
PHYSICAL REVIEW FLUIDS 9, 084302 (2024)

Effects of initial packing density and cohesion on submerged
granular collapse

Rui Zhu,1,2 Zhiguo He,2,* and Eckart Meiburg 1,†

1Department of Mechanical Engineering, University of California at Santa Barbara,
Santa Barbara, California 93106, USA

2Ocean College, Zhejiang University, Zhoushan 316021, China

(Received 29 November 2023; accepted 22 July 2024; published 20 August 2024)

We investigate the collapse of submerged cohesive granular columns as a function of
their packing density and the cohesive force strength, via grain-resolving direct numerical
simulations. The cohesive force acts to reduce the final runout distance of the collapsing
columns. In addition, it significantly accelerates the initial contraction for loosely packed
columns and decelerates the dilation for densely packed columns, leading to a larger or
smaller excess pore pressure, respectively. Early on, the collapsing column exhibits distinct
planar failure surfaces, whose angle with the horizontal increases with the packing density.
We employ a network science-based approach to analyze the cohesive and contact force
chains. Pronounced force-chain network structures form preferentially in the failure region.
They tend to be larger for higher packing density, which induces a larger macroscopic
cohesive resistance. The cohesive force tends to reduce the normal contact force, which
results in shorter contact force chains.
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Submerged granular flows play a significant role in a wide range of industrial and environmental
applications, where they are frequently associated with destructive behavior. A notable example
is the large-scale turbidity current triggered by slope failure in the Grand Banks region of the
northwest Atlantic Ocean in 1929, which caused damage to a series of submarine cables as far as
600 km away [1]. Previous studies found the dynamics of submerged granular flows to be strongly
influenced by their packing density, due to the pore pressure feedback mechanism [2–4]. Cohesion
among the smaller grains can furthermore lead to the formation and persistence of aggregates in such
processes, which frequently play an important role for the transport of sediment in rivers, lakes, and
estuaries [5–8].

The collapse of granular columns has long been employed as a canonical example for studying
the dynamics of granular flows [9–18]. The influence of the initial packing density on submerged
granular collapse was investigated both via experiments [19,20] and in numerical simulations
[21,22]. Rondon et al. [19] and Yang et al. [22] observed that loosely packed columns undergo
an initial contraction process, which leads to the development of positive excess pore pressure.
This process reduces the interparticle contact and eventually causes a catastrophic failure. On the
other hand, densely packed columns experience a dilation process, resulting in negative excess pore
pressure. This process tends to enhance interparticle contact and prevent particle sliding. Rondon
et al. [19] also found that the transition between the loosely and densely packed columns occurs
near a critical packing density of 0.58.
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Prior studies of cohesive effects on granular collapse initially focused on dry granular columns.
Mériaux and Triantafillou [23] investigated the collapse of fine powders and found that the final
deposits satisfy similar scaling laws as dry noncohesive columns. Langlois et al. [24] conducted
discrete element simulations and showed that the runout distance is greater when the cohesive blocks
are highly fragmented. Additional researchers experimentally studied the collapse of wet granular
media, where capillary bridges mimic a cohesive force [25–30]. Gabrieli et al. [26] observed the
presence of clusters concentrated within the upper part of the column. Artoni et al. [25] found
that the runout distance decreases while the final height increases with increasing cohesion. By
using coarse sands, Santomaso et al. [27] concluded that friction remains important for irregular
wet particles. Li et al. [29] discovered that particle size plays a dominant role in determining
the flow duration of collapsing material. Wu et al. [30] observed that increasing the size of the
column weakens the cohesion effect. Bougouin et al. [28] identified different regimes for cohe-
sive granular collapse, including static, fluid-leaking, block-avalanche, and continuous-avalanche
regimes. Recently, Abramian et al. [31] successfully estimated the macroscopic yield stress based
on the cohesive contacts between grains using numerical simulations. Gans et al. [32] showed that
the process of the cohesive granular collapse can be captured by adding a cohesive yield stress
to the cohesionless granular rheological model. Staron et al. [33] proposed, based on numerical
simulations, that stronger contact adhesion leads to weaker friction. Zhu et al. [34] numerically
simulated submerged granular collapses and found that cohesive forces reduce the front velocity
and yield a shorter and thicker final deposit compared with noncohesive submerged cases.

