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Approximate derivation of the power law for the mean streamwise velocity
in a turbulent boundary layer under zero-pressure gradient
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Distribution of the mean streamwise velocity in a turbulent boundary layer over a flat
plate can be represented by the equation U ∼ η1/n, as was widely used in the past; U and
η are the normalized velocity and the wall-normal distance, respectively. However, this
1/nth-power law is an empirical one. By incorporating either the Reynolds shear stress
model of Wei et al. [J. Fluid Mech. 969, A3 (2023)], which is in terms of U and the
(normalized) wall-normal velocity (V ), or a similar one in the boundary layer equations,
it is found that U and V are related as U (H+1) ∼ V (H−1) in the outer region of a flat plate
boundary layer; H is the flow shape parameter. Along with the distribution of the wall-
normal velocity (Vw) of Wei et al., the 1/nth-power law for U is obtained by equating the
derivative (with respect to η) of V with that of Vw . Thus, this empirical power law seems
to have a reasonable theoretical basis embedded in it.
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I. INTRODUCTION

In an incompressible and zero-pressure-gradient turbulent boundary layer, the distribution of the
mean streamwise velocity u can be represented by the 1/nth power law (see Schlichting [1]):

u

u∞
=

(y

δ

) 1
n
, (1)

where y is the wall-normal distance, u∞ is the free stream speed, and δ is the boundary layer
thickness. Although this empirical velocity distribution follows from that for flow in a smooth pipe
[1], it implies similar velocity profiles. The exponent 1/n although varies mildly with flow Reynolds
number, the 1/7th power law is a popular one.

The power-law Eq. (1) remains an empirical one as no theoretical basis for this equation for
the streamwise velocity has been reported in the past. The reason for this seems to be the absence
of a simple Reynolds shear stress, ρ(−u′v′), model in terms of mean velocity components with
which one can obtain even an approximate solution of the governing equations easily. For example,
the widely used k − ε model requires an equation for the turbulent kinetic energy k, and a
model for the turbulence dissipation rate ε. With this (or one such model), a coupled momentum
equation and the equation for the turbulence kinetic energy require numerical solutions. On the
other hand, if one considers the Reynolds shear stress model of Wei et al. [2] that is in terms of
the streamwise and wall-normal velocities in a flat plate boundary layer, of interest here, then the
momentum equation becomes easier to handle. With this Reynolds shear stress model or a similar
one considered here, a power-law relationship between the streamwise and wall-normal velocities is
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obtained from the boundary layer equations in the outer region of a flat plate boundary layer. Using
this and the distribution of the wall-normal velocity Vw proposed by Wei et al. [2], the power-law
Eq. (1) for the streamwise velocity U is derived analytically, as reported in this paper.

While the log-law or power-law for the mean streamwise velocity is well established, various
aspects of the wall-normal velocity v have been the focus of many recent investigations. For
example, Wei and Klewicki [3] have suggested that the mean wall-normal velocity should be scaled
by v∞, the value of v at the boundary layer edge, instead of u∞. Also, recent studies (Kumar and Dey
[4], Kumar and Mahesh [5], Wei et al. [2]) suggest that the wall-normal velocity plays an important
role in the distribution of the Reynolds shear stress in the boundary layer. By neglecting the viscosity
in the outer region, Kumar and Dey [4] have suggested that (−u′v′) varies linearly with v. Kumar
and Mahesh [5] have included the viscosity in proposing an equation for the combined viscous shear
and Reynolds shear stresses. Wei et al. [2], who have considered the boundary layer equations,
proposed the Reynolds shear stresses in the inner and outer regions of a flat plate boundary layer as

(−u′v′)inner ≈ u2
τ − νS, (−u′v′)outer ≈ u2

τ

(
1 − uv

u∞v∞

)
, (2)

respectively. Here uτ is the friction velocity, S = du/dy, and ν is the kinematic viscosity of fluid.
Based on Eq. (2), Wei et al. [2] have proposed the Reynolds shear stress model

RSSW ≡ (−u′v′) ≈ u2
τ

(
1 − uv

u∞v∞

)
− νS (3)

for zero-pressure-gradient boundary layer flows. This shear stress distribution in the boundary layer
is not a linear combination of the inner and outer stresses nor is it based on any matching of the
two stresses. In view of the cascading feature of large eddies to smaller eddies, it may be possible
to assume that the inner and outer stresses in Eq. (2) are weighted by each other in the distribution
of the Reynolds shear stress across the boundary layer. A model based on this is considered here
and is found to be comparable with Eq. (3). These Reynolds shear stress models were considered in
solving the boundary layer equations in the outer region of a flat plate boundary layer.

