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A numerical experiment is conducted to investigate the response of a homogeneous
isotropic turbulent field at a statistically equilibrium state when the energy cascade process
is abruptly interrupted. Vortex motions of a certain scale in the inertial subrange are
extracted using a Fourier bandpass filter and forcibly damped by applying artificial forces
to the small regions that are the target vortices. Once the forces are applied, the target
vortices immediately disappear from the flow field, which is followed by a slight increase
in kinetic energy in the larger scale range and a decrease in the smaller scale range. The
decrease in energy in the smaller scale range is likely to be caused by the decrease in the
stretching speeds of the vortices of that range. Next, the behaviors of individual vortices
whose scales are either four times or twice as large as the target scale are tracked using a
method in which each vortex is reconstructed as a group of vortex units. It is found that the
vortices that are twice as large as the target vortices show smaller curvatures and longer
lifespans in comparison to the case without artificial forces, while no remarkable changes
are found for the vortices that are four times larger.
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I. INTRODUCTION

Turbulence is a typical nonlinear system with a high degree of freedom. One of the major features
of turbulence is an energy cascade, which is a continuous energy transfer from large-scale motions
to small-scale motions. Kolmogorov [1] theoretically deduced that the power spectrum of turbulent
kinetic energy has a constant slope of −5/3 in the region where the vortex scale is much smaller than
the energy-containing scale while much larger than the energy-dissipating scale, which is known as
K41. The energy flux across the scale is constant in this inertial subrange. After this K41 theory,
various models have been proposed under some assumptions to describe the statistical aspect of
turbulence [2–4], including Kolmogorov’s revised theory known as K62 [5].

Nowadays, due to remarkable progress in computer resources, we can directly access a large
turbulence database obtained by direct numerical simulations (DNSs). Analyses of the nonlinear
terms of the Navier-Stokes equation in the wave-number space explain that energy is transferred
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from one scale to a smaller scale through triad interactions [6–8]. In addition, turbulence is found
to be composed of a number of fine tubular vortices of the energy-dissipative scale, from the visu-
alization of intense vorticity regions through DNSs [9–12]. In high Reynolds number turbulence,
these fine tubular vortices form clusters that act as large vortices, and the spatial intermittency of
their distribution becomes significant. The sizes of the clusters are of the energy-containing scale
range [13–15]. However, it has been shown that the direct contributions of these fine-scale vortices
to the whole turbulent motion are significantly small [16,17]. Therefore, it is difficult to under-
stand the physical mechanism of the energy cascade process through direct observations of such
fine-scale vortices.

In studies aimed at investigating the role of the vortical structures and their motions in the
energy cascade process, filtering techniques have been employed. Goto [18,19] analyzed positional
relationships among the vortices of different scales using Fourier low-pass filters and proposed a
physical mechanism of the energy cascade phenomenon: a pair of vortices stretch smaller vortices
through the strain field around them and then the stretched vortices stretch even smaller vortices,
and so on. Leung et al. [20] investigated the geometric relationships and mutual interactions among
the vortices in the inertial subrange using the Fourier bandpass filter. In the extracted fields, they
evaluated the vorticity generation term, which consists of the strain tensor and the vorticity tensor,
and found that the energy transfer takes place in association with the vortex stretching caused
by the vortices of a 2–4 times larger scale. Doan et al. [21] also conducted a similar analysis
against the isotropic turbulence of various Reynolds numbers and reached the same conclusion.
For quantitative analysis of the geometry of turbulent vortical structures, some attempts to extract
individual vortices and represent them as a group of geometric elements have been conducted.
Goto et al. [22] analyzed vortical structures of isotropic turbulence driven by both isotropic and
anisotropic forces and presented a quantitative picture of the hierarchy of multiscale vortices and
their generation mechanism by extracting the vortex axes and using them as a geometric model
of vortices. Hirota et al. [23] investigated the geometric relationships among vortical structures
and the vortex stretching mechanism by directly computing the induced velocity fields of the
individual vortices in the inertial subrange, which were extracted using the Fourier bandpass
filter and reconstructed as groups of discrete vortex segments. Yoneda et al. [24] mathematically
formulated the energy cascade model in terms of vortex stretching without using the Kolmogorov’s
hypotheses. Tsuruhashi et al. [25] decomposed isotropic turbulence into different scales using the
Fourier bandpass filters and extracted vortex tubes from the decomposed fields. They showed the
self-similarity and steadiness of the hierarchy of the vortex tubes and confirmed validity of Yoneda
et al. [24] assumptions.

The time evolution of kinetic energy associated with turbulent vortex motions has also been
studied. Meneveau and Lund [26] measured the Lagrangian correlation coefficient between local
kinetic energy at large and small scales by tracking fluid particles in an isotropic turbulence. They
reported that kinetic energy at a certain scale is transferred to smaller scales with a time delay.
Cardesa et al. [27] investigated the temporal evolution of the energy flux across the length scales
in turbulent flows and reported that the behavior of the energy flux at one scale follows that of
twice the scale with a time delay. Additionally, Cardesa et al. [28] extracted regions of intense
energy density as coherent structures of turbulence and investigated the interactions among the
structures of different scales by tracking them. From the evaluation of the coherent structures of
two different scales, they found that the structures of a certain scale are likely to appear inside
those twice the size and concluded that the energy of the coherent structures of a certain scale is
mainly transferred to those that are half the scale. Although these findings suggest that the spatially
localized vortical structures play a role in the energy transfer, the detailed process remains unclear
to date.

