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In this study, we introduce a comprehensive theoretical model for viscous liquid systems
exhibiting Rayleigh-Plateau instability, accommodating cases both with and without a solid
fiber. Employing the lubrication approach and implementing the hydrodynamic interaction
at the solid-liquid interface, we formulate one-dimensional evolution equations for the
breakup of viscous liquid threads and films on a fiber. Through several validations, we
showed that our model exhibits a good agreement with experimental results in comparison
to numerical simulations. Finally, our model, which incorporates the flow effect from the
inner boundary condition by reconsidering the ansatz of a conventional long-wave ap-
proximation, provides a necessary condition for satellite droplet formation and determines
the most unstable mode proportional to k∗2, where k∗ is the most unstable wavenumber.
In addition, we observed that the volume of the satellite droplets exponentially decays
depending on the wavenumber. Moreover, our single model integrates the findings of
Goren’s liquid film on a fiber and Rayleigh’s viscous liquid thread, demonstrating its
versatility and relevance to a wide range of systems.

DOI: 10.1103/PhysRevFluids.9.084005

I. INTRODUCTION

The Rayleigh-Plateau instability occurs when a liquid column is subjected to capillary forces
that cause it to break up into smaller droplets [1]. This instability can occur in ubiquitous natural
and man-made systems where cylindrical liquid surfaces are present, such as a stream of water
from a faucet [2], dew drops on a spider web [3], rain rivulets on a window [4], gravity-driven
thin film drainage along the fiber and the droplet breakup [5–7], and inkjet printing [8,9]. Extensive
investigations through various generalizations [1], meticulous experiments [10], molecular dynam-
ics simulations [11,12], and analytical models [13] have been performed. Furthermore, studies
advancing universally applicable models by modifying the boundary conditions were conducted,
such as the drainage of mobile and immobile soap films [14] and the behavior of instabilities
under slip and no-slip conditions [15]. Those studies could provide valuable insights into un-
derstanding the phenomena including droplet formation and liquid film breakup across various
scenarios. Nonetheless, we think that there is still room to improve the theoretical model of the
Rayleigh-Plateau instability.

The challenge associated with the universal model arises from the significantly different breakup
modes observed in plug flow [16] and shear flow [17]. In an attempt to address this challenge,
Eggers [13] proposed a universal pinch-off curve that drew attention to the presence of satellite
droplets in the breakup of visco-inertial liquids. However, this model falls short in explaining the
breakup of viscous liquids, as shown in Fig. 1(a), which lacks satellite droplets [1,16]. Additionally,
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FIG. 1. Examples of Rayleigh-Plateau instabilities. (a) Pinch-off moment of a liquid thread of silicone oil
(1000 cSt). (b) Silicone oil (1000 cSt) drops on a fiber. �g is the gravitational acceleration. See Supplemental
Movies 1 and 2 [18].

the presence of a solid fiber in a liquid stream truly alters the interfacial dynamics, as demonstrated
in Fig. 1.

When a fiber is present, the resulting breakup of the film becomes periodic, with satellite droplets
forming between the primary droplets. In contrast, without the fiber, the viscous thread breaks
up into an infinitely long thread without satellite droplets. We think that this instability could be
important not only for simple coating [19] but also for the shape of the perturbed liquid film,
which plays a significant role in effective water harvesting [20,21] and increasing interfacial shear
stress of a fiber in the composite material [22]. However, using a one-dimensional theoretical model
framework, the understanding of the hydrodynamic instability of a liquid cylinder, whether with or
without a fiber, still remains incomplete. Eventually, we need to ameliorate theoretical models that
could explain the formation of satellite droplets in the film on a fiber problem [5,6].

In the meantime, to describe the nonlinear regime of the instability, after an initial linear regime,
the long-wave approximation is commonly employed for the breakup of visco-inertial liquid [13]
and viscous liquid thread [16]. However, if there is a liquid film on the solid fiber, incorporating the
condition at the solid-liquid interface into the long-wave ansatz leads to an inaccurate description of
the viscous shear stress in the instablity problem. This is because the long-wave ansatz inherently
assumes a uniform velocity profile across the film, which fails to capture the nonuniform flow near
the solid fiber [17].

