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Weak-inertial effects on destabilized receding contact lines

Akhil Varma *

Max Planck Institute for the Physics of Complex Systems, Nöthnitzer Str. 38, 01187 Dresden, Germany

(Received 2 May 2024; accepted 31 July 2024; published 28 August 2024)

It is known that, beyond a critical speed, the straight contact line of a partially -wetting
liquid destabilizes into a corner. One of the earliest theoretical works exploring this
phenomenon [Limat and Stone, Europhys. Lett. 65, 365 (2004)] elicited a self-similar
conical structure of the interface in the viscous regime. However, noting that inertia is not
expected to be negligible at contact line speeds close to and beyond the critical value for
many common liquids, we provide the leading-order inertial correction to their solution. In
particular, we find the self-similar corrections to the interface shape as well as the flow field,
and also determine their scaling with the capillary number. We find that inertia invariably
modifies the interface into a cusplike shape with an increased film thickness. Furthermore,
when incorporating contact line dynamics into the model, resulting in a narrowing of the
corner as the contact line speed increases, we still observe an overall increase in the inertial
contribution with speed despite the increased confinement.
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I. INTRODUCTION

There is something intriguing about raindrops sliding down a window pane that fascinates us all
on a rainy day. A keen observer might notice the drops speeding up as they slide down under gravity,
forming long tails or rivulets that eventually break into smaller drops. This is a classic example of
contact line destabilization. The capillary number, which is the dimensionless velocity of the contact
line formed by the liquid interface and the solid surface, is the key player in this phenomenon. It
is defined as Ca = ηV/γ , where η is the viscosity of the liquid, γ is its surface tension, and V is
the velocity of the moving contact line. It is beyond a critical value Cacr, that a straight contact line
destabilizes and starts to entrain air (at the advancing front) or form cornered tails (at the receding
end). For many common liquids, the critical value at the receding contact line is Cacr ∼ O(10−3).

The instability of receding contact lines of partially wetting liquids was addressed as early as the
works of Blake and Ruschak [1] and Petrov and Sedev [2]. They observed that beyond a critical
capillary number, a straight receding contact line transforms into a wedge or corner having some
semiopening angle φ. The slanted orientation of the contact line keeps its normal component of
velocity below the threshold for wetting transition. Furthermore, they observed that exceeding the
critical capillary number did not alter the normal velocity of the (destabilized) contact line. Instead,
it consistently maintained the critical value by adjusting its opening angle accordingly [2]. This is
given by the simple phenomenological relation, sin φ ∝ 1/Ca.
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Since this work, many experimental and theoretical studies followed which aimed at under-
standing the instability [3–5] as well as the detailed shape of the destabilized contact line [6–8].
However, the mechanism of this instability is not yet fully understood and is still an active area of
research [9,10]. A comprehensive understanding of the contact line dynamics is indispensable for
many engineering applications ranging from precision thin-film coatings, immersion lithography,
nanofabrication and inkjet printing [11,12] to the design of liquid-repellent and antifogging surfaces
[13]. They are also crucial for microfluidics and lab-on-chip technologies [14].

For a drop of viscous liquid moving down an incline, the instability is observed to occur first
at the receding (rear) end, giving rise to the classical “teardrop” appearance. At velocities much
higher than this critical value, the sharp corner transforms into a cusp, eventually breaking into
drops at even higher velocities through a pearling instability [3,6,15]. The flow close to the corner is
viscous dominated and hence can be approximated as a Stokes flow. This realization led Limat and
Stone [16], and later Snoeijer et al. [17] to determine the interface profile and the flow field near the
receding contact line using the lubrication theory, assuming a slowly varying interface profile near
the corner. The theory matches well with the flow field observed in experiments of sliding silicone
oil drops [17]. However, for fast-moving contact lines, inertial effects can be significant [7,18]. For
example, consider water and silicone oil (100 cP) drops having a critical capillary number Cacr ≈
4 × 10−3 and mercury, having Cacr ≈ 1.5 × 10−3 [6,7]. The drop velocities in these experiments
are typically 10 − 100 cm s−1 for water and mercury and 0.1 − 1 cm s−1 for silicone oil. For these
velocities the Reynolds number, which compares the inertial with the viscous effects, at distances
of l = 10 − 100 µm from the corner turns out to be Rel ∼ 0.01 − 0.1 for silicone oil, ∼1 − 10 for
water and ∼10 − 100 for mercury. The low Reynolds number for silicone oil probably explains
why the model with Stokes flow approximation agrees well with experiments. However, the large
Reynolds number in the case of water and mercury drops indicates that inertial effects are dominant,
even amounting to orders of 103 at the scale of the drops [7]. Thus, it seems that inertia cannot be
excluded in the models of moving contact lines of these liquids. Prior theoretical works in this area
have largely focused on the role of inertia near straight contact lines [19–21] or fully wetted films
[22,23], but studies on cornered contact lines are scarce. For dewetting corners, Kim et al. [24]
suggested using an effective dynamic pressure in the classical lubrication theory to mimic inertia.
However, this results in a solution that is qualitatively indifferent from the noninertial case. Here,
we will use a regular perturbation approach to systematically determine the inertial contribution and
establish the correct scaling associated with it.

In this theoretical work, we shall focus on determining the inertial effects solely on receding
destabilized contact lines. The mechanism of the instability is in itself quite complex and is
beyond the scope of this work. Thus, for our analysis, we shall presuppose that the contact line
is destabilized and forms a corner on the solid surface, as observed in experiments. Our objective
then is to determine the shape of the interface and flow field within. To this end, we closely follow
the analyses of Limat and Stone [16] and Snoeijer et al. [17] and improve on their solution by
introducing weak-inertial corrections in Sec. II. In Sec. III we solve the boundary value problem
for the interface profile, which gives us the leading-order effect of inertia near the contact line. The
self-similar form of the inertial correction is obtained here. Taking water and mercury as example
liquids, the inertial corrections to their interface shape and the flow field are discussed in Sec. IV.
Finally, a summary of our key findings and relevant discussions are offered in Sec. V.