If one can observe individual vortices from the beginning to the end, it may help in understanding
the role of hierarchical vortex motions in the energy cascade process. Several algorithms that can
track vortices in a turbulent flow have been proposed [29–31]. In general, the lifespan of a vortex
of a certain scale is measured using the timescale, termed the eddy turnover time [2]. For instance,
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Villermaux et al. [32] observed the motion of intense tubular vortices in a grid-generated turbulence
in a water tank experiment and showed that their lifespans could be scaled by the turnover time of
integral-scale vortices, although some variations exist depending on the measurement conditions.
The lifespan of coherent structures in an isotropic turbulence is also reported to be in the order
of their turnover time [28]. However, it should be noted that the characteristics of the coherent
structures, defined as high-energy-density motions, do not necessarily agree with those of ordinary
vortices found in a turbulent field.

This paper describes an approach to better understand the role of vortical structures in the energy
cascade. The focus of this paper is the inertial subrange. In fully developed turbulent flow, the
energy constantly flows from large to small scales and eventually dissipates into thermal energy. If
the vortex motions of a certain scale are artificially removed from the flow, the balance in the energy
transfer will be broken, which will especially influence the vortices of the neighboring scales. Our
intention is to observe the reactions of these vortices and to uncover the general role of vortices in
the energy transfer of a turbulent flow.

In this paper, the vortex motions of a certain scale in the inertial subrange are selectively
suppressed by adding a volume force, and the influence of the artificially damped vortices on the
vortices of other scales is observed in detail by tracking their motions. The individual vortices in
the turbulent field are replaced by a group of short cylindrical vortex segments in advance, and the
lifespans and geometric shapes of vortices are compared before and after the artificial damping.

II. PROCEDURE OF ANALYSIS

A. Target flow field

The target fully developed isotropic turbulence in a periodic cubic box of length 2π is obtained
through a direct numerical simulation. The governing equations are the three-dimensional vorticity
transport equations,

∂ω

∂t
+ (u · ∇)ω = (ω · ∇)u + ν∇2ω + ∇ × f 1 + ∇ × f 2, (1)

where ω is the vorticity vector, t is time, u is the velocity vector, and ν is the kinematic viscosity.
f 1 is a solenoidal force of a random phase that drives the turbulence. The solenoidal force is

chosen to be divergence-free in Fourier space with the condition

k · f̂ 1 = 0, (2)

where k is the wave number and ˆ indicates the value is in the wave-number space. This condition
can be satisfied by writing the force in the form

f̂ 1(k, t ) = Aran(k, t )e1(k) + Bran(k, t )e2(k), (3)

where e1 and e2 are unit vectors orthogonal to each other and to k. Aran and Bran are complex random
numbers chosen to satisfy the relation

< AranA∗
ran > + < BranB∗

ran >= F (k)

2π |k|2 , (4)

where ∗ indicates complex conjugate. F (k) defines the spectrum of the solenoidal force, which
is kept constant in the low wave-number components of 1 � |k| � 2, and otherwise is zero. The
detailed description of the solenoidal force, f 1, can be found in Alvelius [33].

The magnitude of the driving force is chosen so the product of the maximum wave number of
the simulation and the Kolmogorov length is kept greater than 1.0. The energy-damping force, f 2,
is another forcing term that is used to suppress vortical motions of a certain length scale and will
be described later. A pseudospectral method is used for the spatial discretization, and a fourth-order
classical Runge-Kutta method is employed for the time integration. The aliasing errors are removed
through a phase-shift method. The computational conditions are summarized in Table I.
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TABLE I. Computational conditions. N is total number of grids, �x is the grid width, �t the time step,
and ν the kinematic viscosity.

N �x �t ν

5123 1.23 × 10−2 2.0 × 10−3 3.73 × 10−4

After the flow field reaches a state of equilibrium, the energy-damping force, f 2, in Eq. (1) is
then activated, and the time series data before and after the activation, −4 � t/T � 4, are used
in the analyses. The time, t/T = 0, corresponds to the time when the energy-damping force, f 2,
is initiated, where T is the large-eddy turnover time. Here, the large eddy corresponds to the size
of those eddies in which the energy to drive turbulence is poured in. The temporal evolution of
the turbulent Reynolds number based on the Taylor microscale is shown in Fig. 1 and the time-
averaged statistical quantities of the turbulent field are summarized in Table II. Figure 2 shows the
energy spectrum at t/T = 0. To analyze the interactions among vortical structures with different
scales in the inertial subrange, the cutoff wave numbers should be large enough compared with the
energy-containing range and sufficiently smaller than the Kolmogorov wave number. Additionally,
the bandwidth must be the same on a logarithmic scale. In this paper, the bandwidth is set to be log 2
for k ∈ [4, 8], [8, 16], [16, 32], and [32, 64], which are represented by their center wave numbers,
kc = 4

√
2, 8

√
2, 16

√
2, and 32

√
2. Hence, the disordered vortices with a characteristic diameter,

lc = π/kc, are extracted from the flow field. It should be noted that the extracted vortex scale is
given by half of the wavelength. Yoshida et al. [34] reported that the high wave-number modes with
kη > 0.2, i.e.,lc < 15.7η, could be regenerated from low wave-number modes. In other words,
the target vortex scale should be larger than this critical scale, 15.7η, otherwise the effect of initial
errors or uncertainties on the vortex formation cannot be negligible. This condition is used as an
indicator that shows the limit of the inertial subrange. The target scales, lc = 111.6η, 55.8η, and
27.9η, satisfy this condition and, thus, these scales are considered to be within the inertial subrange.
On the other hand, the scale 13.9η does not satisfy the condition, which suggests contamination
from the energy-dissipation range exists in this scale.