To resolve the current issue, literature indicates that due to the geometrical configuration, a
different theoretical model must be used depending on the predominant effects among several
aspects. Particularly in nonlinear problems, being confined to a simplified conventional long-wave
approximation that considered only the first major term inevitably led to the oversight of important
effects. Therefore, efforts have been made to include higher-order terms to address more compli-
cated physical situations. For instance, Nayfeh [23] demonstrated that the cutoff wavenumber of
instability depends on the initial amplitude of the perturbation by utilizing the second-order term in
time expansion, and Tavakol et al. [24] addressed that considering higher-order terms enhanced
the accuracy of lubrication theory. Consequently, appropriate modification of the ansatz of the
long-wave approximation could be conditionally necessary.

In this study, by incorporating the modified long-wave ansatz, we developed a comprehensive
one-dimensional theoretical model of the Rayleigh-Plateau instability for viscous liquids, encom-
passing both cases with and without a fiber based on the lubrication approach and considering
the no-slip condition at the fiber surface. Here, we considered a quasistatic situation where the
gravitational and convective effects were neglected [25,26]. Using this model, we analytically
studied the liquid flow and instabilities, satellite droplet formation, and breakup of the liquid film
on a fiber, marking the first instance of such comprehensive analysis within a one-dimensional
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FIG. 2. Schematic of the model problem depicts a single period of a liquid cylinder in cylindrical coordi-
nates (r̂, x̂, θ ), where we could consider that the fiber radius b̂ is zero and nonzero. Initially, we used most of
the dimensional variables with a hat symbol. Only the basic variables, R0, λ, ρ, γ , and μ are without the hat
symbol; these indicate the initial radius of the liquid cylinder, wavelength of perturbed surface, fluid density,
surface tension, and viscosity, respectively. ĥ represents the surface profile and û and v̂ denote the axial and
radial velocities, respectively. After the normalization process, throughout the paper, all variables without the
hat symbol (ˆ) represent dimensionless variables.

framework. Furthermore, we unearthed a disregarded condition for satellite droplet formation and
obtained a global map of the most unstable mode to be proportional to k∗2, where k∗ is the
most unstable wavenumber. Additionally, we reported that the satellite droplet volume decreases
exponentially with increasing wavenumber.

II. ONE-DIMENSIONAL THEORETICAL MODEL

In this study, we considered an axisymmetric cylindrical viscous liquid column with viscosity μ

and surface tension γ coaxially coated on a solid fiber. The outer radius of the liquid cylinder is R0,
and it has a perturbed wavelength of λ, as depicted in Fig. 2. Under this configuration, to simplify
the Navier-Stokes equations, we conducted a dimensional analysis using the lubrication theory
framework, i.e., ε(= R0/λ) � 1 [1,27,28]. For nondimensionalization, we employed the viscous
timescale and the pressure effect, μR0/γ and γ /R0, respectively. Here, all variables were expressed
in a dimensionless form without using any additional symbol except for the basic variables for the
nondimensionalization such as R0, λ, ρ, γ , and μ.

Based on the lubrication approximation (i.e., ε � 1), we adopted the long-wave ansatz of viscous
thread, where velocity expands in powers of ε2 [16]. Thus, the radial v and axial u velocity were
expressed as v = v0 + ε2v1 + · · · and u = (1/ε)(u0 + ε2u1 + · · · ), respectively, satisfying conti-
nuity. Using this condition, the axisymmetric Stokes equations and the continuity equation yielded

0 = −px + u0xx + 1

ε2r
(ru0r )r + 1

r
(ru1r )r , (1)

0 = −pr − v0

r2
+ 1

r
(rv0r )r , (2)

0 = u0x + 1

r
(rv0)r , (3)

in the x-r cylindrical coordinates where x denoted the axial coordinate and r denoted the radial
coordinate. Here, we considered that the Bond number (Bo = ρgR0