Our current understanding of the formation and persistence of aggregates in submerged cohesive
collapses is still limited. Additionally, direct contact between particles can be significantly modified
for varying packing densities. Force chains of adjacent particles that transfer force from one
neighbor to the next can be very useful for describing the heterogeneous distribution of interpar-
ticle cohesive and contact forces in granular columns [35]. Many researchers have attempted to
quantitatively describe force chains in granular materials [36–40]. Recently, an approach based on
network science was proposed, which can automatically extract force-chain network architecture
by using community detection techniques [35,41,42]. Bassett et al. [35] improved the community
detection approach for granular materials, based on the geographical constraints that grains can only
be connected to their neighbors.

In this paper, we will use the network science-based approach to examine the characteristics of
cohesive and contact force chains and investigate the impact of cohesive forces and different packing
densities on submerged granular collapse. To achieve this, we focus on the collapse of randomly
packed submerged granular columns within a tank. The columns consist of spherical particles that
are denser than the ambient fluid. To capture the microscopic details of the inter-particle forces,
we employed fully coupled, grain-resolving direct numerical simulations using our in-house code
PARTIES [43–45]. The introduction of the computational model can be found in the Supplemental
Material [46].

In our simulation, we consider a tank of length L × height H × width W = 100dp × 30dp × 3dp,
with granular columns of length Li × height Hi = 45dp × 15dp. The granular columns are com-
posed of spherical particles of diameter dp. In our earlier study, we demonstrated that the size of
the spanwise domain and the periodic boundaries do not exert significant influence on the process
of collapse [34]. Therefore, we have chosen to set the spanwise domain size as W = 3dp and have
implemented periodic boundaries in the spanwise z-direction to minimize computational costs. In
the y-direction, the top surface is set to be a free-slip boundary, while no-slip boundary conditions
are defined for the side walls facing the streamwise x-direction. A layer of particles with a uniform
diameter of 0.5dp is held fixed at the bottom boundary to mimic basal roughness. We choose
the coefficients of friction and restitution as μp = 0.15 and edry = 0.97, corresponding to silicate
materials. The granular column is prepared via the following steps: First, the particles are randomly
distributed across the entire height of the lock region. The initial particle velocity is zero, and there
is no initial contact. Second, the particles settle with the friction coefficient μp varying from 0 to
1 to achieve different initial packing densities φ. Third, when all particles have settled in the lower
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FIG. 1. Snapshots of the magnitude of the translational particle velocity ||up|| and the ambient fluid velocity
||uf || at t = 20 for different packing densities φ and cohesive numbers Co. Shown are spanwise-averaged
values. The color bar shows the magnitude of the particle velocity. The black and red arrows represent
vectors of the particle velocity and the fluid velocity, respectively. The horizontal arrows represent a velocity
scale of 1.

part of the lock region, μp is adjusted back to the original value, and the collapse is initiated. The
packing density of these kinds of randomly packed columns ranges from 0.55 to 0.64, which is
similar to previous studies [19,22,47]. We mainly focus on the influence of the pacing density φ and
the cohesive force strength on the granular collapse. Following Vowinckel et al. [44], the cohesive
force in our simulations is modeled as a parabolic spring force: it is zero when two particles are
in contact with each other or when the gap size ζn is larger than dp/20. It has a maximum value
when ζn = dp/40. All results shown below are in dimensionless form. We normalize all lengths
by dp, velocity by us = √

g′dp, and pressure by ρ f u2
s . Here g′ = (ρp − ρ f )g/ρ f . ρp and ρ f are

the densities of the particles and the ambient fluid, respectively. g′ is implemented because the
reduced gravity is the primary driving force in the process of submerged granular collapse. We
define the dimensionless cohesive number Co = max(||Fcoh||)/ρ f Vpg′ to represent the ratio of the
maximum cohesive force and the characteristic gravitational force acting on a particle of volume Vp.

The density ratio r = √
ρp/ρ f is 1.6 and the Stokes number St =

√
ρp(ρp − ρ f )gd3

p/18
√

2ν f ρ f is
12.79, which indicates that our cohesionless cases are in the inertial regime. Here ν f is the kinematic
viscosity.