B. Identification of vortical structures of various scales

A Fourier bandpass filter with a sharp cutoff function is employed for the extraction of the
vorticity field of a certain scale from the entire turbulent field [22,23]. The filtered vorticity field

FIG. 1. Time evolution of turbulent Reynolds number based on Taylor microscale, Reλ. Dotted line for
t/T > 0 indicates the case in which vortex suppression is not applied.
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TABLE II. Time-averaged statistical properties of turbulent field. E is the total energy, Reλ the Taylor-
microscale Reynolds number, ε the energy-dissipation rate, l0 the integral scale, T the large-eddy turnover
time, and η the Kolmogorov length scale.

E Reλ ε l0 T η

0.581 267 8.46 × 10−2 1.23 1.97 4.98 × 10−3

is expressed as

ωc(k) =
{
ω(k), when kc/

√
2 � |k| <

√
2kc

0, otherwise,
(5)

where ωc is the filtered vorticity field in the wave-number space. The filtered vorticity field in the
physical space is obtained by an inverse Fourier transformation.

The intense swirling regions in the filtered fields are identified using the Q criterion [35] with a
nonzero threshold. The Q criterion has been a widely used vortex identification criterion, such as
the � [36] and λ2 [37] criteria. These criteria are capable of capturing mostly similar structures in
an isotropic turbulence as far as the intense vortices are targeted [38]. The threshold, Qth, is set as
Qth = 0.75	, where 	 denotes the rms of the enstrophy density of the filtered vorticity field. The
value is empirically chosen based on the observation of the identified vortical structures to exclude
inactive vortices that may be insignificant for the dynamics of vortices, although some arbitrariness
remains in the selection of the value. A sensitivity analysis for the threshold value was performed
by Hirota et al. [23] within a range of 0.5	 � Qth � 1.0	, which showed that the choice of the
threshold was insensitive to the analytical results and did not change the conclusions of the study.

The vortical structures at t/T = 0 in the original field and the filtered fields, whose central wave
numbers are kc = 4

√
2, 8

√
2, 16

√
2, and 32

√
2, which correspond to the length scales of lc =

π/kc = 111.6η, 55.8η, 27.9η, and 13.9η, respectively, are shown in Fig. 3. For quantitative analysis
of the dynamics of the vortical structures, each vortex is reconstructed into a group of regularized
parts of the vortex, referred to as the vortex segments, which are arranged along the vortical axis
[23]. Here, the line connecting the local maximum points of Q (� Qth) is regarded as the central
axis of a vortex. The detailed procedure is briefly summarized below.

FIG. 2. Energy spectrum of a turbulent field at t/T = 0. Arrows and vertical broken lines indicate center
wave number and wave-number band of Fourier bandpass filters, which correspond to length scales 111.6η,
55.8η, 27.9η, and 13.9η. Dotted line denotes k−5/3 slope.
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FIG. 3. Vortical structures at t/T = 0. Isosurfaces of Q = 0.75	 are shown, where 	 denotes the rms
of the enstrophy density. (a) Original field and filtered fields whose length scales are (b) 111.6η, (c) 55.8η,
(d) 27.9η, and (e) 13.9η.

The distribution function of Q around each grid point X is approximated by the quadratic Taylor
expansion with respect to an orthogonal coordinate system associated with the eigenvector of the
Hessian of Q,

Q(xe) = Q(X e) + ∇eQ · h + 1
2 He(Q)ht�h, (6)

where � = (λ1, λ2, λ3) are the eigenvalues of the Hessian of Q, and h = xe − X e and the subscript
e denotes the values of the transformed coordinate system. The vector h is regarded as a column
vector when matrices are involved. When the eigenvalues are sorted in the order of λ1 � λ2 � λ3,
the value of λ2 becomes negative at a point on the vortex axis, which indicates that Q has a local
maximum in the plane normal to the e1 axis. Let c be the local maximum point, c1 = Xe1 and (c2, c3)
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is obtained by solving the equation so (∂Q/∂e2, ∂Q/∂e3) = (0, 0) as

∇eQ(xe)t = ∇eQ(X e)t + �ht = 0. (7)

Each vortex axis is then constructed by connecting these neighboring candidates under two restrain-
ing conditions; the distance between the two points should be less than three grid widths, and the
angle between two connecting lines must be less than 45◦. A minute vortex axis shorter than the
averaged diameter of the axis components is regarded as noise and discarded.

