highly influenced by the input location and variables. Moreover, shifting the US input further
upstream of the SPTE results in a significant reduction in amplification at the dominant frequency.
The pressure response shifts to high-amplitude pressure waves originating from the input location.
At the same time, the wavepackets in the shear layer are weaker except at the dominant frequency
due to the prominent effect of the KH instability.
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TABLE II. The first singular value (σ1) at the dominant frequency St = 0.27 for different grid resolutions.

Grid St σ1 % change

G1: 0.101 M 0.27 2.2982 × 103 –
G2: 0.136 M 0.27 2.2856 × 103 −0.55%
G3: 0.176 M 0.27 2.2554 × 103 −1.34%

Finally, demonstrative 2D simulations are conducted with unsteady forcing applied to the upper
surface of the splitter plate at two different frequencies. The pressure modes obtained through
dynamic mode decomposition (DMD) closely match the pressure output modes predicted by the
input-output analysis at the corresponding frequency. The optimal output pressure mode alone
accurately predicts the prevailing flow features observed in the DMD pressure mode with the input
at the dominant frequency; whereas, for the St = 0.45 forcing case, both the optimal and second
pressure modes are equally essential for capturing the overall dynamics, as shown by comparing
these modes with the DMD pressure mode. In summary, we have demonstrated that linear input-
output analysis effectively captures the dominant dynamics of highly nonlinear turbulent supersonic
shear-layer flow. The insights gleaned from the input-output analysis can be leveraged to design
effective flow control strategies in supersonic shear-layer flow scenarios.
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APPENDIX A: GRID INDEPENDENCE STUDY

Table II displays the first singular value of the resolvent operator for Re = 500 and St = 0.27
with discounted parameter α = 0. The percentage change in σ1 is less than 2% for all three
grids, indicating that the flow mechanism associated with the leading gain has been well resolved.
However, the forcing and response modal structures (not presented here) exhibit grid dependency in
the shear layer x > 10 for the case with grid G2. To ensure grid resolution for capturing dominant
modes, local grid refinement is employed in the shear-layer region in the G3 grid. The forcing and
response modes calculated on this grid show no grid dependency, and we use the grid G3 for all the
analyses in the present work.

The 2D simulations are also conducted using three grids, namely M1 (0.55 million cells), M2
(0.76 million cells), and M3 (1.01 million cells). For all three grids, the y+ value is maintained at
approximately 1. The simulations are performed for a convective time tUref/L ≈ 267 after the initial
transition phase. Figure 17 compares the normalized time-averaged streamwise velocity u/Uref at
various streamwise locations (x = 1, 2, 5, 10, and 15) for all three grids. A minor difference is
observed in u between grid M1 and M2 in the shear-layer region, while u overlaps for M2 and
M3. The flow structures are well resolved for grid M2 in the shear-layer region, and no significant
changes are observed for grid M3. Consequently, we opt to utilize grid M2 with 0.76 million cells
for the 2D nonlinear simulations.

We also compared the results obtained from the 2D simulations and the center plane data from
the 3D simulations performed by Stack et al. [12] in Fig. 17. The time-averaged streamwise velocity
shows a good agreement between 3D and 2D cases overall. In the vicinity of the SPTE (x = 1), the
2D time-averaged streamwise velocity slightly underpredicts the sharp change in the shear-layer
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3D [Stack et al. (2019)]

2D - M3 (1.01 M) 
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ū/Uref ū/Uref ū/Uref ū/Uref ū/Uref

 x = 1   x = 2  x = 5   x = 10   x = 15

FIG. 17. A comparison of a normalized time-averaged streamwise velocity u/Uref at various streamwise
locations (x = 1, 2, 5, 10, and 15) between the center plane taken from 3D and 2D simulations with different
grids. “M” represents a million.

region, while a reasonable good match is demonstrated between the 2D and 3D cases downstream
of the SPTE (x � 10). However, a deviation is observed in the u-velocity far away from the SPTE at
x = 15. The breakdown of the 2D roller structures produced at the SPTE as they move downstream
leads to a spanwise variation in the flowfield, potentially causing the observed deviation in the 2D
and 3D simulations’ mean flowfields far from the SPTE. Despite this, since we achieved a good
agreement in the vicinity of the splitter plate between the 2D and 3D simulations, it is reasonable
to use the 2D simulations to validate the predictions obtained from the input-output analysis. It
is worth noting that the dominant frequency (St = 0.273) reported in the 3D simulation slightly
changes to St = 0.2545 in the 2D simulation, but this change does not lead to a significant change
in the dominant flow mechanism.