2/γ ) is much less than unity and
the Ohnesorge number (Oh = μ2/ργ R0) is much larger than unity.
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For the boundary condition at the free surface at r = h(x, t ), we took into account the kinematic
condition and the balance of shear and normal stresses, �n · σ · �n = −κ and �n · σ · �t = 0, where h
represents the surface profile function, σ is the stress tensor, κ is a full curvature of liquid surface,
1/h

√
1 + ε2hx

2 − ε2hxx(1 + ε2hx
2)−3/2, and �n and �t are the unit normal and tangential vector on

the free surface, respectively. By substituting the velocity series into the boundary conditions, we
obtained the following equations at r = h:

v0 = ht + u0hx, (4)

px = −2(hxu0r )x + 2v0rx + κx, (5)

u1r = 2u0xhx − 2v0rhx − v0x − 1

ε2
u0r + h2

xu0r, (6)

where higher-order terms in ε were neglected. However, the axial curvature ε2hxx should be con-
sidered to account for the full curvature, as mentioned in previous studies [5,13,29,30]. Therefore,
the curvature was simplified as κ � 1/h − ε2hxx. These boundary conditions are consistent with
the context of the singular perturbation [5]. From the leading-order term in Eqs. (1) and (6),
u0r (h) = 0 and (ru0r )r = 0, we obtained u0 = u0(x, t ), which in turn gives v0 = u0x(b2 − r2)/2r
from the continuity equation, Eq. (3), and it leads to p = p(x, t ) from Eq. (2). Now, we can integrate
Eq. (1) twice and substitute v0 = u0x(b2 − h2)/2h into Eq. (4), which gives,

u1r = 1

2
(px − u0xx )r + C(x, t )

r
, (7)

0 = ht + u0xhx + 1

2h
u0x(h2 − b2), (8)

where C(x, t ) is the integral constant and we can express the equations in terms of u0, h, while u1r

and px in Eq. (7) would be substituted with Eqs. (5) and (6).
Lastly, we considerd the no-slip condition at the solid-liquid interface (r = b). Normally, in

a one-dimensional model, considering shear stress on the solid fiber under the no-slip condition
is challenging. Martínez-Calvo et al. [17] pointed out that previous one-dimensional models had
failed to accommodate the shear-induced tangential stress due to the uniform velocity profile. In our
problem, we used u0(x, t ) as a representative axial velocity which is independent on r. We presumed
that the second-order term u1(x, r, t ) was responsible for capturing the shear stress effect along the
radial direction in the problem. Neglecting this second-order term at the solid-liquid interface, where
the highest shear stress occurred, resulted in the failure of modeling shear-dominant problem. This
singular perturbation problem cannot be approximated by setting ε = 0, as discussed by Craster and
Matar [5].

To resolve this issue, we proposed an extended way of applying the no-slip condition as
u(x, r, t ) � (u0 + ε2u1)/ε = 0 at r = b. Because u0 was nonzero under unstable flow, the condition
addressed that the magnitude of u1 was assumed to be large enough as close to the solid-liquid
interface, while u1 vanished as r → h, i.e., u1 � −u0/ε

2 at r = b and u1 = 0 at r = h.
Using the conditions for u1, we could reconstruct Eq. (7) so that the no-slip condition was applied

as viscous shear stress in the r direction. By organizing Eqs. (7) and (8), we obtained governing
equations for the film breakup as

u0x

(
3 + b2

h2

)
hx + u0xx

2

[
3h +

(
1 + b2

2h2

)
Dh,b

]
− κx

4
(2h + Dh,b) = − u0

ε2h ln(b/h)
, (9)

ht + u0hx + u0x

2h
(h2 − b2) = 0, (10)