A vortex is represented as 
s = {si|(1 � i � ns)}, where si denotes a vortex segment and ns is
the number of the vortex segments that compose the vortex. The diameter, D, and length, l , of the
vortex are defined as

D = 1

ns

ns∑
i=1

Dsi , (8)

l =
ns−1∑
i=1

|xsi+1 − xsi |, (9)

where Dsi and xsi are the diameter and position vector of the vortex segment si.
Assuming that the vorticity distribution is given by the Gaussian profile, the value of Dsi can

be estimated as the azimuthal average of the scale parameters a(0 < a � π/4) of the Mexican-hat
wavelet in the plane normal to the axis of the vortex segment:

D

2
= 1

2π

∫ 2π

0
(max

a
Z (a, θ ))dθ. (10)

The function Z (a, θ ) is the correlation distribution function in a polar coordinate system given by

Z (a, θ ) = 〈ψ (a), ωpe(θ )〉
a

= 1

a

∫ ∞

0
ψ (r, a)ωpe(r, θ )dr, (11)

where ψ (r, a) is the mother wavelet and ωpe is the vorticity normalized using its absolute value at
the origin.

The average curvature ρ of vortex 
s is calculated from the radii of circles which are defined by
three adjacent segments as

ρ = 1

ns − 2

ns−2∑
i=1

4Asi

d1d2d3
, (12)

Asi =
√

a(a − d1)(a − d2)(a − d3), (13)

a = d1 + d2 + d3

2
, (14)

d1 = |xsi+1 − xsi |, d2 = |xsi+2 − xsi+1 |, d3 = |xsi − xsi+2 |. (15)

The numbers of vortices reconstructed from the filtered flow fields shown in Fig. 3 are 313, 1 966,
11 276, and 43 550 for the cases lc = 111.6η, 55.8η, 27.9η, and 13.9η, respectively.

The temporal evolution of the vortical structures in the filtered fields when the energy-damping
force, f 2, is not applied is used as the reference data set. A consecutive data set of the turbulent
field in (−4 � t/T � 4) with the time interval of τ/10 is used for the analysis, where τ is the
Kolmogorov time. The normalized occurrences of the diameters of the vortices, D, are plotted in
Fig. 4(a). The diameters are normalized by the corresponding length scales of the center wave
numbers of the filters, lc. The normalized diameters are found to be distributed mostly around
D/lc = 1, regardless of the filtering scale. Figure 4(b) shows the normalized occurrences of aspect
ratios α = l/D of the vortices weighted by their volumes. When evaluating the existence probability
of vortices with specific aspect ratios at a certain scale, it would be preferable to consider each vortex
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FIG. 4. (a) Normalized occurrences of diameters of vortices, D, obtained from filtered fields. (b) Normal-
ized occurrences of aspect ratios, α, of vortices weighted by their volumes. Length scales of filtered fields are
111.6η; , 55.8η; , 27.9η; .

volume in addition to the number of vortices because larger vortices occupy a greater proportion of
the domain and their induced velocity fields spread over a wide area. Although the peaks appear
around α = 1.5, the aspect ratios are broadly distributed regardless of the filtering scales. The peaks
of the frequency distributions may depend on the choice of the filter and the threshold of the vortex
identification method; however, it is shown that the frequency distribution of the aspect ratios is
independent of the scales of vortices as long as the bandwidths of the filter and the thresholds for
the vortex identification are equivalently chosen. These statistical results indicate that the shapes of
the vortices are quite similar, regardless of their scales, or, in other words, the hierarchical vortical
structures in the inertial subrange are self-similar.
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C. Definition of energy-damping force

The coherent structures that transfer kinetic energy from larger to smaller scales are observed
intermittently in turbulent flows. The Fourier bandpass filter is useful to extract these structures of
a certain scale; however, simply suppressing such Fourier components is inadequate for discussing
the role of vortex motion on the energy cascade process, because the phase information required
for their reconstruction is lost in Fourier space. Thus, after the target vortices are extracted from
the filtered field using the Q criterion, we chose to suppress the rotational motions in the extracted
structures by the energy-damping force. The energy-damping force, f 2, is given as

f 2 = −cWkc(x, t )ukc(x, t ), (16)

where c is a nondimensional parameter related to the magnitude of the external force, and ukc(x, t )
is the velocity field extracted using Eq. (5) with the center wave number of kc. The minus sign on
the right-hand side signifies that the force is given in the opposite direction to the velocity vector.
Wkc(x, t ) is the distribution function of the force that is defined as

Wkc(x, t ) =
{√

Qkc(x, t ), where Qkc(x, t ) > 0
0, otherwise,

(17)

where Qkc(x, t ) is the Q value for the filtered velocity field, ukc(x, t ), of kc scale. In Eq. (16),
Wkc(x, t ) confines the target of the force within the vortices in the physical space, and ukc(x, t )
confines the target of the force within a certain scale band in the wave-number space. The energy-
damping force, f 2, has the dimension of acceleration. In summary, the force f 2 decelerates the fluid
motions only inside the vortices of a certain scale.