II. PROBLEM FORMULATION

Consider the steady motion of the contact line of a partially wetting liquid over a solid surface (at
z = 0 plane) with a velocity V . As an illustrative example, we take the case of a drop sliding along
the x axis as shown in Fig. 1. Let the liquid have a density ρ and viscosity η. The shape of the liquid
interface is described by its height from the solid surface, h(x, y). Close to the receding contact line,
we assume a gradual variation of the interface height. We also assume the characteristic height of
the interface, a, to be much smaller than the other dimensions, which have a characteristic length
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FIG. 1. Coordinate system used for the analysis of destabilized receding contact line. Shown here are the
side and top view snapshots of a mercury drop sliding on a glass surface from the experiments of Puthenveettil
et al. [7]. The liquid interface is at z = h(x, y). The semiopening angle of the contact line and the local side
angle of the interface are denoted by φ and θ, respectively. Dark grey is the solid surface (adapted with
permission from [7].)

l . This allows for a separation of scales between the planar (x, y) and the normal (z) directions,
which is done by introducing the small parameter, a/l = δ � 1. We first rescale all the physical
quantities with their respective characteristic values to obtain the corresponding dimensionless
quantities (denoted by •̄). For example, the dimensionless coordinates (x̄, ȳ, z̄) = (x/l, y/l, z/a),
velocity field (ūx, ūy, ūz ) = (ux/V, uy/V, uz/(δV )), and pressure field p̄ = pδ2l/(ηV ). Note that we
have rescaled pressure using the lubrication pressure, rather than inertial, as we are interested in
predominantly viscous flows.

A. Momentum conservation

The steady-state momentum conservation within the liquid is given by the Navier-Stokes equa-
tion, written in planar (x, y) and normal (z) directions, respectively, as

δ2�̄ū + ∂2ū
∂ z̄2

− ∇̄ p̄ = δ2Rel

(
ū · ∇̄ū + ūz

∂ ū
∂ z̄

)
, (1)

δ2 ∂2ūz

∂ z̄2
− ∂ p̄

∂ z̄
= δ4Rel

(
ū · ∇̄ūz + ūz

∂ ūz

∂ z̄

)
. (2)

Here, ū = (ūx, ūy), ∇̄ = (∂/∂ x̄, ∂/∂ ȳ) is the planar gradient, and �̄ = ∂2/∂ x̄2 + ∂2/∂ ȳ2 is the planar
Laplacian. Rel = lV ρ/η is the Reynolds number based on the larger length scale, l . Classical
lubrication theory ignores the inertial term by assuming small values of Rel � 1. In contrast, here
we consider the regime where Rel � 1, so as to retain the contribution of inertia. However, when the
Reynolds number is sufficiently large, typically Rel � δ−2, boundary layer separation starts coming
into the picture [25]. To avoid this complication, we limit our analysis to the moderate inertial
regime defined by 1 � Rel � δ−2, i.e., Rel ∼ O(δ−1). So now, by neglecting terms of O(δ2) and
smaller, (1) and (2) reduce to

∂2ū
∂ z̄2

− ∇̄ p̄ = ε (ū · ∇̄)ū and (3)

∂ p̄

∂ z̄
= 0 (4)

where ε = δ2 Rel ∼ O(δ) is a small parameter. Comparison with full numerical simulations of
channel flow has shown the “inertial thin-film equations” in (3) and (4) to be accurate even for
much higher values of ε(∼1 − 10) [26]. To obtain the velocity field ū, one has to integrate
the expression (3) between z̄ = 0 and z̄ = h̄(x̄, ȳ), with the following boundary conditions in the
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laboratory frame-of-reference: (i) no-slip at the solid surface, ū|z̄=0 = 0, and (ii) free-shear at the
liquid interface, ∂ū/∂ z̄|z̄=h̄ = 0. Furthermore, it follows from these boundary conditions that ūz = 0.

To obtain an analytical solution in the limit of small, but non-negligible values of ε, we resort to
a regular perturbation expansion of the form

ū = ū0 + εū1 + O(ε2), h̄ = h̄0 + εh̄1 + O(ε2) and

p̄ = p̄0 + ε p̄1 + O(ε2). (5)

We truncate the expansion at O(ε), the leading-order inertial term. The subscript 0 denotes O(1)
terms (Stokes flow) and 1 denotes O(ε) terms (inertial correction). The expansion in (5) is the
weak-inertial correction that is used in a variety of problems to determine the influence of inertia
in moderate Rel flows. Substituting (5) in the Navier-Stokes equation (3) gives the governing
equation for the zeroth and first-order problems:

O(1) :
∂2ū0

∂ z̄2
= ∇̄ p̄0, (6a)

O(ε) :
∂2ū1

∂ z̄2
= ∇̄ p̄1 + (ū0 · ∇̄)ū0. (6b)

Next, we use the expansion (5) in the boundary conditions. It is straightforward to obtain the
no-slip conditions at the respective order:

O(1) : ū0|z̄=0 = 0, (7a)

O(ε) : ū1|z̄=0 = 0. (7b)

To write the free-shear boundary condition at the liquid interface z̄ = h̄ = h̄0 + εh̄1, we use the
method of domain perturbations [27]. This method involves expanding a given function in Taylor
series near the perturbed boundary. Thus, at z̄ = h̄0 + εh̄1, we have

∂ ū
∂ z̄

∣∣∣∣
z̄=h̄

= ∂ ū
∂ z̄

∣∣∣∣
z̄=h̄0

+ εh̄1
∂2ū
∂ z̄2

∣∣∣∣
z̄=h̄0

+ O(ε2)