where Dh,b was a geometric variable of cylinders h2−b2

h ln(b/h) . The one-dimensional evolution equations,
h(x, t ) and u0(x, t ), for the liquid film breakup can be solved for any dimensionless wavenumber
(k = 2πε) and fiber radius b.
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FIG. 3. Time-marching surface profiles h and axial velocity profiles u0 are shown for (a) the breakup of
a film on a solid fiber and (b) the breakup of a viscous liquid thread. The surface profiles are shown in (a.1)
and (b.1), while the velocity profiles are shown in (a.2) and (b.2). In (a), b (= b̂/R0) was set to 0.2, represented
as a dashed line in (a.1). In (b.2), the last moment of u0 was displayed in a small window at the lower right.
In all cases, the initial condition was set as a cosine function with a 5% perturbation: 1 + 0.05 cos(2πx), and
k was set to 0.7. The dimensionless time t ranges from yellow to navy with a total of 12 equally distributed
lines.

From the theoretical model, we obtained the time evolution of the surface profile h and axial
velocity u0 for any fiber radius, including the case of fiberless (b = 0). Figures 3(a.1) and 3(b.1)
demonstrated that for the film on a fiber, a satellite droplet was formed at x = 0.5 while the liquid
thread was not, which qualitatively well agreed with Fig. 1. A detailed comparison was described
in Sec. III.

Not only did we observe satellite droplets, but we also found that the solid surface could retard
the interfacial instability, as presented in Fig. 3. For the liquid stream, as h decreased, the Laplace
pressure effect dramatically increased, causing faster breakup. However, in the presence of a solid,
breakup was delayed as shown in Figs. 3(a.2) and 3(b.2). The dimensionless breakup timescale
of the viscous thread without the fiber was about nine times faster than the film on a fiber when
b(= b̂/R0) was 0.2.

The governing equations, Eqs. (9) and (10), were extended to the fiberless case when b went to
zero. Therefore, for the fiberless case (i.e., b → 0, 1/ ln(b) → 0), the governing equations became

3u0xhx + 3

2
u0xxh − κx

2
h = 0, (11)

ht + u0hx + 1

2
u0xh = 0, (12)

which resembled Papageorgiou’s model for the viscous thread [16], except for the Laplace pressure
term where we considered a full curvature profile. In the governing equations, the viscous shear
stress effects (i.e., u/[ε2h ln(b/h)]) by the solid wall were not included. Thus, the differences
between the two cases are anticipated to stem from the influence of viscous shear stress.

III. VALIDATIONS

To validate our model, in Fig. 4, we compared our surface profile results with both the experi-
mental result and the two-dimensional numerical simulation result from the previous study [25].
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FIG. 4. Comparison of our calculated surface profile from the theoretical model (the red line) with the
previous experimental results (blue hollow symbols) and numerical simulation results (the green line) of
Gonzalez et al. [25]. The wavelength and initial film outer radius were set to be equal, and the amplitude
was set to 0.05.

To compare the results fairly, we extracted the information from the literature and the results
were normalized with each variable, accordingly. So, here, the hat symbol (ˆ ) was used for the
dimensional variables to distinguish them from the dimensionless variables.

For the validation, the geometric conditions were used, such as the wavelength of the instability
λ = 3.19 mm, liquid radius R0 = 0.19 mm, and fiber radius b̂ = 0.055 mm, to obtain dimensionless
values of b = 0.288 and k = 0.376 for our dimensionless governing equations. In Fig. 4, our result
(the red line) showed a good agreement with the experimental result (the blue hollow symbols)
and the numerical result (the green line). For the quatitative comparision, discrepancy of the surface
profile was calculated by measuring the surface difference at each point (see further details about the
quantification of the discrepancy in Sec. S1 of the Supplemental Material [18]). Our model showed
the discrepancy of 9.8%, which was 30% less than that of the literature’s results done by numerical
simulation (14.1%). This result indicates that our model could be useful to investigate the droplet
breakup of the viscous liquid thread with a relatively better accuracy.

Additionally, we compared our results with two-dimensional numerical simulation results by
Mashayek and Ashgriz [31], considering various values of b when the Ohensorge number (Oh =
μ2/ργ R0) � 1. In this case, we considered viscous liquid for Oh = 100, the dimensionless
wavenumber k (= 2πR0/λ) = 0.5, and the dimensionless fiber radii b = 0.1, 0.3, and 0.5, which
were the same conditions of the literature [31]. The initial condition was set as (1 − A2/2) +
A cos(kz) where the amplitude of disturbance is set to A = 0.05.