The typical submerged granular collapse includes the following stages: during the early stages,
particles near the upper right of the column slide down along a concave interface that extends from
the toe to the top surface of the column. As the granular flow spreads horizontally along the bottom
plane, more particles within the column start to move, ultimately forming a concave deposit surface.
Figure 1 illustrates snapshots of the magnitude of the translational particle velocities ||up|| and the
ambient fluid velocity ||u f || in different cases. For the noncohesive loosely packed granular column,
cf. Fig. 1(a), particles slide down along a concave interface and the front propagates horizontally.
Large vortices form in the ambient fluid near the moving particles. With increasing packing density,
fewer particles participate in the collapse process and they spread more slowly, as illustrated in
Figs. 1(b) and 1(c). This observation is consistent with previous studies [19,22]. Figures 1(d)–1(f)
demonstrate that the cohesive force results in more stationary particles in the lower-right part of the
column. The particles propagate more slowly compared with the noncohesive cases, leading to a
shorter and thicker deposit profile. A similar trend was also observed by Zhu et al. [34]. Cohesion
also leads to a greater decrease in particle velocity for more densely packed columns. This will be
explained by the following analysis of the force-chain network structure.

To examine the dilation and contraction of granular columns during the initial collapse, previous
researchers calculated the change in local porosity �n in the columns [22]. The local porosity n
is calculated by subtracting the local particle volume fraction from 1. Figure 2(a) illustrates the
time history of the spatially averaged change in porosity 〈�n〉 in the entire column from t = 0 to
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FIG. 2. Time history of the spatially averaged (a) porosity change 〈�n〉 and (b), (c) excess pore pressure
〈�p〉 from t = 0 to 8. (b) and (c) are for packing density φ = 0.55 and 0.64, respectively.

8. We compute the spatial average values over all regions occupied by particles at each time unit.
For loosely packed columns (φ = 0.55), a contractive behavior is observed for a short time, after
which the averaged porosity levels off. The cohesive force attracts particles to each other, thereby
accelerating the contraction process. However, cohesion also reduces the number of collapsing
particles, which limits the variation in averaged porosity. Conversely, densely packed columns
(φ = 0.64) exhibit a continuous expansion behavior. The cohesive force decelerates the dilation
for densely packed columns. In summary, the effect of cohesion between loose and dense packing
densities displays a certain asymmetry, since cohesion always tends to bring the particles closer
together. In the absence of cohesion, for low-packing fractions, the tendency is for the particles
to come closer together during the collapse, while for large-volume fractions, the tendency is
for the particles to move farther apart. Hence for small-volume fractions, cohesion reinforces the
cohesionless tendency, whereas for large-volume fractions cohesion counteracts the cohesionless
tendency. At a packing density of 0.58, a value identified as critical in prior experimental studies
[19], 〈�n〉 exhibits a very small variation. With the effect of cohesion, 〈�n〉 slightly fluctuates
around zero, which indicates the granular column does not undergo significant contraction or
dilation.

Figures 2(b) and 2(c) illustrate the time history of the spatially averaged excess pore pressure
〈�p〉 for different a packing density φ and cohesive number Co. The excess pore pressure �p is
defined as the pore pressure p at each time unit minus the initial value at t = 0. Here we show
the spatially averaged values for the upper part (7.5 < y < 15, 0 < x < 45, and 0 < z < 3) and
the lower part (0 < y < 7.5, 0 < x < 45, and 0 < z < 3) of the columns, respectively. For the
noncohesive loosely packed column with φ = 0.55, as shown in Fig. 2(b), the initial contraction
caused positive 〈�p〉 in the lower part of the column, while negative 〈�p〉 dominated the upper
part. This qualitative observation is consistent with previous numerical findings reported by Yang
et al. [22]. Negative 〈�p〉 indicates that the interstitial fluid in the upper part of the column is more
affected by the pressure reduction of the ambient fluid. As time passes, both positive and negative
excess pore pressures gradually dissipate. As mentioned earlier, for the lower-packing fraction, the
column initially contracts in the lower regions—i.e., the pore pressure increases to squeeze fluid
out of the pore spaces. This tendency is amplified by the effects of cohesion, which want to bring
the particles closer together. For the larger-packing fraction, on the other hand, the column expands
everywhere—i.e., the pore pressure drops to suck fluid into the pores. This tendency is opposed
by the effect of cohesion, which wants to keep the particles closer together. Consequently, this
leads to a larger value of 〈�p〉, as demonstrated by the dashed lines in Fig. 2(b). This can also
be demonstrated by examining the standard deviations of 〈�p〉 for the data in Fig. 2(b). For the
upper and lower parts of the columns with Co = 0, the standard deviations are 0.195 and 0.463,
respectively. However, when Co = 15, the standard deviations increase to 0.236 and 0.540.
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FIG. 3. (a) The evolution of the normalized number of moved particles Nth/Np for different packing density
φ and cohesive number Co. (b)–(g) The failure zones for granular columns with different Co and φ. The blue
particles mark the failure zones and the red dashed lines are linear regressions based on the location of the
failure zones.