II. ANALYSIS

An incompressible and turbulent boundary layer flow over a semi-infinite plate is considered
here. The velocity components in the streamwise x and wall-normal y directions are u and v, re-
spectively; the corresponding fluctuating velocity components are denoted by u′ and v′, respectively.
The constant free stream speed is denoted by u∞ and the value of v at the boundary layer edge is
denoted by v∞.

The governing continuity and momentum equations, under the boundary approximation, are
∂u

∂x
+ ∂v

∂y
= 0, (4)

u
∂u

∂x
+ v

∂u

∂y
= ν

∂2u

∂y2
+ ∂ (−u′v′)

∂y
, (5)

respectively. Here, the terms involving Reynolds direct stresses are neglected. The Reynolds shear
stress model Eq. (3) is in terms of the streamwise and wall-normal velocities, as mentioned earlier.
However, this model is not a linear-combination type nor based on the matching of the inner
and outer layer stresses. Since large eddies break into smaller eddies, it is assumed here that the
(−u′v′)inner and (−u′v′)outer stresses in Eq. (2) may weigh on each other like

RSSP ≡ (−u′v′) ≈ (
u2

τ − νS
)(

1 − uv

u∞v∞

)
. (6)

A comparison of this model with Eq. (3) is shown in Fig. 1, for various Reynolds numbers Re;
Re = u∞θ/ν is the Reynolds number based on the momentum thickness θ . Here (and hereafter),
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FIG. 1. Comparison of the Reynolds shear stress models Eq. (3) and Eq. (6) with actual values (a) in y+

scale, and (b) in η = y/δ. Simulated data from references [6–8] are used in all plots reported in this work.

DNS data of Schlatter and Örlü [6] for Re = 2540, 4060 and that of Simens et al. [7] for
Re = 4000 and 6500, and LES data of Eitel-Amor et al. [8] for Re = 8183 are used. Figure 1(a) is
in y+(=yuτ /ν) scale, and Fig. 1(b) is in y/δ scale. It can be seen that the difference between Eq. (3)
and Eq. (6) is indistinguishable; towards the boundary layer edge, both of these models show the
same extent of difference with the simulated data.

Incorporating the Reynolds shear stress from Eq. (6) in the momentum equation Eq. (5), we have

u
∂u

∂x

(
H − 1 + νS

u2
τ

)
+ v

∂u

∂y

(
H + 1 − νS

u2
τ

)
=

(
uv

u2
τ

)
ν
∂2u

∂y2
. (7)

Here, u+
∞v+

∞ (=u∞v∞/u2
τ ) = H (Wei and Klewicki [3]) is used; H (=δ1/θ ) is the shape factor, and

δ1 is the displacement thickness. The shape parameter being based on the integral length scale
represents the viscous effect via the profile shape of the streamwise velocity, while the terms with ν

are the local viscous quantities from the inner region. This equation shows that the inner layer stress
is convected, and the viscous diffusion term is multiplied by the Reynolds shear stress in the outer
region. In the outer region, of interest here, the molecular viscosity is usually neglected leading to
the approximate momentum equation,

u
∂u

∂x
(H − 1) + v

∂u

∂y
(H + 1) = 0. (8)
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Using the continuity equation (4), Eq. (8) becomes

(H − 1)

v

∂v

∂y
≈ (H + 1)

u

∂u

∂y
. (9)

It is worth mentioning that the Reynolds shear stress model of Wei et al. [2], Eq. (3), leads to the
same Eq. (9); the algebra being simple is skipped here.

We consider the following variables:

η = y

δ(x)
, U = u

u∞
, V = v

v∞
. (10)

In terms of these variables, Eq. (9) becomes

(H − 1)
d (lnV )

dη
≈ (H + 1)

d (lnU )

dη
. (11)

Integrating Eq. (11), we have

V (H−1) ≈ CU (H+1) ⇒ U (η) ≈ [(V (η))(H−1)/(H+1)]D, (12)

where C and D are constants. In order to compare this with the 1/7-th-power, H = 1.3 is assumed in
Eq. (12). That is,

U (η) ≈ [V (η)]0.13D ≈ DV
1

7.7 . (13)

The constant D was evaluated at the boundary layer edge and its value is unity, i.e., D = 1. Thus,
the simple power-law relationship between the streamwise and wall-normal velocities is

U ≈ V
1

7.7 . u+ ≈ u+
∞

(
v

v∞

) 1
7.7

. (14)

The second expression is in terms of the inner velocity scale uτ : u+ = u/uτ . Using the simulated
data of Schlatter and Örlü [6], Eitel-Amor et al. [8], and Simens et al. [7], mentioned above, the
estimated u+ is compared with the actual u+ in Figs. 2 and 3 in y+ scale. The log-law for the
streamwise velocity

u+ = 5.6 log (y+) + 5.2

is also shown here. For clarity, different Reynolds number cases are shown separately in Figs. 2
and 3. It may be noted that the value of H was chosen for a better match with the data for the
following reason: The numerical value of H1 (say) = u+

∞v+
∞ was found to differ from H2 (say) =

δ1/θ slightly. For example, for Re = 6500, H1 and H2 are 1.28 and 1.36, respectively; H = 1.39 was
used, which is close to the value of H2. Similarly, for Re = 2540, H = H1 = 1.306 was used, while
H2 is 1.4. In Fig. 4, the estimated U is compared with the actual data in η scale; for clarity, only a
few flows are shown here. It can be seen in Figs. 2 and 3 that the present proposal covers even the
log-layer, which is in the outer region. A power-law relationship between the streamwise velocity
and the wall-normal velocity has been presented here.