= ∂ ū0

∂ z̄

∣∣∣∣
z̄=h̄0

+ ε

(
∂ ū1

∂ z̄
+ h̄1

∂2ū0

∂ z̄2

)∣∣∣∣
z̄=h̄0

+ O(ε2). (8)

The final expression was obtained using the expansion (5). The free-shear condition at the respective
order is then

O(1) :
∂ ū0

∂ z̄

∣∣∣∣
z̄=h̄0

= 0, (9a)

O(ε) :
∂ ū1

∂ z̄

∣∣∣∣
z̄=h̄0

= −h̄1
∂2ū0

∂ z̄2

∣∣∣∣
z̄=h̄0

= −h̄1∇̄ p̄0|z̄=h̄0
. (9b)

We are finally at a stage where we can solve the governing equations and boundary conditions at
their respective orders. At the zeroth order, we have the classical lubrication theory, which includes
the Stokes equation (6a) and the boundary conditions (7a) and (9a). Solving for ū0, we get

ū0 = z̄

2
(z̄ − 2h̄0)∇̄ p̄0. (10)

Next, we substitute (10) in the first-order governing equation (6b) and the boundary conditions (7b)
and (9b), and subsequently solve for ū1:

ū1 = z̄

2
(z̄ − 2h̄0)∇̄ p̄1 − z̄h̄1∇̄ p̄0 + z̄

120

(
z̄5 − 6h̄0z̄4 + 10h̄2

0 z̄3 − 16h̄5
0

)∇̄ p̄0 · ∇̄∇̄ p̄0. (11)
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Equation (11) introduces the inertial correction to the well-known Poiseuille flow profile of the
Stokes solution (10). One can factor out the z dependence in these equations by computing the depth-

averaged flow field, Ū (x, y) = h̄−1
∫ h̄

0 ū dz̄. Substituting (5) gives the depth-averaged flow field of
the form Ū = Ū0 + εŪ1 + O(ε2), where

Ū0 = 1

h̄0

∫ h̄0

0
ū0 dz̄, (12)

Ū1 = 1

h̄0

(∫ h̄0

0
ū1 dz̄ + 1

ε

∫ h̄0+εh̄1

h̄0

ū0 dz̄ − h̄1

h̄0

∫ h̄0

0
ū0 dz̄

)
. (13)

Applying (10) and (11) in the above integrals and evaluating, we obtain

Ū0 = −h̄0
2

3
∇̄ p̄0, Ū1 = −h̄2

0

3

(
∇̄ p̄1 + 2h̄1

h̄0
∇̄ p̄0 + 54

35
(Ū0 · ∇̄)Ū0

)
. (14)

We can simplify the above expressions by determining the pressure field. Noting that the pressure
is independent of z̄ [from (4)], and is simply the dimensionless Laplace pressure:

p̄(x̄, ȳ) = −Ca−1δ3�̄h̄(x̄, ȳ), (15)

where Ca = ηV/γ is the capillary number. Since the pressure gradient has to balance the viscous
stress at the leading order [see (6a)], we have δ ∼ Ca1/3. Disregarding the proportionality constant
as done in the classical Stokes flow problem [16,17], we get

δ = Ca1/3 ⇒ ε = Ca2/3 Rel . (16)

Thus, by substituting (5) in (15) and collecting terms of the same asymptotic order, we get

O(1) : p̄0(x̄, ȳ) = −�̄h̄0, (17a)

O(ε) : p̄1(x̄, ȳ) = −�̄h̄1. (17b)

The above expressions can be used in (14) to write Ū0 and Ū1 explicitly in terms of h̄0 and h̄1 alone:

Ū0 = h̄2
0

3
∇̄(�̄h̄0), (18a)

Ū1 = h̄2
0

3

(
∇̄(�̄h̄1) + 2h̄1

h̄0
∇̄(�̄h̄0) − 54

35
(Ū0 · ∇̄)Ū0

)
. (18b)

B. Mass conservation

In addition to the momentum conservation described in Sec. II A, it is necessary for the flow field
to satisfy mass conservation given by

∂ h̄

∂ t̄
+ ∇̄ · (h̄Ū ) = 0. (19)

In the laboratory frame-of-reference, a drop moving in the positive x-axis with a (dimensionless)
unit velocity has ∂ h̄/∂ t̄ = −∂ h̄/∂ x̄. Using this relation and the expansion (5), we obtain the
kinematic equation of the moving interface at each order:

O(1) : −∂ h̄0

∂ x̄
+ ∇̄ · (h̄0Ū0) = 0, (20a)

O(ε) : −∂ h̄1

∂ x̄
+ ∇̄ · (h̄0Ū1 + h̄1Ū0) = 0. (20b)

Note that Ū0, Ū1, h̄0 and h̄1 are yet unknown. However, since these fields are related through
(18a) and (18b), we need only solve for the latter two.
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III. DETERMINING THE INTERFACE PROFILE

A. Zeroth order solution: Stokes flow

The shape of the interface in the Stokes regime was determined in Limat and Stone [16]. We
briefly rederive their results here for completeness. The kinematic equation for the interface at O(1)
is given by (20a). Using (18a) in (20a):

−3
∂ h̄0

∂ x̄
+ ∇ · (

h̄3
0∇̄(�̄h̄0)

) = 0. (21)

Using a self-similarity ansatz, the solution is of the form:

h̄0(x̄, ζ ) = x̄ H (ζ ), (22)

where ζ = y/x [16]. Substituting (22) in (21), one arrives at the ordinary differential equation:

ζH ′ − H + H3 ( fx − ζ fx
′ + fy

′) + 3H2H ′(−ζ fx + fy) = 0, (23)

where the prime (•′) denotes derivative with respect to ζ . The components of the vector f (ζ ) =
( fx(ζ ), fy(ζ )) are given by:

fx(ζ ) = − 1
3 ((1 + 3ζ 2)H ′′ + ζ (1 + ζ 2)H ′′′), (24a)

fy(ζ ) = 1
3 (2ζH ′′ + (1 + ζ 2)H ′′′). (24b)

Equation (23) is a boundary value problem (BVP) that requires four boundary conditions to
obtain a unique solution for H (ζ ). By recognizing that the drop is symmetrical about its center line
(ζ = 0), we get the first two conditions namely H ′(0) = H ′′′(0) = 0. Next, we have at the contact
lines ζ = ζc (given), the height of the drop is zero i.e., H (ζc) = 0. The final condition requires no
flux penetrating the contact line, i.e., the net flux through any given cross-section of the drop should
be zero. H (0) can be determined iteratively such that the no-flux condition is satisfied. However,
the solution is extremely stiff near ζ = ζc and convergence of the BVP would entail using special
routines.