The target length scale, lt , of the energy-damping force is set as lt = 27.9η (kt = 16
√

2), and
vortex motions on this scale are forcibly suppressed using Eq. (16). Then, the response of the energy
spectrum and the vortical motions, whose scales are either smaller or larger than the target scale,
namely lc = lt/2 (= 13.9η), 2lt (= 55.8η), and 4lt (= 111.6η) are studied. The energy-damping
force, f 2, is activated at t/T = 0 and continuously applied afterward, whereas the driving force
of the turbulent field, f 1, is continuously applied throughout the simulation. On the basis of
the preliminary computations, the magnitude of the damping force, c in Eq. (16), is determined
so the net energy-damping rate at t/T = 0, f 2(0) · u∗(0), becomes f 2(0) · u∗(0) = 10ε. Here, ∗
denotes the complex conjugate. When f 2 is too weak, e.g., 1ε, many structures still remain and the
target vortex motions cannot be adequately suppressed, while too strong a damping rate, such as
50ε, definitely weaken the target vortices; however, such excessive force supplies additional energy
into the vortices half the target scale and compensates the energy loss in this range. The response of
the energy spectrum is discussed later in Fig. 10.

D. Vortex tracking method

In inviscid flow cases, vortices can be tracked in a deterministic way using the Helmholtz
vorticity theorem because vortex lines are fixed to fluid particles, and their topology is conserved.
However, such a unique solution that describes the evolution of vortex tubes and surfaces does not
exist for viscous flows. Thus, a proper tracking method is necessary to discuss the dynamics of
vortical structures that comprise a turbulent field.

Vortex tracking is a complex issue, as the size and length of individual vortices are widely
distributed even for filtered fields (Fig. 4). In addition, their shapes change with time, and their
motions include various events, such as generation, stretching, splitting, merging, and breakdown.
Except for Pullin and Yang [39], where a set of equations describing the evolution of vortex surface
fields starting from a known initial condition with a method analogous to a predictor-corrector
approach was used, most methods are based on rather practical approaches, which are similar to
techniques used in image processing [28–31].

In this paper, the individual vortices in the filtered fields are tracked in a Lagrangian framework.
First, an attempt is made to reconstruct the vortices into vortex segments. However, using this
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FIG. 5. Sketch of procedure to subdivide a vortex. (a) A vortex is replaced by a group of vortex segments
si ∈ 
s. (b) A searching sphere V (si ) with characteristic diameter, lc, and its center at position of si is defined.
(c) Vortex segments s j ∈ V (si ) are grouped into a vortex unit, κ . (d) When all vortex segments si are grouped
into vortex units, (e) coarse-graining of a vortex into a group of vortex units, κ j , is complete.

method, catching a segment in a certain time step and finding the corresponding segment in the next
time step become difficult. This is mainly a result of the lengths of the segments being too short as
well as their volumes being too small. Thus, this method requires a short time step. Additionally,
tracking a large number of vortex segments consumes a large amount of computational power. To
overcome this problem, a vortex unit, which is also a section of a divided vortex, although much
larger than the vortex segment, is introduced. Each vortex is represented by a group of vortex units.
The aspect ratio of a vortex unit is roughly one. A vortex unit includes several vortex segments and,
thus, the number of vortex units in the flow field is much smaller than that of the vortex segments.
This treatment significantly reduces the computational cost. And, by tracking the vortex units, there
is no need to be concerned with events such as splitting and merging, which drastically change
the shape of a vortex. The tracking process consists of two stages: coarse-graining (stage 1) and
temporal tracking (stage 2). The details of each step are described below.

1. Stage 1. Coarse graining

In this stage, the vortices are subdivided into groups of vortex units. Figure 5 shows a sketch
which demonstrates the procedure to subdivide a vortex.

(I) A set of vortex segments, which composes a target vortex, is shown in Fig. 5(a),


s = {si|1 � i � ns (ns is a non-negative integer)}, (18)

where si is a single vortex segment.
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(II) A spherical region V (si ) of diameter lc with its center at the center of vortex segment
si ∈ 
s is defined, as shown in Fig. 5(b). Here, the diameter lc is the corresponding length
scale of the filtered field.

(III) A set of vortex segments inside the spherical region s j ∈ V (si) is defined as the vortex unit
κ , as shown in Fig. 5(c). One vortex segment may belong to multiple vortex units.

(IV) Another vortex unit is obtained by applying steps II and III to the remaining vortex
segments, which do not belong to any of the vortex units.

(V) Steps II–IV are repeated until all vortex segments are included in one or more vortex units,
as shown in Fig. 5(d). In Fig. 5(d), the center of each circle representing a spherical region
V (si ) is also the center of the vortex segment si, which is chosen as the central segment. As
a result, as shown in Fig. 5(e), a vortex 
s is coarse-grained into a set of vortex units κ j as


κ = {κ j |1 � j � nκ (nκ is a non-negative integer)}. (19)

Here, vortex units whose aspect ratio is less than 0.5 are discarded as noise. The diameter
and length of each vortex unit are calculated using Eqs. (8) and (9) against all vortex
segments within the vortex unit.

(VI) The position xκ j (t ) and convection velocity vκ j (t ) of vortex unit κ j (t ) at time t are defined
using the average of the vortex segments that are members of κ j ,

xκ j (t ) =
mκ j∑
k=1

xsk (t )/mκ j , (20)

vκ j (t ) =
mκ j∑
k=1

vsk (t )/mκ j , (21)

where xsk and vsk are the position vector and velocity vector of a vortex segment sk (k = 1,
· · · , mκ j ) in κ j (t ), respectively.

2. Stage 2. Temporal tracking

A tracking of the coarse-grained vortices is performed using the following numbered procedures.
Figure 6 demonstrates a sketch of the vortex tracking method.