Figure 2(c) illustrates that the initial dilation behavior in the noncohesive densely packed column
with φ = 0.64 induces negative excess pore pressure. Initially, a relatively small negative 〈�p〉
emerges in both the upper and lower parts of the column. As time progresses, the negative 〈�p〉
increases in the lower part of the column, due to the initial granular collapse. Conversely, the
negative 〈�p〉 gradually dissipates to zero in the upper part of the column. Similar to the changes in
porosity, cohesive forces weaken the negative 〈�p〉 in the densely packed column, as illustrated by
the dashed lines in Fig. 2(c).

To investigate the onset of granular collapse, we located the failure zone in both time and
space using a method similar to that described by Staron et al. [33]. We calculate the cumulative
displacement of each particle relative to the initial time and identify a threshold of cumulative
displacement rth = 0.2dp to determine whether a particle moved or remained static. Figure 3(a)
shows the evolution of the number of moved particles Nth over time, which is normalized by the total
number of particles Np. For noncohesive granular columns, there is a significant increase of Nth in a
short period in the beginning, indicating the loss of stability. The apparent brief delay in the onset of
collapse is due to the fact that the cumulative displacement of each particle has not yet reached the
defined threshold of 0.2dp. At a later time, Nth increases slowly by the subsequent erosion process.
These observations are consistent with previous simulations for dry granular collapse [33]. With the
effect of the cohesive force, the failure process is of a shorter duration, and the subsequent erosion
process stops sooner, which results in fewer particles being moved. This is because the cohesive
force promotes the formation of aggregates and hinders the collapse of the column. Compared to
loosely packed columns, densely packed columns experience fewer particle movements, and the
failure process is delayed, cf. blue lines in Fig. 3(a).

We subsequently calculated the rate of change in the number of moved particles �Nth =
Nth(t ) − Nth(t − 1) for each time unit and defined the end time of the failure process as the time
te when �Nth has dropped to 20% of its maximum value. This approach allows us to exclude
particles that propagate by subsequent erosion rather than an initial failure. To locate the failure
zone, we identify the position of the particles at time te with a cumulative displacement ranging
from 0.2dp to 0.3dp, i.e., particles that have moved a moderate amount. Figures 3(b)–3(g) illustrate
the failure zones by blue particles in various runs. Notably, we observe distinct planar failure
surfaces that extend to the toe of the sliding masses. We quantify the failure surfaces in both x- and
y-directions by linear regressions and calculate their angles with the horizontal, which is defined
as the failure angle θ f . For loosely packed columns, the positive excess pore fluid pressure caused
by the initial contraction accelerates the particle movement, resulting in a relatively small θ f . As
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FIG. 4. (a) and (e) The community-detection results of cohesive force-chain network structures for different
packing density φ. The red dashed lines show the failure surfaces. (b) the time history of the total number of
cohesive force bonds Nc. (c), (d) and (f), (g) The community-detection results of normal contact force-chain
network structures for different packing density φ and the cohesive number Co.