So instead, we use an iterative procedure, following Limat and Stone [16] and solve for an initial
value problem (IVP). The value of H (0) is first arbitrarily assigned. Note however that since H (ζ )
relates directly to the height of the liquid interface, negative values are physically irrelevant and
hence excluded. Next, we have H ′(0) = H ′′′(0) = 0 as before due to symmetry. Finally, based on
a particular choice of H ′′(0), one can solve the IVP to obtain multiple solutions for H (ζ ), out of
which some do not have a root [see Fig. 8(a)]. In other words, the drop interface does not meet the
solid and form a contact line. These are not physically relevant solutions and may be discarded.
However, there also exist multiple solutions of H (ζ ) that have roots. The correct choice of H ′′(0) is
then the one that also obeys the no-flux condition at the contact line. Some of these valid solutions
of H (ζ ) for the initial conditions H (0) and H ′′(0) tabulated in Table I are shown in Fig. 2(a); they
yield unique values of ζc. For example, when H (0) = 1.215, the choice H ′′(0) = −2.623 satisfies
the zero net flux condition as shown in Figs. 8(b) and 8(c). This solution places the contact line along
ζ = ζc = 1 (up to four digits of precision) which corresponds to an opening angle φ = tan−1(ζc) =
45◦. Solving the IVP using Table I as seed is faster and more stable than solving the BVP.

B. First-order solution: Inertial correction

To determine the leading-order inertial correction, we use the mass conservation equation at
O(ε). Substituting (18a) and (18b) in (20b), we obtain the differential equation for the correction to
the interface profile, h̄1:

−3
∂ h̄1

∂ x̄
+ ∇̄ ·

(
h̄3

0∇̄(�̄h̄1) + 3h̄2
0h̄1∇̄(�̄h̄0) − 54

35
h̄3

0(Ū0 · ∇̄)Ū0

)
= 0 (25)
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(a)
(b)

FIG. 2. Valid solutions of (a) Eq. (23) and (b) Eq. (27) for various corner semiopening angle, φ. For small
φ, the curves can be approximated as parabolas (see Appendix B). Note that the plots are symmetrical about
the y axis for negative values of ζ .

with U0 given in (18a). Keeping in mind (22), a quick examination of this equation reveals that it
admits a self-similar solution of the form:

h̄1(x̄, ζ ) = x̄2 G(ζ ), (26)

with ζ = y/x. Substituting the expressions for h0 and h1 from (22) and (26), respectively, in (25),
we arrive at

ζG′ − 2G + 2H2(gx + G fx ) − ζ (H2(gx + G fx ))′ + (H2(gy + G fy))′ = 0, (27)

where the vector f (ζ ) = ( fx(ζ ), fy(ζ )) is given in (24a), (24b) and g(ζ ) = (gx(ζ ), gy(ζ )) is

gx(ζ ) = 1

3

(
6G fx + 54

35
H4(ζ fx − fy)(2H ′ fx + H fx

′) − ζ (1 + ζ 2)HG′′′
)

, (28a)

gy(ζ ) = 1

3

(
6G fy + 54

35
H4(ζ fx − fy)(2H ′ fy + H fy

′) + (1 + ζ 2)HG′′′
)

. (28b)

Note that H (ζ ) is the Stokes solution for a contact line at some ζ = ζc, and is known at this
stage from Sec. III A. Equation (27) has to be supplemented with four boundary conditions to
obtain a unique solution for G(ζ ). The symmetry of the drop automatically lets us assign G′(0) = 0
and G′′′(0) = 0. Next, we note that the height of the interface should be zero at the contact line
ζ = ζc and this constraint sets G(ζc) = 0. The final boundary condition is obtained by specifying
the value of G′′(0) (or G(0)). However, choosing any arbitrary value is not sufficient. Similar to
the Stokes flow problem, the correct choice should result in a net zero-flux at any point on the
contact line and through any cross-section of the drop (see Appendix C). The unique solutions of
G(ζ ) for a few specified values of ζc (or equivalently, the opening angle φ) are shown in Fig. 2(b);
the corresponding choice of values of G′′(0) are also listed in Table I in the Appendix. In the
example considered in Sec. III A (drop having opening angle φ = 45◦ (ζc = 1)), the correct choice
of G′′(0) = −0.29.

There are a few observations that need to be made here: First, G(ζ ) directly relates to the
correction in the interface height due to inertia and so, it is allowed to assume negative values. Even
so, it is interesting to note that the valid solution is always positive for the wide range of opening
angles shown here. One can analytically show that it is always positive in the asymptotic limit of
small opening angles (see Appendix B). Second, G(0) increases with the opening angle until about
φ ≈ 75◦, beyond which it seems to saturate, rendering the solution sensitive to the choice of G(0).
For this reason, opting G′′(0) as the boundary condition is a more reliable alternative. We provide
the approximate values of G(0) and G′′(0) for a few opening angles in Table I.
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IV. RESULTS

We can now use the solutions for H (ζ ) and G(ζ ) obtained in Sec. III for various corner
opening angles to determine the inertia-corrected interface profile and flow fields. Inspired by the
experiments of Puthenveettil et al., [7], we shall use the properties of water and mercury as examples
to quantify our findings because the drops of these liquids move in the inertial regime when their
receding contact line destabilizes. At room temperature, the (density, surface tension, and dynamic
viscosity) of water and mercury are (ρw = 103 kg m−3; γw = 7 × 10−2 N m−1; ηw = 10−3 Pa s)
and (ρm = 104 kg m−3; γm = 5 × 10−1 N m−1; ηm = 1.5 × 10−3 Pa s), respectively. Water and
mercury have critical capillary numbers of Cacr ≈ 4 × 10−3 and Cacr ≈ 1.5 × 10−3 [7].