(I) The position of the vortex unit κ j (t + δt ) after a short time interval δt is predicted using the
convection velocity as

xκ j (t + δt ) = xκ j (t ) + vκ j (t )δt . (22)

(II) A spherical searching area of diameter lc is created with its center at the predicted position
xκ j (t + δt ). Then the vortex segments 
s of time t + δt inside the searching sphere are
regarded as vortex segments forming the vortex unit κ j (t + δt ) at t + δt . If no vortex
segment is found inside the spherical searching area, the lifespan of the vortex unit is
regarded as being over. Steps I and II are repeated advancing the time until all vortex units
become untraceable. The same procedure is also carried out, advancing time in the opposite
direction, until no corresponding vortex unit could be found.

Through the two stages given above, each part of the vortices observed at time t can be tracked
from the cradle to the grave. The lifespans of vortex units, Tl, are defined as the time differences
between the beginnings of the vortex tracking and their ends. Notably, the choice of the diameter
of the searching sphere, lc, is somewhat arbitrary. Here the diameter, lc, is set to the length
corresponding to the center wave numbers of the filter used to extract the flow field.

Figure 7 is an example of temporal tracking of vortices for three different scales: lc = 111.6η,
55.8η, and 27.9η, colored by red, blue, and yellow, respectively. Although the flow field is packed
with many vortex units at t/T = 0 (c), their numbers gradually decreases as time progresses or by
going back in time, especially for smaller-scale units.
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FIG. 6. Sketch of vortex tracking method. (a) Position xκ j (t ) and velocity vκ j (t ) of vortex unit κ j is
evaluated, and its position at t + δt is estimated as xκ j (t + δt ) = xκ j (t ) + vκ j (t )δt . Then, a searching sphere
with characteristic diameter, lc, is defined at xκ j (t + δt ). 
s(t + δt ) is a group of vortex segments found at
t + δt whose members are within the searching sphere. (b) Vortex segments inside the searching sphere are
grouped and regarded as the vortex unit κ j at the next time t + δt .

E. Verification of proposed tracking method

Figure 8 shows the normalized occurrences of the diameters, D, and the aspect ratios, α, of vortex
units weighted by their volumes. The diameter distributions are identical to those of the vortex
segments shown in Fig. 4(a), agreeing with the fact that vortex units consist of vortex segments.
The aspect ratios of the vortex units are in the range of 0.5–1.5, as intended. The major peaks of
the aspect ratios are found at approximately α = 1.2, irrespective of the filtering scales. It should
be noted that the lower peaks around α = 0.6 correspond to the vortex units found near the ends
of vortices. The vortex units near the ends of the vortices tend to be shorter and contain a smaller
number of segments. From these results, it is confirmed that the vortical structures filtered at each
scale are appropriately reconstructed by groups of vortex units.

The lifespans of vortex units, Tl, in the target turbulent field are estimated to validate the present
tracking method. The results are shown in Fig. 9 for three filtered fields. The timestep for vortex
tracking is set to τ/10, where τ is the Kolmogorov time. The obtained lifespan is normalized by
the eddy turnover time of each filtered field, Tc = l2/3

c ε−1/3. The profiles show large peaks around
Tl/Tc = 0.4–0.8. The peak lifespan for the largest scale lc = 111.6η is slightly longer, which is likely
due to contamination from the energy-containing range. The values obtained are consistent with the
lifespan of coherent structures of isotropic turbulence reported by Cardesa et al. [28]. Therefore, we
evaluated that our present method appropriately tracks the motions of the vortices. The advantage of
the proposed method is that it can analyze the lifespan of each vortex, as each vortex is individually
tracked.

084602-12



RESPONSE OF TURBULENT ENERGY SPECTRUM AND …

FIG. 7. Snapshots of tracked vortex units at t/T = −1 (a), −0.5 (b), 0 (c), 0.5 (d), and 1 (e). Each vortex
unit at t/T = 0 is tracked from the cradle to the grave. Red, blue, and yellow units represent three different
length scales, 111.6η, 55.8η, and 27.9η, respectively.

III. RESPONSE OF TURBULENT FIELD TO APPLICATION OF ENERGY-DAMPING FORCE

Figure 10 shows the temporal response of the energy spectrum when the energy-damping force,
f 2, is applied. The damping force is intended to suppress the vortical motions of the target scale
of lt = 27.9η. The timescale is normalized by the large-eddy turnover time, T . The energy slightly
increases in the neighboring low wave-number (large scale) range, while it decreases in the high
wave number (small scale) range. The ratio of the total kinetic energy at t/T = 0 to that at t/T = 4
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FIG. 8. (a) Normalized occurrences of diameters of vortex units, D, obtained from filtered fields. (b) Nor-
malized occurrences of aspect ratios, α, of vortex units. Length scales of filtered fields are 111.6η; , 55.8η;

, 27.9η; .

is 1.03. This response is expected, as the energy transfer from the large scale to the small scale is
cut off by the suppression of the vortical motions of the target scale.