Figure 5(a) illustrated half of a single periodic surface, with the left small bump indicating the
presence of a satellite droplet and the right, larger bump representing the mother droplet. The current
theoretical model captured the major features, such as the position of the neck, the presence of the
subsatellite droplet as well as the satellite droplet and the volume difference were compared in
Fig. 5(b).

For the quantitative comparison, in Fig. 5(a), the discrepancy with the two-dimensional simula-
tion was calculated as 15.1%, 5.8%, and 3.7% when b values were 0.1, 0.3, and 0.5, respectively.
This discrepancy increased as the b value decreased, especially near the mother droplet on the
right-hand side, where the surface slope was higher. These differences can be attributed to sim-
plifications made during the modeling process, particularly in the treatment of the pressure term.
Specifically, when considering the Laplace pressure term, we assumed

√
1 + ε2h2

x ∼ 1, causing an
overestimation of pressure at inclined surfaces compared to the numerical results. Only to check
this effect, we modified the Laplace pressure term using the full curvature relation although the
approximation does not satisfy this. We observed that the modified Laplace pressure case provided
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FIG. 5. Validation with two-dimensional simulation of Mashayek’s previous work when the dimensionless
fiber radii b are 0.1 for (a.1), 0.3 for (a.2), and 0.5 for (a.3), respectively. (b) Satellite droplet volume to total
liquid volume of our results (©) and simulation results (

�
) for b = 0.1, 0.3, and 0.5. The blue and red colors

indicate the Mashayek’s simulation results and the current results from our model, respectively.

a better prediction, especially for b = 0.1 and 0.3 (see more details in Sec. S2 of the Supplemental
Material [18]). Under this circumstance, at the moment, we admit that the lubrication approximation
in the one-dimensional theoretical model is somewhat limited. Nonetheless, we believe that the
current model provides a reasonably good agreement with the literature, both with and without a
fiber.
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FIG. 6. Time evolution of (a) the viscous shear stress effect, u0/[ε2h ln(b/h)], (b) the Laplace pressure
effect, hx (2h + Dh,b)/4h2, in Eq. (9), where Dh,b = (h2 − b2)/[h ln(b/h)], and (c) the difference between the
viscous shear stress and the Laplace pressure gradient are presented. The change in dimensionless time t
is indicated by the colorbar ranging from cyan to red until the liquid breaks up (t = 257). The gray region
indicates that viscous shear stress is relatively dominant, while the Laplace pressure effect is less dominant.
The calculated case corresponds to b = 0.2 and k = 0.7.

IV. SATELLITE DROPLET FORMATION BY VISCOUS SHEAR STRESS

The dynamics of the breakup of a viscous liquid was determined not only by the capillary force
acting on a liquid surface but also by the viscous effect as mentioned by Rayleigh [1]. In our
problem, we eventually found that the viscous shear stress u/[ε2h ln(b/h)] from the solid fiber
was crucial for the formation of a satellite droplet and the delay of the breakup, as shown in Figs. 1
and 3.

To address this hydrodynamic effect, we presented and compared the viscous shear stress term
and Laplace pressure term, as shown in Fig. 6. From the sign change of each term, we could interpret
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that the Laplace pressure effect induced the flow outward from the neck (the gray region in Fig. 6)
where the local h was at its minimum or where hx = 0 and u0 = 0, while the viscous shear stress
effect restrained the fluid motion. At the beginning point of the instability, the viscous shear stress
forced liquid to flow to the center point (x = 0.5) making an initial bump at the center, as indicated
by the cyan color lines of Fig. 6. After a small bump was formed, the positions of the neck would
be changed, and Laplace pressure caused the liquid to flow towards the outside of the new necks,
generating satellite droplets. In the meantime, because of viscous shear stress, liquid flowed to the
changed necks which were in the gray area, thereby delaying the breakup time.