Before we proceed, it is useful to define a local Reynolds number based on the dimensional
distance x from the corner, given by Rex = xV ρ/η = x̄ Rel . Also note that one can relate Rex to
the capillary number via Rex = Ca x/lvc, where lvc = η2/(γ ρ) is the viscocapillary length of the
liquid. For mercury and water, lvc ∼ 10−4 µm and lvc ∼ 10−2 µm, respectively.

A. Interface profile

The liquid interface is obtained by substituting the expressions for h0 and h1 from (22) and (26):

h̄(x̄, ζ ) = x̄ H (ζ ) + εx̄2 G(ζ ) + O(ε2). (29)

Truncating at O(ε) and writing in dimensional form by using (16), we get

h(x, ζ ) = Ca1/3 x H (ζ ) + Ca Rex x G(ζ ). (30)

Note that Ca Rex together is the local Weber number. The first term in (30) is the Stokes solution,
with the classical Ca1/3 scaling for partially wetting liquids [16,28]. By rewriting Rex = Ca x/lvc,
we see that the leading-order inertial term obeys a Ca2 scaling.

We have seen in Sec. III B that the solutions that satisfy the no-flux condition have G(ζ ) � 0
for all opening angles. Thus, the inertial correction in (30) is always positive, which implies that the
height of every point of the Stokes interface is increased due to inertia. A similar enhancement in the
height of the liquid interface because of inertia has been reported previously for the Landau-Levich
(fully wetting) problem [22]. In the Stokes limit, the interface height scales linearly with x, giving
it a conical structure, as shown by the dashed lines in Fig. 3. Since Rex varies linearly with x, the
inertial correction in (30) has a quadratic dependence with x. Indeed, we see its implication in the
example shown in Fig. 3, where the resulting surface has a cusplike geometry. Formation of cusps
has also been reported in experiments at high contact line speeds, indicating that inertia might be
playing an important role in the corner-to-cusp transition of moving contact lines [3,6,7].

A useful quantification is the side angle of the drop, θx. It is the internal angle in the xz plane
defined at a distance x along the centerline (ζ = 0). A schematic of this side angle is shown in Fig. 3
(inset). It is formally defined as

tan θx = ∂h

∂x

∣∣∣∣
ζ=0

= Ca1/3H (0) + 2Ca RexG(0). (31)

For a given semiopening angle φ, the side angle is a constant θ0 in the case of Stokes flow. However,
by including inertial effects, we see that the side angle θx increases with the distance from the
corner as well. To evaluate the side angle using (31), one can utilize Table I, which lists the values
of H (0) and G(0) for different opening angles. Figure 4(a) shows this variation for various opening
angles.

For small opening angles (φ → 0), one can show that the cross-section profile of the interface
is parabolic, similar to the noninertial case (see Appendix B). Furthermore, in this case, we have
the approximation H (0)3 ∼ tan2 φ and G(0) ∼ tan2 φ, giving us the θ − φ relation in (B7), valid
for small φ. To facilitate comparison with other works in literature and experiments (see [29]), we
take the cube of this expression and truncate it at the leading order in Ca2/3Rex(�1) to get the
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FIG. 3. Front and side profiles of the liquid interface for a semiopening angle of φ = 45◦ (ζc = 1), Ca =
5.65 × 10−3 and Rel = 25. The liquid is assumed to have properties of water (Cacr = 4 × 10−3). The Stokes
solution (cone) is shown by the dashed line while the inertia-corrected solution (cusp) is shown by the solid
line. Inset: a schematic of the side angle θx; the true side angle, θ0, computed at x = 0 is the Stokes solution.

inertia-corrected relation:

tan3 θx ≈ 35

16
Ca tan2 φ(1 + 2.262 Ca2/3Rex tan4/3 φ). (32)

Up until this point, we have not included any contact line dynamics in our model; the opening an-
gle φ (or equivalently, ζc) was chosen independently. However, it has been observed in experiments
that φ reduces with increasing Ca such that the velocity of the contact line is maintained at the crit-
ical value [1,2]. We account for this variation by including the commonly used phenomenological
relation:

sin φ = Cacr/Ca, (33)

in our model [1,2]. A more detailed mechanism for selection of φ was explored in Snoeijer et al.
[30]. While it is natural to expect inertia to increase with the drop velocity, one should keep in mind
that the competing viscous forces also increase due to the corresponding narrowing of the corner.
To analyze the nontrivial effects that arise from introducing the contact line dynamics in the model,
we shall use mercury and water at room temperature as example liquids. The properties of mercury
and water were described at the beginning of this section.

For any specified liquid, since φ is enslaved to Ca, there is a unique value of θx for a given Ca
and distance x from the corner. These values for mercury and water at x = 10 µm are highlighted in
Fig. 4(a) by crosses and circles, respectively. Since Rex = Ca x/lvc, θx can be expressed entirely
in terms of Ca after the inclusion of contact line dynamics, as shown in Fig. 4(b) for some
fixed x (=10 µm). Contrary to what one might expect from (31), we see that θx reduces with
Ca, consistent with experimental observations [6,7]. This is due to the stronger influence of the
narrowing geometry (decreasing H (0) and G(0) values) compared to increasing Ca. Despite this,
we see in Fig. 4(c) that the fractional correction introduced by inertia increases with Ca. Also note
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FIG. 4. (a) Variation of the side angle θx due to inertia given by (31) for various corner semiopening
angles. The cross and circle markers denote the values that get selected when using contact line dynamics (33)
for mercury and water, respectively, at x = 10 µm. (b) Same as markers in (a) but plotted solely against Ca.
(c) The fractional correction �θx/θ0 = (θx (x) − θ0 )/θ0 in the side angle due to inertia.

that the correction for mercury is higher than water in spite of the former’s smaller Cacr, due to its
much higher Rex values (at x = 10 µm, Rex ∼ O(1) for water and Rex ∼ O(10) for mercury).