APPENDIX B: RANDOMIZED SINGULAR VALUE DECOMPOSITION

The algorithm used in the present study to perform randomized singular value decomposition is
presented in this Appendix. Instead of performing SVD on H (Q; ω, β ), a low-rank representation of
the resolvent operator can be derived by finding an appropriate low-dimensional basis to project the
large resolvent operator on a suitable subspace. A sketch S of the operator H (Q; ω, β ) is obtained
by using a tall and skinny test matrix ϒ as

S = H (Q; ω, β )ϒ, (B1)

where ϒ ∈ Rm×k , m is the size of the resolvent operator, k is total number of desired singular values
and k � m. A sketch matrix S contains the dominant information of H (Q; ω, β ) [72–74]. The test
matrix ϒ can be constructed using random values with normal Gaussian distribution [75] or be
weighted by some physics-informed input matrix [50]. As the sketch holds the dominant features
of H (Q; ω, β ), we can form an orthonormal basis with O ∈ Ck×m by using QR decomposition of
S. Then, the projection of H (Q; ω, β ) onto O is obtained to derive its low-rank approximation such
that H (Q; ω, β ) ≈ OM, where M = O∗H (Q; ω, β ) ∈ Ck×m. Next, we perform the SVD upon this
reduced-size matrix M as

M = Ũ�V
∗
, (B2)

then the low-rank approximation of the resolvent operator is given by

H (Q; ω, β ) ≈ OŨ�V
∗
, (B3)
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xx

FIG. 18. (a) The first singular value (σ1) of randomized SVD and full SVD with αL/Uref = 0.1. (b) The
streamwise velocity component (û) of the leading response modes from full and randomized SVD for St =
0.1, 0.27, and 0.45.

where the left singular vector is approximated as U = OŨ [72], and the right singular vector is
given by V .

In the present study, a test matrix with k = 11 (where k is a total number of desired singular
values) is used to compute the SVD of H (Q; ω, β = 0), which results in a significant reduction
in the dimension of the matrix. The comparison of the results with αL/Uref = 0.1 obtained from
randomized SVD and full SVD (Arnoldi method, MATLAB svds) is shown in Fig. 18. We
observe remarkable agreement for the leading singular value σ1 and mode structures as shown in
Fig. 18. This justifies using randomized SVD to enable the processing of relatively large input-
output operators in the present work.

APPENDIX C: REYNOLDS NUMBER EFFECTS

In this Appendix, we investigate the influence of Reynolds number on the leading forcing and
response modal structures and their amplification ratio. Previous studies have explored the impact
of Reynolds numbers on the linearized Navier-Stokes operator [44] and the resolvent operator
[13,29]. Figure 19(a) depicts the leading resolvent gain for three different Reynolds numbers,
spanning an order of magnitude. Prior to conducting the resolvent analysis, a stability analysis
is performed for all Reynolds numbers to determine the appropriate discounted parameter. It is
observed that the growth rate of the unstable eigenvalue at St = 0.27 increases with Reynolds

Re = 500

Re = 5000

Re = 50000

x

fx - Forcing
(a () b) u - Response

x

f̂x, ûRe
Re
Re

FIG. 19. (a) The leading gain σ1 distribution for the representative Reynolds numbers, and (b) the
x-direction forcing and response mode pair for St = 0.27 for different Reynolds numbers.
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FIG. 20. The leading gain σ1 distribution for the representative discounted parameter (αL/Uref) from 0 to
0.15.

number. The discounted parameter is set as αL/Uref = 0.15 to compute the resolvent gain for all
Reynolds numbers, ensuring that the most unstable eigenvalue resides below it. While the gain
for all frequencies increases with the Reynolds number, the overall gain distribution trend remains
similar. Moreover, the amplification mechanism does not change with a Reynolds number (Fig. 19);
we consider the Reynolds number as a free parameter [29].

Figure 19(b) shows the x-direction forcing and response pair at St = 0.27 for the representative
Reynolds number. The response modal structures resemble the KH instability for all three Reynolds
numbers and exhibit no qualitative discrepancies. These observations align with the findings of a
previous study by Pickering et al. [76], which concluded that inviscid instabilities are independent
of the eddy-viscosity model at a sufficiently high Reynolds number. The forcing mode comprises
noise-type structures in the shear layer for high Re = 50000. It is noteworthy that further grid
refinement does not result in cleaner forcing modes. The grid requirement to compute clean forcing
modes at such high Reynolds numbers might be even higher than the LES grid. However, the
forcing modal structures do not exhibit significant differences for all Reynolds numbers. The present
study focuses on inviscid-type KH instability, which dominates near- and far-field fluctuations as
discussed in Sec. III A 1. Therefore, to reduce computational costs without altering the physics of
the flow, we choose Re = 500 for our linear analysis.

APPENDIX D: DISCOUNTED PARAMETER EFFECTS

The Appendix reports the effect of a discounted parameter (αL/Uref) on the leading gain σ1

distribution. The overall trend of σ1 remains consistent, with a peak observed at St = 0.27 for all
αL/Uref values considered as shown Fig. 20. When the discounted parameter is around the growth
rate of ωiL/Uref = 0.0365 at St = 0.27 (i.e., αL/Uref = 0 or 0.05), the leading gain exhibits a large
value due to a resonance between the input frequency and the unstable instability (Fig. 5). For the
higher values of αL/Uref = 0.1 and 0.15, the σ1 reduces at all frequencies but more significantly at
St = 0.27. This analysis indicates that the identification of peak frequency St = 0.27 is independent
of the select discounted parameter range, and other peaks are not observed by choosing other values
of αL/Uref.
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