For a constant pressure boundary layer, Wei et al. [2] have proposed the distribution of the wall-
normal velocity in terms of the mean streamwise velocity,

Vw ≈ δ

δ1

∫ η

0
(1 − U )dη − δ

δ1
η(1 − U ). (15)

This self-similar velocity distribution, though approximate, covers almost the entire boundary layer
(see Fig. 2 of Ref. [2]). The present proposal for the wall-normal velocity in the outer region, from
(12) (with D = 1), is

V (η) ≈ [U (η)]
H+1
H−1 . (16)
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FIG. 2. Comparison of u+ estimated using Eq. (14) with actual data.

While both Eq. (15) and Eq. (16) are approximate, Eq. (15) involves integration, compared to the
power-law result Eq. (16). However, Eq. (15) is useful in arriving at an interesting result, as in the
following.

Differentiating Eq. (15) and Eq. (16) with respect to η, and equating the two derivatives (dVw/dη)
and (dV/dη), we have (

H + 1

H − 1

)
U 2/(H−1) dU

dη
≈ δ

δ1
η

dU

dη
. (17)

This step is like the matching of Vw, which covers a large part of the boundary layer, with V for
the outer region. It can be seen that Eq. (17) immediately leads to the 1/nth-power law for the
streamwise velocity,

U ≈
[

(H − 1)δ

(H + 1)δ1

] H−1
2

η
H−1

2 . (18)

The exponent 1/n of η in Eq. (1) is related to the shape factor [1] as

1

n
= H − 1

2
. (19)

It is interesting to note that the same exponent of η appears in Eq. (18). Assuming δ/δ1 = 8, for the
1/7th power law [1] and H = 1.3, the equation for the streamwise velocity from Eq. (18) is

U ≈ 1.006η0.15. ⇒ U ≈ 1.006η1/6.7. (20)
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FIG. 3. Comparison of u+ estimated using Eq. (14) with simulated data.

That is same as the widely used 1/7 th-power law, the nonsignificant difference in the exponent of η

is due to the choice of H = 1.3 made here. One conclusion here is that the power-law Eq. (1) seems
more appropriate in the outer region of a flat plate boundary layer. The extent of empiricism in the
present analysis is in the Reynolds shear stress models Eq. (3) and Eq. (6), but this is acceptable in
view of the result that the distribution U ∼ η(H−1)/2 is based on the solution of the boundary layer

FIG. 4. Comparison of U estimated using Eq. (14) with actual data in y/δ scale.
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FIG. 5. Comparison of wall-normal velocity estimated using Eq. (21) with simulated values in y/δ scale.

equations here and that by Wei et al. [2]. One can thus conclude that Eq. (1) for the streamwise
velocity cannot be labeled as purely empirical.

Similar to the power-law equation (20) for the streamwise velocity, the power-law equation for
the wall-normal velocity that follows from Eq. (16) and Eq. (20) is

V ≈ 1.047η1.144. (21)

This distribution of V (=v/v∞) is compared with the actual data in Fig. 5. We may note that, instead
of the factor 1.047, a factor of 1.012 was used for a good match with the data. It can be seen that
agreement with the simulated data is good for η (=y/δ) � 0.70, i.e., mostly in the outer region, as
expected. It may be noted that with U = η1/7 in the approximate distribution of the wall-normal
velocity Eq. (15), Vw is

Vw ≈ η1.143. (22)

which is the same as Eq. (21).

III. CONCLUSION

Similar to the Reynolds shear stress model of Eq. (3), proposed by Wei et al. [2], the Reynolds
shear stress model Eq. (6) is considered here. Incorporating either of these two Reynolds shear stress
models in the boundary layer equations, a simple power-law relationship between the streamwise
and wall-normal velocities V ∼ U (H+1)/(H−1) [Eq. (16)] is obtained as a solution of the governing
equations in the outer region of a flat plate boundary layer. By considering dV/dη = dVw/dη (in
the sense of matching the two velocity profiles), the 1/nth power law Eq. (1) is obtained analytically
[Eq. (18)]. Thus, it appears that the power-law Eq. (1), rather than a purely empirical one, has some
reasonable basis embedded in it.
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