the packing density φ increases, fewer particles lose stability and collapse, leading to a larger θ f .
On the other hand, the failure angle θ f evolves nonmonotonically and varies within a small range
as the cohesive number Co increases. Lajeunesse et al. [14] found that the dry granular collapse
is initiated by Mohr-Coulomb failure along a well-defined surface. The failure angle is consistent
with an interpretation in terms of active Coulomb failure, which leads to a predicted failure angle
θp f = π/4 + θr/2, where θr is the internal friction angle of the granular material. Based on previous
studies of dry cohesive granular collapse [31–33], an internal friction angle of approximately 17
degrees is deemed reasonable. Thus, for a dry granular collapse, the predicted failure angle θp f is
approximately 53.5 degrees. In the present study, the failure angle θ f for submerged densely packed
columns is similar to the predicted values θp f . However, θ f for loosely packed ones is much smaller
than θp f , possibly due to excess pore fluid pressure. As mentioned earlier, varying packing densities
and cohesive forces have a significant impact on the internal structure of the granular columns. To
understand the mechanisms behind this, it is necessary to quantitatively describe force chains, which
can comprehensively explain the macroscopic collapse process from a microscopic viewpoint. We
utilize the community detection algorithms [35,41,42] based on a geographical null model [35]
to extract cohesive and contact force-chain network structure from the granular columns. The
comprehensive derivation of the community detection approach, along with the related equations,
can be found in the Supplemental Material [48] (see also references [49–51] therein).

Figures 4(a) and 4(e) compare the cohesive force-chain networks in selected granular columns.
The color bar shows the number of particles Sc in each community. To investigate the onset of
granular collapse, we consider the early time t = 3 of the failure process for each case. Here,
we present the largest 10 communities to show the distribution of a strong cohesive force. In the
loosely packed column with φ = 0.55, cf. Fig. 4(a), the strong cohesive force chains are randomly
distributed in the column. However, in the densely packed column with φ = 0.64, cf. Fig. 4(e),
fewer cohesive force chains are distributed in the static area. Most of the strong cohesive force
chains form near the failure surface. This is because the particles in the static area of the densely
packed column are in direct contact with each other and have no cohesive force between them.
However, in the failure zone, small gaps form among particles due to the dilation process, which
is correlated to the generation of cohesive force chains. These force chains near the failure surface
present a strong macroscopic cohesive force, which opposes the collapse of the columns induced
by gravity. Fig. 4(b) shows the time history of the total number of cohesive force bonds Nc for
the cohesive number Co = 5 and different packing densities φ. During the evolution of the collapse
process, Nc increases with time. This is a result of the formation of more cohesive force bonds
when particles from the upper section descend towards the bottom. Once the particles decelerate
and eventually come to a stop, they establish contact with each other, leading to a decrease in Nc

until it reaches a quasi-steady value.
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Figures 4(c), 4(d) and 4(f), 4(g) show the normal contact force-chain network structures in
selected granular columns at t = 1 when the contraction or dilution process significantly impacts the
distribution of contact force bonds. The communities are also characterized by their particle number
Sc. Similar to the analysis of cohesive force chains, we also present the largest 10 communities to
show the distribution of strong contact force. In all cases, the contact forces in the upper part of
the initial columns are too weak to form multiple-particle communities, as the magnitude of the
contact force depends on the weight of the overlying particles. In the lower part of the columns, the
force-chain network structures of strong normal contact force are branch-like and aligned with the
vertical direction, which is consistent with previous studies [22,34].

For the cohesionless loosely packed column with φ = 0.55 at the beginning, the strong contact
force chains cannot extend to the upper and right areas because of the initial movement of the
particles in that region, cf. Fig. 4(b). As a result, the strong contact force bonds concentrate in the
inner part of the column, where a large community forms and contains more than 700 particles.
In the cohesive column, cf. Fig. 4(c), the size of the communities of strong contact force chains
decreases significantly. Large communities are divided into several smaller ones. This can be
attributed to the fact that the attractive cohesive force promotes the formation of aggregates, which
results in many particles being no longer in contact with each other. As a result, only a few small
communities of contact force chains form in the column. In densely packed columns with φ = 0.64,
more particles are in contact with each other, leading to larger communities at the beginning, as
shown in Fig. 4(e). Similar to the loosely packed column, the cohesive force significantly decreases
the size of the communities of strong contact force chains, cf. Fig. 4(f).

In summary, cohesion reduces the final runout distance of granular columns. It also accelerates
the contraction for loosely packed columns and decelerates the dilation for densely packed columns,
respectively. The planar failure surfaces of the collapsing columns have a larger angle with the
horizontal plane for a higher packing density. A force-chain network analysis indicates that strong
cohesive force chains are more likely to form in the failure region as the packing density increases.
This induces a greater macroscopic cohesive resistance to prevent the collapse process. Additionally,
we observe that the cohesive force tends to reduce the normal contact force, resulting in smaller
communities of the contact force chains.
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