B. Depth-averaged flow field

Using the interface profile determined in the previous section, one can compute the pressure
fields using (17a). At the zeroth and first orders, these are, respectively, (in dimensionless form)

p̄0 = − (1 + ζ 2)

x̄
H ′′(ζ ), and (34)

p̄1 = −(1 + ζ 2)G′′(ζ ) + 2ζG′(ζ ) − 2G(ζ ). (35)

Note that when approaching the corner, x̄ → 0, the Stokes flow pressure p̄0 becomes singular,
whereas the inertial correction p̄1 does not. This is unlike the case of a straight contact line, where
the leading-order stress from inertia exhibits a logarithmic singularity [21].

The depth-averaged velocity field at the zeroth order (Stokes flow) is obtained by substituting
(22) in (18a):

Ū0(ζ ) = H (ζ )2 f (ζ ) (36)
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FIG. 5. Streamlines of the depth-averaged flow near the corner shown in the reference frame of the moving
drop i.e., (U − V )/V , obeying (38). The dashed lines are the Stokes solution while the solid lines are the
inertia-corrected solution. A semiopening angle of φ = 45◦ and Ca = 5.65 × 10−3 is chosen to mimic water
(Cacr = 4 × 10−3). The local Reynolds number at some x = l is taken to be Rel = 25. For water, l ≈ 250 µm.

with f (ζ ) given in (24a), (24b). Likewise, at the first order, we get by substituting (22), (26), and
(36) in (18b):

Ū1(x̄, ζ ) = x̄ H (ζ )g(ζ ) (37)

with g(ζ ) given in (28a), (28b). Thus, the total flow velocity is then Ū (x̄, ζ ) = Ū0(ζ ) + εŪ1(x̄, ζ ) +
O(ε2). In dimensional form, this is

U (x, ζ )

V
= H (ζ )2 f (ζ ) + Ca2/3Rex H (ζ )g(ζ ). (38)

We remind the reader that U = (Ux,Uy) is the local depth-averaged velocity field within the liquid,
and is different from the velocity of the contact line, V = (V, 0). The Stokes velocity field depends
only on the semiopening angle, φ, while the inertial correction depends on φ, Ca and distance from
the corner, x. Furthermore, since Rex = Ca x/lvc, the leading-order inertial term scales as Ca5/3.

In Fig. 5, we show as an example, the Stokes and inertia-corrected streamlines in the reference
frame of a moving drop. One can make the following qualitative observation, true for all opening
angles: The fluid approaching the corner is forced further toward it due to the inertia. After turning
the corner, the fluid accelerates away from it, and at the same time, is drawn further toward the
centerline of the drop (ζ = 0). The flow velocity is maximum along this centerline.

To get a quantitative estimate of the effect of inertia, we compute the centerline velocity, where
the depth-averaged flow is strictly along the x axis i.e., U c(x) = Ux(x, 0). It is determined using (38)
where the values of H (0), fx(0) and gx(0) for a few opening angles can be read off from Table I.
Note that fy(0) and gy(0) are strictly zero. The results are shown in Fig. 6(a) for various semiopening
angles, φ. One can see immediately that the centerline velocity is more than the drop velocity i.e.,
U c/V > 1, even in the Stokes limit (Rex → 0). With the inclusion of the inertial correction, this
value increases with Rex, for all opening angles. Thus, we conclude that for a given drop velocity,
the flow velocity increases with the distance from the corner due to inertia. The magnitude of this
increase (i.e., the slope of the curve) depends on the opening angle, with the most increase seen for
intermediate values.

We did not include any contact line dynamics for generating Fig. 6(a), which is to say that
φ and Ca were treated as independent parameters. To get a more practical picture, we shall now
include the phenomenological relation between these two quantities given by (33), as we did in
the previous section for the side angle. The values of U c/V that get selected in this manner for
two example liquids viz. mercury and water at x = 10 µm are shown with crosses and circles,
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FIG. 6. (a) Variation of the centerline velocity due to inertia given by (38) for various corner semiopening
angles. The cross and circle markers denote the values that get selected when using contact line dynamics (33)
for mercury and water, respectively, at x = 10 µm. (b) Same as markers in (a) but plotted solely against Ca. (c)
The fractional correction �U c/U c

0 = (U c(x) − U c
0 )/U c

0 in the centerline velocity due to inertia.

respectively. We show these explicitly in terms of the Ca in Fig. 6(b). Notably, the Stokes centerline
velocity, U c

0 /V , being a function only of φ, is given by a universal curve for all liquids and at
any distance from the corner. The inertia-corrected velocities for both mercury and water at some
x(=10 µm here) are not only higher than the Stokes velocity, as mentioned, but they also increase
with Ca. In comparison, the centerline velocity of mercury is much higher than water at any distance
from the corner because of the higher local Reynolds number of the former. Figure 6(c) shows the
fractional correction introduced by inertia at x = 10 µm which also increases with Ca. This implies
that inertia overshadows the enhanced viscous dissipation caused by the narrowing of the corner at
higher speeds.

V. SUMMARY AND DISCUSSIONS

We studied the effect of inertia in receding contact lines of partially wetting liquids beyond
their critical capillary number when they destabilize and form a corner. To this end, we modeled
the flow field near the contact line using thin-film equations, as is classically done, but retained
the convective (inertial) term. The leading-order inertial contribution is obtained by linearizing the
equations using a regular perturbation expansion. Inertial effects are found to be significant when
Ca2/3Rex � 1, where Rex is the local Reynolds number based on the distance from the corner, x.