The effect of viscous shear stress was usually lower than that of Laplace pressure, but near the
neck indicated as the gray region, the viscous shear stress was more dominant. In this region, the
viscous shear stress effect mostly showed the local extremum but the Laplace pressure effect became
minor. Thus, the viscous shear stress was dominant in the gray area, as shown in Fig. 6(c), which
induced the droplet formation.

V. DROPLET BREAKUP MECHANISM BY HYDRODYNAMIC EFFECT
AT THE SOLID-LIQUID INTERFACE

It is well known that the mechanism of satellite droplet formation is sensitive not only to the
geometry of the fiber [10], but also to the hydrodynamic effect (i.e., slip or no-slip) at the solid-liquid
interface [15,32]. Thus, to fully understand the breakup mechanism, it is important to manage the
interaction at the solid-liquid interface. To consider a slip effect, we implemented the effect of the
viscous stress as a boundary condition, which enabled one to adjust the degree of the interaction
between liquid and solid.

In the derivation process of the governing equations, we knew that the amount of slip effect
on a fiber was related to the velocity ratio of u1 to u0, so the slip parameter can be defined as
αslip ≡ −ε2u1/u0. Namely, the no-slip condition corresponded to u1/u0 = −1/ε2 and the total slip
condition corresponded to u1/u0 = 0, since u(x, r, t ) � (u0 + ε2u1)/ε. By utilizing this parameter,
the viscous stress term in Eq. (9) could be modified as −αslipu0/[ε2h ln(b/h)].

The slip parameter αslip was correlated with the dimensionless slip length (Lslip = L̂slip/R0)
used in the Navier-slip condition, where L̂slip is the hydrodynamic slip length of the fiber surface.
Therefore, here, Lslip = 0 for αslip = 1 and Lslip = ∞ for αslip = 0. Based on this, we defined
αslip as an ansatz, αslip = 1/(1 + Lslip/h), where h matched the nondimensionalization parameter
used in the literature on the strong-slip regime [33]. This relation is reasonable because the slip
length reduces the viscous stress by an amount proportional to the increased length, modifying
it from −u0/[ε2h ln(b/h)] to −u0/[ε2(h + Lslip) ln(b/h)]. Then, the governing equations with the
Navier-slip condition became

u0x

(
3 + b2

h2

)
hx + u0xx

2

[
3h +

(
1 + b2

2h2

)
Dh,b

]
− κx

4
(2h + Dh,b) = − u0/ε

2

(h + Lslip) ln(b/h)
,

(13)

0 = ht + u0hx + u0x

2h
(h2 − b2). (14)

In Fig. 7, we presented h and u0 for the same values of b = 0.2 and k = 0.7 for the no-slip (Lslip =
0) and Navier-slip boundary conditions of strong slip with Lslip = 10 and 100. Our results extended
from the no-slip condition to the strong-slip regime, where the dewetting feature was known to be
dramatically different [15,32]. The results demonstrated a significant reduction in viscous effects
near the solid-liquid interface of the solid fiber, decreasing the breakup time by more than fourfold
and potentially reducing the size of satellite droplets to negligible levels, as previously reported
[32]. As the dimensionless slip length increased by a factor of 10, in Fig. 7(c), the breakup time
slightly decreased and the magnitude of u0 slightly increased. Differences between slip and no-slip
results can be attributed to the decrease in viscous shear stress exerted by the solid surface by a
factor of Lslip/h, which would otherwise impede liquid flow particularly in the vicinity of the solid
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FIG. 7. Time-marching surface profile function h and axial velocity function u0 during the breakup of
a liquid film on a solid fiber under two different conditions: (a) no-slip condition and slip condition when
(b) Lslip = 10 and (c) Lslip = 100. The surface profiles are shown in (a.1), (b.1), and (c.1), while the velocity
profiles are shown in (a.2), (b.2), and (c.2). For all cases, the initial condition was set as a cosine function with a
5% perturbation: 1 + 0.05 cos(2πx). The values of k and b were set to 0.7 and 0.2, respectively, where dashed
lines represent the fiber surface in (a.1), (b.1), and (c.1). When Lslip were 0, 10, and 100, the breakup times
were 257, 54, and 50, in the dimensionless timescale, respectively.

surface where h was close to b. Overall, our results highlighted the importance of considering the
hydrodynamic effect, i.e., viscous shear stress for dewetting [32], enabling a more comprehensive
analysis of the classical Rayleigh-Plateau instability problem in a wide variety of situations.

