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We experimentally investigate the morphology and breakup of a droplet as it descends
freely from a height and encounters an airstream. The size distributions of the child
droplets are analyzed using high-speed shadowgraphy and in-line holography techniques.
We find that a droplet falling from various heights exhibits shape oscillations due to
the intricate interplay between inertia and surface tension forces, leading to significant
variations in the radial deformation of the droplet, influencing the breakup dynamics under
an identical airstream condition. Specifically, the droplet undergoes vibrational breakup
when introduced at a location slightly above the air nozzle. In contrast, as the release height
of the droplet increases, keeping the Weber number defined based on the velocity of the
airstream fixed, a dynamic interplay between the inertia of the droplet and the aerodynamic
flow field comes into play, resulting in a sequence of breakup modes transitioning from
vibrational breakup to retracting bag breakup, bag breakup, bag-stamen breakup, retracting
bag-stamen breakup, and eventually returning to vibrational breakup. Our experiments
also reveal that the size distribution resulting from retracting bag breakup primarily arises
from rim and node fragmentation, leading to a bimodal distribution. In contrast, bag and
bag-stamen breakups yield a trimodal size distribution due to the combined contributions of
bag, rim, and node breakup mechanisms. Furthermore, we utilize a theoretical model that
incorporates the effective Weber number, considering different release heights. This model
accurately predicts the size distribution of the child droplets resulting from the various
breakup modes observed in our experiments.

DOI: 10.1103/PhysRevFluids.9.084004

I. INTRODUCTION

Droplet fragmentation and the resulting size distribution of child droplets play a significant role
in a wide range of natural phenomena and industrial applications, including rainfall estimation,
combustion, surface coating, pharmaceutical production, disease transmission modeling, artificial
rain technology, and many others [1-9]. For instance, meteorological radar systems rely on droplet
size distribution (DSD) to precisely predict rainfall [10,11]. In agricultural applications, the distri-
bution of droplet sizes and velocities plays a crucial role in ensuring precise delivery and effective
retention of pesticides on the intended targets [12]. In various combustion applications, such as
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gas turbines, liquid rocket engines, ramjets, and scramjets, achieving efficient atomization and
controlling the resulting droplet size distribution are critical and fundamental requirements [13].
Thus, several researchers have investigated the fragmentation process of a spherical droplet as it
enters the potential core region within an airstream [14—18].

A droplet undergoes morphological changes due to the aerodynamic force during its early infla-
tion stage when it interacts with an airstream. At the later stages, it experiences fragmentation caused
by the Rayleigh-Taylor instability, Rayleigh-Plateau capillary instability [19], and the nonlinear
instability of liquid ligaments [20,21]. The dynamics of a droplet in an airstream are influenced by
the interplay between aerodynamic and surface tension forces, characterized by the Weber number
(We). This is defined as We = p,U?dy/o, where p,, o, U, and dy denote the air density, inter-
facial tension, average velocity of the airstream, and equivalent spherical diameter of the droplet,
respectively. As the Weber number increases, the droplet exhibits various breakup modes, including
vibrational, single-bag, bag-stamen, multibag, shear mode, and catastrophic fragmentation.

In the case of vibrational breakup at low Weber numbers (We), the droplet experiences shape
oscillations at a specific frequency. Eventually, when the amplitude of these oscillations reaches a
level comparable to the size of the droplet, fragmentation occurs. As the Weber number increases,
the drop evolves into a single bag on the leeward side, surrounded by a thick liquid rim. The bag and
rim breakups lead to the formation of tiny and slightly bigger droplets. This fragmentation process
is known as the bag breakup phenomenon [17,19,22]. The critical Weber number (We,,) for the
transition from the vibrational to the bag breakup is approximately 12. The bag-stamen and multibag
modes have similar morphologies to the bag breakup mode but with an additional stamen formation
in the center of the drop. This results in a large additional drop (bag-stamen) and several bags (multi-
ple bags) during the breakup process. For intermediate Weber numbers (28 < We < 41), Cao et al.
[23] observed the dual-bag breakup mode through shadowgraph and high-speed imaging. In the
shear mode observed at higher Weber numbers, the edge of the droplet deflects downstream, causing
the sheet to fracture into tiny droplets. For very high Weber numbers, a droplet quickly explodes into
a cluster of small fragments, resulting in catastrophic fragmentation. Recently, Ade et al. [24], Joshi
and Anand [25], and Boggavarapu et al. [26] conducted experimental investigations and observed
bag, bag-stamen, dual-bag, and multibag breakup modes for different Weber numbers. Kirar et al.
[27] and Ade et al. [28] explored the fragmentation of a droplet exposed to a swirl airstream with a
fixed Weber number using a shadowgraphy technique. Their investigation led to the finding of a new
breakup mechanism known as the retracting bag breakup mode for intermediate swirl strengths. In
this mode, the ligaments experience stretching in opposite directions due to the swirling airstream,
resulting in the droplet undergoing capillary instability and ultimately breaking apart.