Next, the relationship between the change in the energy spectrum and the vortex motions is
analyzed. Figure 11 shows the vortical structures at t/T = 4 for the original field and four different
scales: the target scale, lt ; twice the scale, 2lt ; four times the scale, 4lt ; and half the scale, lt/2.
The target-scale vortices almost entirely disappear, which corresponds to the decrease in energy
shown in Fig. 10. In the large-scale range, the vortical structures become slightly denser than those
at t/T = 0 (Fig. 3), while they become sparse in the small-scale range. The changes to the vortical
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FIG. 9. Normalized occurrences of normalized lifespan of vortex units, Tl. Length scales of filtered fields
are: 111.6η; , 55.8η; , 27.9η; .

structures of various scales are consistent with the corresponding responses found in the energy
spectrum.

Figure 12 shows the normalized occurrences of the stretching speeds of the vortex segments
whose scales are half the target scale. The stretching speeds before and after the suppression of the
target vortex motions are compared. The stretching speeds, γ , are calculated using the following
equation:

γ = 1

ns − 1

ns−1∑
i

|(xsi + u(xsi )δt ) − (xsi−1 + u(xsi−1 )δt )| − |xsi − xsi−1 |
|xsi − xsi−1 |δt

, (23)

where u(x) is the velocity field of the whole turbulent field. The stretching speeds are normalized by
the eddy turnover time, Tc. In the figure, the peak positions of the distributions do not change before

FIG. 10. Temporal response of energy spectrum at t/T = 0, ; 1, ; 3, ; 4, . Vertical broken lines
denote the wave-number band of Fourier bandpass filter whose corresponding length scales are 111.6η, 55.8η,
27.9η, and 13.9η.
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FIG. 11. Vortical structures in at t/T = 4 when vortical motions of length scale 27.9η are suppressed.
Isosurfaces of Q = 0.75	 are shown. Values of threshold are same as in Fig. 3. (a) Original field and filtered
fields whose length scales are (b) 111.6η, (c) 55.8η, (d) 27.9η, and (e) 13.9η.

and after the suppression. However, the positive side values tend to decrease more than the negative
side values after the suppression, lowering the averaged stretching speed from 0.552 at t/T = 0 to
0.462 at t/T = 4. Therefore, the averaged stretching speed declines approximately 20% as a result
of the suppression. In other words, the vortices half the target scale, lt/2 = 13.9η, were strongly
stretched by the vortices of the target scale, lt = 27.9η, when the damping force was absent. This
result supports the fact that the vortices of a certain scale tend to be stretched by vortices twice their
size [18,20,22,23]. In conclusion, the decrease in the kinetic energy in the small scale regions can
be attributed to the decrease in the stretching speeds of the vortices.

The time variations of the number of vortices of each scale are shown in Fig. 13. The data
for the cases without the energy-damping force are also presented as dotted lines in the figure for
comparison. The number of vortices of the target scale, lt = 27.9η, whose motions are forcibly
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FIG. 12. Normalized occurrences of stretching speeds of vortex segments, γ , on scale 13.9η at t/T = 0
(dotted line) and t/T = 4 (solid line) when vortical motions of length scale 27.9η are suppressed.

suppressed, sharply decreases accompanying the suppression. Once the flow field is adapted to the
changed environment with 27.9η scale absent, both the lc = 2lt (= 55.8η) and 4lt (= 111.6η) cases
eventually exhibit similar tendencies. The number of vortices that are twice as large as the target
scale, lc = 2lt (= 55.8η), first decreases until around t/T = 0.5, and then increases until reaching a
constant value of approximately 2 700 around t/T = 2. The temporal decrease at the beginning may
have been caused by the leakage of the energy-damping force applied to the target scale. Because
the cutoff function of the Fourier bandpass filters is sharp, the Fourier components representing the
vortical structures whose scales are twice as large as the target scale might be contaminated by the
energy-damping force at the target scale. This is a limitation of the procedure used in this numerical
experiment. For vortices that are four times as large as the target scale, lc = 4lt (= 111.6η), the
number monotonically increases and reaches a constant value of approximately 500 around t/T =
2. In this case, the leakage does not occur, which is likely a result of the scales being apart. For
both length scales, the timescales of the changes are in the order of the large-eddy turnover time, T ,
which is much longer than the turnover time of vortices in each scale. Figures 13 and 14 indicate
that since the energy cascade system is intrinsically driven by large eddies in the energy-containing

FIG. 13. Time variations of number of vortices when vortical motions on scale 27.9η are suppressed by
energy-damping force (solid line). Colors reflect length scales of vortices: red, 111.6η; blue, 55.8η; green,
27.9η. Dotted lines indicate the cases in which energy-damping force is not applied.
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FIG. 14. Time variations of averages of vorticity magnitudes at centers of vortex segments when vortical
motions of scale 27.9η are suppressed by energy-damping force (solid line). Length scales of vortex segments
are (a) 111.6η and (b) 55.8η. Dotted lines indicate the case in which energy-damping force is not applied.

range, the timescale required for adjusting the system to a given environment is inevitably on the
order of the large-eddy turnover time.