VI. ANALYSIS ON THE BREAKUP OF THE VISCOUS LIQUID THREAD
WITH AND WITHOUT A FIBER

We presented that the current single model enabled the investigation of a viscous liquid column
with and without a fiber. To test the effect of the geometry between the fiber size and liquid
film thickness, we extensively investigated the Rayleigh-Plateau instabilities at various b values,
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FIG. 8. (a) Comparison of liquid surface profiles for different values of b (= 0.2, 10−10, and 0) while
keeping k fixed at 0.7. Here, tmax is the breakup moment and it was 257, 37, and 32 when the values of b
were 0.2, 10−10, and 0, respectively. The black dashed lines represent the fiber surface. (b) Dispersion relations
showing the growth rate n of b ranging from 10−1 to 0. The most unstable growth rates k∗ (the black stars)
were fitted along the black dashed line, n∗ = −0.336k∗2 + 0.167, which is the red solid line. Our results (the
green circles) were compared with previous research results. The blue and orange lines represent Rayleigh’s
and Goren’s theoretical results [1,28], respectively, and the cyan dashed line indicates the graph of Rayleigh’s
model reduced by a factor of

√
2 in the k direction.

including even b = 0. Figure 8(a) showed the representative results of the effect of the fiber radius
b and presented the film profiles h for b = 0.2, 10−10, and 0. The results clearly demonstrated
that even for extremely small values of b (= 10−10), the presence of a fiber resulted in the
formation of satellite droplets, and the size of these satellite droplets decreased as b decreased.
We could observe this phenomena by implementing the viscous shear stress, u0/[ε2h ln(b/h)], in
the model. If h approached b right before the film breakup, the viscous term was approximated as
u0(h/b)/(h − b) � u0/(h − b). Therefore, in this case regardless of the value of b, the viscous effect
became dominant, namely, making the formation of satellite droplets inevitable.

Finally, we calculated the growth rate n for most of the b values covering from 10−1 to 0 at each
k and b. The results were plotted as the green circles, as shown in Fig. 8(b). From this result, we
observed that the dependency on the logarithmic value of b affected the growth rate n and the most
unstable wavenumber k∗, representing the wavenumber where n was at its maximum. We think
that the growth rate relation is highly dependent on the viscous effect because the viscous term
u0/[ε2 h ln(b/h)] could be approximated as u0/| ln b| when the liquid surface was comparable to
the initial radius R0 (h = ĥ/R0 � 1, where ĥ is the dimensional surface profile). For the validation,
in Fig. 8(b), we overlaid literature results of the representative analytical studies, where the blue
and orange solid lines indicated the predictions by Rayleigh [1] and Goren [28], respectively. In
Fig. 8(b), a comparsion between our model and the previous model showed an excellent agreement
for all the b values. Although Rayleigh’s solution focused solely on liquid thread breakup and
Goren’s solution diverged at b = 0, virtually, our model consolidated both solutions into a single
framework.

Additionally, we determined the k∗ (= 2πR0/λ
∗), highlighted as the black stars, in Fig. 8(b),

indicating the spatial periodicity [1,27,28]. Figure 8(b) showed that the k∗ value for the liquid film
on a fiber (b > 0) gradually approached zero as b → 0. Notably, we found that the most unstable
growth wavenumber k∗ followed a quadratic function (the red solid line) for all b, namely, n∗ =
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FIG. 9. Satellite droplet volume normalized by its total volume depending on b ranges from 10−300 to 10−1.
Dashed lines are fitted lines with a slope of −2.6 on a log-linear scale.