084006-12



WEAK-INERTIAL EFFECTS ON DESTABILIZED …

For destabilized contact lines of many common liquids, including mercury and water considered
here, Ca ∼ 10−3 − 10−2. This implies that inertia becomes significant when Rex � 10 − 102,
which corresponds to experimentally relevant length scales of x ∼ 10 − 100 µm for mercury and
x ∼ 100 − 1000 µm for water. Gravitational effects can be ignored as these distances fall well
within their respective capillary lengths.

In the Stokes regime, the thin-film equations predict the receding contact line to be of a conical
structure with a self-similar flow within [16,17]. Here, we have provided a leading-order inertial
correction to this solution, which is also self-similar. We have also shown that for all corner opening
angles, inertia enhances the interface height. A similar enhancement in the liquid film thickness
by inertia was reported in the fully wetting case (Landau-Levich problem) [22,23]. Furthermore,
the leading-order inertial correction in our case was found to scale linearly with the local Weber
number (Wex = Ca Rex), giving rise to a cusplike shape of the interface for all corner opening
angles. However, note that in computing the correction, we assumed the contact line to remain a
straightedged corner (φ independent of x), which is not true in general, as experiments report a
corner-to-cusp transition of contact lines at high speeds [6,7].

To understand the inertial effects on the flow field, we computed the depth-averaged velocity
near the contact line. The inertial correction was found to scale as Ca5/3 at a given distance from the
corner. We also found that inertia increases the fluid influx from the bulk and forces the flow further
toward the corner. Consequently, this enhances the outflux through the centerline of the drop for all
corner opening angles.

We then introduced contact line dynamics in our model using a simple phenomenological relation
for the corner opening angle, viz. sin φ = Cacr/Ca [1], which is to say that increasing Ca reduces
the opening angle. In doing so, we introduced a competition between the increased drop speed and
the corner confinement on the flow; the former enhances the fluid inertia while the latter suppresses
it. Interestingly, we found that despite this competition, there is an overall increase in the inertial
contribution with an increase in Ca. We have shown this numerically by taking contact lines of
water and mercury as examples. While these are theoretical estimates, note that in practice, the
cornered end undergoes either a pearling instability or forms a rivulet when φ � 1. In experiments,
it happens around φ = π/6 or 30◦ [3,7]. In future works, it would be interesting to see how inertia
itself affects this instability [30].

While the assumption of ε (=Ca2/3Rel ) � 1 was used to obtain a perturbative correction to the
Stokes solution, the asymptotic expansion is valid numerically even for ε ∼ O(1). For fast motion
of contact lines, ε � 1, the flow develops a viscous boundary layer close to the surface. In such
cases, the use of boundary layer theory instead has been shown to agree well with experiments [7].

The Stokes flow stresses diverge as 1/x when approaching the corner, x → 0 [see (34)]. It
has been observed in experiments that the corner rounds off around the viscocapillary length, lvc,
to regularize this corner singularity [31]. Additional contact line physics can be implemented in
the model to capture this fine tip structure [31], although no such regularization was used in the
present work. This makes our analysis less suitable for comparison with experiments when x � lvc.
Furthermore, far away from the corner, our analysis is not valid close to and beyond the capillary
length, lc, where gravitational effects become important. Thus, it is best applicable in lvc � x � lc.

The inertial correction provided in the present work cannot be applied to advancing contact lines
because of the large capillary numbers at which destabilization occurs (Cacr ∼ O(10)), accompa-
nied by a large interface deformation [5]. However, it remains relevant for addressing problems
concerning destabilized receding contact lines, both from a fundamental standpoint as well as in
many industrial processes operating at moderately large Reynolds numbers [5,11,12].
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TABLE I. The centerline values (ζ = 0) for various semiopening angles, φ (or equivalently, ζc(= tan φ))
used in the main text.

φ [Deg.], ζc H (0) H ′′(0) G(0) G′′(0) fx (0) gx (0)

15, 0.27 0.54 −15.1 0.025 −0.68 5.033 0.2517
30, 0.58 0.876 −5.39 0.075 −0.458 1.797 0.2695
45, 1 1.215 −2.62 0.1355 −0.29 0.874 0.237
60, 1.73 1.63 −1.34 0.185 −0.138 0.447 0.168
75, 3.73 2.319 −0.606 0.207 −0.039 0.202 0.0836
81.8, 6.94 3 −0.348 0.2064 −0.0136 0.116 0.0479

APPENDIX A: VALUES AT CENTERLINE OF THE DROP

One can use Table I, for example, to determine the magnitude of the centerline depth-averaged
velocity of the drop given by U c/V = H (0)2 fx(0) + Ca2/3Rex H (0)gx(0) or the side angle in (31).

APPENDIX B: APPROXIMATION FOR SMALL OPENING ANGLES

The functions H (ζ ) and G(ζ ) obtained in Sec. III (Fig. 2) are rescaled with their values at the
centerline (ζ = 0) in Fig. 7. For small φ (equivalently, ζc � 1), the solutions approximate as a
single curve which is a function of ζ/ζc. Thus, in these cases, we can write H (ζ ) = H (0)Ĥ (ζ/ζc)
and G(ζ ) = G(0)Ĝ(ζ/ζc), with the properties Ĥ (±1) = Ĝ(±1) = 0, Ĥ (0) = Ĝ(0) = 1. In fact,
from Fig. 7, we see that the curve is approximately described by a parabola for both Ĥ and Ĝ

Ĥ (ζ/ζc) = Ĝ(ζ/ζc) ≈ 1 −
(

ζ

ζc

)2

. (B1)

The former is the small-angle approximation given by Limat and Stone [16].
Using (B1) in (24a) and (24b), we get

fx ≈ 2(1 + 3ζ 2)