The time variations of the averages of vorticity magnitudes at the centers of the vortex segments,
〈ωsi〉, are plotted in Fig. 14. The scales of vortices are (a) four times and (b) twice as large as
that of the scale of vortices in which the energy-damping force is applied, lt = 27.9η. The values
are normalized using the rms of the enstrophy density of each filtered field, 	, at t/T = 0. In
both cases, when the energy-damping forces are applied, the vorticity magnitudes increase for two
large-eddy turnover times (shown in solid lines). For the case of vortices twice the scale, the value
appears to reach a constant, which is approximately 20% greater than before the application of
the energy-damping force. These results indicate that the increase in the energy in the low wave-
number ranges, as ishown in Fig. 10, is due to the increase in the number and magnitude of the
vortices. Judging from the energy spectrum, the scale of 13.9η is too close to the energy dissipation
range to quantitatively discuss the vortical structures in this scale. Thus, this scale is excluded from
the discussion. To discuss the structures whose scales are smaller than the damped scale, higher
Reynolds-number database is required. This remains a future task.
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FIG. 15. Time variations of normalized lifespans of vortex units when vortical motions on scale 27.9η are
suppressed by energy-damping force (solid line). Length scales of vortices are (a) 111.6η and (b) 55.8η. Dotted
lines indicate the case in which energy-damping force is not applied.

The time variations of the average lifespan of the vortex units are shown in Fig. 15. Figure 15(b)
demonstrates that as for the vortices whose scales are twice as large as the target scale, the lifespans
of their vortex units increase by approximately 30%, accompanying the suppression of the target
scale vortices. The lifespan of vortices is of the order of the eddy turnover time, Tc, regardless of
the scale, which has been confirmed in Fig. 9 and the results reported by Cardesa et al. [28]. This
trend may be attributed to the balance of the energy flux which is poured into and is drawn from
the target scale. By suppressing the target vortices, the interactions which cause the energy transfer
are eliminated, allowing the vortices whose scales are twice as large as the target scale to survive
longer. Thus, the increase in the lifespans of the vortices that are twice as large as the target scale,
i.e.,the delay of their time of death, can be attributed to the absence of target vortex motions.

Moreover, Fig. 16 shows the time variations of the averaged curvature, ρ, of the vortical axes
normalized by the corresponding length scales of the filtered fields, which are (a) lc = 4lt and (b)
lc = 2lt . In the uncontrolled cases, shown by the dotted lines, the normalized curvatures of the
vortical axes are nearly constant at 〈ρlc〉 = 0.5–0.6 for both scales. However, as shown by a solid
line in Fig. 16(b), the curvature of the vortical axes sharply decrease when the energy-damping
force is applied. This tendency cannot be found in Fig. 16(a), in which the scale of the vortices is
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FIG. 16. Time variations of curvatures of vortical axes when vortical motions on scale 27.9η are suppressed
by energy-damping force (solid line). Length scales of vortices are (a) 111.6η and (b) 55.8η. Dotted lines
indicate the case in which energy-damping force is not applied.

four times larger than the target scale. This result implies that the vortices of a certain scale in a
turbulent field are likely to be deformed by the velocity field induced by vortices of half their scale.
The plateau values of the curvature before and after applying the damping force, shown in Fig. 16,
may be scaled by the characteristic velocities of vortices whose scales are twice larger or half the
target vortices. However, it is left for further analysis in the future.

Figures 15(a) and 16(a) show that the influences among the vortices whose scales are four times
different are unclear. The lifespans and shapes of larger vortices appear to be less affected by the
suppression of the target scale vortices. The results suggest that the interactions among the vortices
mainly occur between those whose scales are very close to one another.

It can be presumed that vortices of a certain scale are constantly deformed by vortices that are half
their scale. In addition, their lifespans are likely to be shortened when the deformations take place.
The increase in the lifespans of the vortex units, shown in Fig. 15(b), may reflect the weakening of
vortex deformation process resulting from the suppression of the half-scaled vortex motions.

The relationship between vortices of a target scale and vortices whose scales are half the target
scale are sketched in Fig. 17. The process can be summarized as follows. As is already known,
the smaller vortices are likely to be stretched by the neighboring larger vortices in antiparallel
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FIG. 17. Sketch of relationship between larger vortices and smaller vortices. (a) Smaller vortices are
stretched by larger vortices. (b) Larger vortices are, in return, locally bent by smaller vortices.

arrangement [23], energizing the smaller vortices. At the same time, the larger vortices are locally
bent by the smaller vortices shortening their lifespans. Through the process, the turbulent kinetic
energy is successively transferred from larger to smaller scales. The dynamics of vortices in
turbulent fields has been studied with respect to turbulence-coherent structure interaction [40] and
vortex reconnection [41–43]. Investigating the relationship between these findings and the present
paper could lead to a deeper understanding of the physical mechanism of the energy cascade in
turbulent flows, which will be a subject for future work.

IV. CONCLUSIONS

A numerical experiment was conducted to investigate the role of vortical motion on the energy
cascade process in a homogeneous isotropic turbulence. Energy transfer from a large to small scale
was suddenly interrupted by artificially suppressing the vortical motions of a certain scale in the
inertial subrange. When the target vortices were weakened, the energy increased in the large-scale
band and decreased in the small-scale band. The stretching speeds of the vortices whose scales were
half of the target scale were reduced as a result of the absence of the target vortices. The response of
larger vortical structures was also investigated by tracking individual vortices. It was found that the
local curvature of the axes of the vortices twice as large as the target scale vortices decreased, and
the life spans of the larger vortices became longer as a result of the suppression of the target scale
vortices. These interactions took place only among vortical motions whose scales were close to one
another.
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