−0.336k∗2 + 0.167. As mentioned, n is determined by the early regime of the instability, which
is related to viscous shear stress, u0/[ε2h ln(b/h)], approximated as 1/[ε2| ln(b)|]. This in turn is
related to k2 and the logarithmic of b. Interestingly, this quadratic relation showed that the (k∗, n∗)
graph coincided with the growth rate of a viscous thread divided by

√
2, denoted as (k0/

√
2, n0) [1]

aligning with the previous expectation that k∗ is 1/
√

2 when b � 1 [26,34].
For the Rayleigh-Plateau instability problem, another interesting point could be the size of the

satellite droplets. In a previous study, Martínez-Calvo et al. [17] showed that the volume followed
a power-law trend depending on the Laplace number. Here, using our model, we investigated the
effect of the wavenumber k on the size of the satellite droplets, where the satellite volume was
normalized by the total volume for the comparison, π (R2

0 − b2)λ (Fig. 9). As the wavenumber k
approached zero (i.e., λ → ∞), the satellite droplet volume increased and converged to unity for all
cases, indicating that viscous shear stress restrained flow toward a mother droplet. For large values
of k, there was a reduction in the satellite droplet volume, which showed an exponential decay trend,
which had not been observed before.

VII. CONCLUSION AND OUTLOOK

To date, a one-dimensional theoretical model for the Rayleigh-Plateau instability has not been
able to predict the droplet breakup phenomena due to the lack of consideration for the shear
stress effect along the r direction because of conventional simplifications [17,35]. In this study,
we have demonstrated comprehensive one-dimensional evolution equations for the breakup of a
viscous liquid encompassing both with and without a fiber case by implementing the suggested
inner boundary condition with the second largest term in the ansatz. In this case, we found that
the second largest term u1(x, r, t )|r→b is physically meaningful near the solid-liquid interface for
applying the viscous shear from the fiber, following u1/u0 ∼ 1/ε2.

The current model, an extension of Papageorgiou’s [16] theoretical framework for viscous
liquid threads, underwent validation through theoretical, experimental, and numerical results. In
the range where the dimensionless fiber radius b varies from 10−1 to 0, we integrated two dis-
tinct theoretical approaches concerning the early stages of instability, drawing from the growth
rates proposed by Rayleigh [1] and Goren [28]. Furthermore, we compared the breakup of the
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liquid film with the experimental and numerical results from Gonzalez [25] and the numerical
findings of Mashayek and Ashgriz [31], demonstrating excellent agreement for the late stage of the
instability.

Based on our findings, we anticipate that it will provide physical insights into the mechanisms
governing thin film breakup phenomena, including the formation of satellite droplets, changes in
periodicity, and the effects of surface slip. Through the unified model for both viscous threads and
films on a fiber, we analyzed the Rayleigh-Plateau instability of viscous liquids, showing significant
variations depending on the presence of a fiber. The results attributed to the boundary condition
were due to the shear stress effect. From the results at various values of b and k, we observed that
the fastest growth rate mode and the satellite droplet volume are functions of the wavenumber, with
n∗ ∼ −k∗2 and Vsat/Vtot ∼ exp(k), respectively.

As we extended the problem from viscous thread to film on a fiber and also introduced the
hydrodynamic effect in terms of viscous shear stress at the solid-liquid interface regarding the slip
effect, these ideas could be applied to investigate other breakup problems involving satellite droplets
and periodicity. For example, when considering additional factors such as inertia [13], surface
viscosity from surfactants [36], hydrodynamic effects [15], and shear stress from a surrounding
liquid [27], our framework may provide further understanding of breakup dynamics across various
contexts. Furthermore, given Goren’s model’s success in explaining the nucleation position of small
microtubules in Setru’s study [3], we anticipate that phenomena like the “beads on a string” case [37]
occurring in polymer solutions or viscous liquid containing short nanofibers could also be analyzed
through our model, particularly in cases with a very small fiber radius.
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