3ζ 2
c

H (0), fy ≈ −4ζ

3ζ 2
c

H (0), (B2)

respectively. By using (B1) and (B2) in the expression for the Stokes flow flux (C5) to satisfy the
zero-net flux condition, we get the approximate expression for H (0) given in (B3). Computing gx

and gy [Eqs. (28a) and (28b)] in a similar fashion, and using it in (C6), we get the net inertial flux,

FIG. 7. Rescaled solutions H (ζ ) and G(ζ ) from Fig. 2 for various opening angles, φ (or equivalently ζc =
tan φ). Dashed line shows the parabolic curve 1 − (ζ/ζc )2.
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which when equated to zero, gives the expression for G(0) in (B4). Thus, for small opening angles
i.e., ζc � 1:

H (0) ≈ (35/16)2/3 ζ 2/3
c , (B3)

G(0) ≈ 70

143
ζ 2

c

(
1 − 9ζ 2

c /17
)

(
1 + ζ 2

c /2
) , (B4)

fx(0) ≈ 2

3ζ 2
c

H (0), fy(0) = 0, (B5)

gx(0) ≈ 4

3ζ 2
c

H (0)G(0), gy(0) = 0. (B6)

Since G(0) in (B4) is positive and Ĝ(ζ/ζc) is parabolic, the interface profile G(ζ ) is always positive.
Using the above approximation along with the fact that ζc = tan φ, the θ − φ relation in (31)

becomes

tan θx ≈
(

35

16

)1/3

Ca1/3 tan2/3 φ + 140

143
Wex tan2 φ, (B7)

where Wex = Ca Rex is the local Weber number.

APPENDIX C: FLUX NEAR THE CONTACT LINE

Ū is the depth-averaged velocity field rescaled by the drop velocity. The relative velocity is then
Ū − x̂, where x̂ is the unit vector in the positive x direction. The dimensionless local flux jx is then

j̄x = h̄(Ū · x̂ − 1). (C1)

Like in the rest of the article, expanding h̄ = h̄0 + εh̄1 and Ū = Ū0 + εŪ1 gives j̄x = j̄0,x + ε j̄1,x +
O(ε2) with

j̄0,x = h̄0(Ū0,x − 1), (C2)

j̄1,x = h̄1(Ū0,x − 1) + h̄0Ū1,x, (C3)

where the subscript x denotes the component along the x-direction. The expressions for h̄0, h̄1, Ū0,

and Ū1 are given in (22), (26), (36), and (37), respectively. We assume terms of O(ε2) or higher
orders have negligible contribution to the flux. The net flux through a cross-section of the drop at an
arbitrary location x is

J̄x = 2
∫ ζcx̄

0
j̄x dȳ. (C4)

Substituting (C2), we obtain the net flux through any cross-section in the Stokes limit, in dimen-
sionless form:

O(1) : J̄0,x = −2x̄2F0(ζc) where, F0(ζc) =
∫ ζc

0
H (1 − H2 fx ) dζ . (C5)

The zero-net flux condition at this order yields a unique value of H ′′(0) which solves for H (ζ )
for a given opening angle. For example, when H (0) = 1.215, the value of the function F0 for
various H ′′(0) are shown in Fig. 8. Only H ′′(0) = −2.623 satisfies the zero-net flux condition;
the corresponding value of ζc = 1 (φ = 45◦). Moreover, note that only for this particular choice of
H ′′(0) is the local flux across any point on the contact line also zero ( j0,x(x, ζc) = 0). The choice of
H (0) and H ′′(0) obtained in this manner for a few values of φ are given in Table I.
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FIG. 8. O(1) Stokes regime: (a) Solutions of (23) with the boundary conditions H (0) = 1.215, H ′(0) =
H ′′′(0) = 0 and for different values of H ′′(0). The physically valid solution (shown in blue solid line) is decided
by the zero-net flux condition through the cross-section (yz plane). (b) Local flux along a cross section; Only
ζ � 0 is shown for reasons of symmetry. The area under each curve represents the net flux through the cross-
section. (c) The net flux [Eq. (C5)], shaded area in (b) is proportional to F0(ζ ), which is shown here for the
different values of H ′′(0). A zero net flux i.e., F0(ζc ) = 0, is obtained only for H ′′(0) = −2.623, making it the
correct solution, and results in ζc = 1 or φ = 45◦. O(ε) Inertial correction: (d) Solutions of G(ζ ) in Eq. (23)
with the boundary conditions G(ζc = 1) = 0, G′(0) = G′′′(0) = 0 and for different values of G′′(0). The correct
choice of G′′(0) is decided by the zero-net flux condition along any arbitrary cross-section of the drop. (e) Local
inertial flux correction; for reasons of symmetry, only ζ � 0 is shown. The area under each curve represents
the net inertial flux through the cross-section. (f) The net inertial flux [Eq. (C6)] is proportional to F1(ζ ), which
is shown here for the different values of G′′(0). A zero net flux, i.e., F1(ζc = 1) = 0, is obtained only for
G′′(0) = −0.29, making it the correct choice.

Similarly, the leading-order inertial flux is obtained by substituting (C3) in (C4):

O(ε) : J̄1,x = −2x̄3F1(ζc), where, F1(ζc) =
∫ ζc

0
G(1 − H2 fx ) − H2gx dζ . (C6)

The flux at this order O(ε) should also independently vanish in order to satisfy the macroscopic
mass-flux condition. This condition should be evoked to determine the correct choice of the
boundary conditions. Note that ζc is determined from the solution at O(1). In this example, we have
ζc = 1 (see Fig. 8). Figure 8(d) shows the different values of the boundary condition G′′(0) for the
case ζc = 1 and the correct value which satisfies the zero-flux condition is highlighted. Moreover,
note that the local flux across the contact line is also zero ( j1,x(ζc) = 0) only for this particular
choice of G′′(0).
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