Several experimental techniques, such as planar methods, imaging techniques, laser-induced
fluorescence, and femtosecond pulsed light sources, have been used to investigate the droplet
breakup phenomenon. In a comprehensive review, Tropea [29] highlighted the advancements made
in measuring particle size, temperature, and composition with these techniques. Boggavarapu et al.
[26] explored the droplet size distribution associated with different breakup modes using the
particle/droplet image analysis (PDIA) method. They found that the bag and bag-stamen breakups
exhibited a trimodal size distribution, while the dual-bag and multibag breakups produced a bimodal
droplet size distribution. Digital in-line holography has recently emerged as a powerful tool for
estimating droplet size distribution [24,28,30-34]. Radhakrishna ef al. [32] investigated the effect
of the Weber number on droplet fragmentation at high Ohnesorge numbers and examined various
breakup modes using the digital in-line holography technique. Recently, Ade et al. [24,28] employed
the digital in-line holography technique to investigate droplet fragmentation in straight and swirl
airstreams. Ade et al. [24] explored the droplet size distribution for different Weber numbers
undergoing single-bag and multibag fragmentations. They demonstrated that despite having six
distinct breakup mechanisms, the dual-bag breakup exhibits a bimodal distribution, in contrast to
the single-bag breakup, which undergoes a trimodal distribution. Moreover, they found that the
analytical model proposed by Jackiw and Ashgriz [21] accurately predicts the DSD for a wide
range of Weber numbers.
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In all the aforementioned studies, a droplet with a zero initial velocity was introduced into the
potential core region of the airstream generated by a nozzle. This approach neglects the inertia of the
droplet as it falls freely and interacts with the surrounding airstream. It is well known that raindrops
falling from the cloud do not even attend terminal velocity and undergo topological changes due to
the associated microphysical processes, such as phase change, collision coalescence, and breakup
[35]. Also, in various other applications, the droplet exhibits inertia and retains a nonzero downward
velocity when encountering an airstream. Thus, the primary objective of the present study is to
investigate how droplet inertia impacts its morphology and breakup behavior when subjected to
an airstream using the high-speed shadowgraphy technique. When a droplet is dispensed from a
height, it experiences an accelerating phase, and its subsequent dynamics result from a complex
interplay between its weight, the aerodynamic force of the airstream, and the inertia of the droplet.
Interestingly, we observe that droplets falling from different heights exhibit distinct breakup modes
even when encountering the same fixed airstream (constant Weber number). Using the in-line
holography technique, we also investigate the size distribution of the child droplets associated with
these breakup modes. Furthermore, we incorporate an effective Weber number of the droplet on
the analytical model developed by Jackiw and Ashgriz [21], which satisfactorily predicts the size
distribution observed in our experiments. These aspects remain largely unexplored, making our
study unique and significant in advancing knowledge in the field.

The rest of the paper is organized as follows. The experimental setup and procedure are discussed
in Sec. II. The impact of dispensing height on droplet fragmentation and the resulting size distribu-
tion are discussed in Sec. III. Additionally, in this section, we present a theoretical model in order to
predict the size distributions of satellite droplets resulting from various breakup modes at different
heights. Finally, concluding remarks can be found in Sec. IV.

II. EXPERIMENTAL PROCEDURE

We employ shadowgraphy and digital in-line holography techniques to record the morphology
of a droplet as it is released from varying heights and to estimate the size distribution of the child
droplets resulting from the different breakup modes influenced by an airstream. An air nozzle with
an inner diameter of D = 18 mm is connected to a digital mass flow controller (model MCR-
500SLPM-D/CM, Alicat Scientific, Inc., USA) and an air compressor. The airflow rate through the
nozzle is maintained constant at 228 liters per minute. To investigate the fragmentation process, we
generate water droplets with an initial diameter of dy = 3.2 & 0.07 mm using a 20-gauge dispensing
needle with a diameter of 0.908 mm. A Cartesian coordinate system (x, y, z) is employed, with
the nozzle center as the origin to analyze the droplet dynamics and breakup phenomenon. The
normalized height of the dispensing needle (/D) is varied from 0.6 to 11.2 to investigate the
effect of the inertia of the droplet on the fragmentation process, while the other coordinates of the
dispensing needle, x,/D and z;/D, are kept fixed at 0.36 and 0, respectively. A Weber number of
We = 12.1 is maintained in all the experiments, which corresponds to a scenario when a droplet
undergoes single-bag fragmentation when it is introduced into the potential core region of the
airstream [17,19,22].

Figure 1 illustrates the schematic diagram for shadowgraphy. This setup comprises two high-
speed imaging systems equipped with high-speed cameras synchronized using a digital delay
generator (model 610036, TSI, USA), a diffuser sheet, and light sources. The top camera records the
droplet dynamics from the dispensing needle to the air nozzle, while the bottom camera records the
droplet dynamics in the airstream. The high-power light source (model MultiLED QT, GSVITEC,
Germany) and a uniform diffuser sheet are used to illuminate the background. The high-speed
cameras are configured with the following settings: a frame rate of 1400 frames per second, exposure
duration of 1 us, and resolution of 1596 x 3361 pixels. These cameras have fixed focal length lenses
of 135 mm, resulting in a spatial resolution of 68.12 um/pixel.

Figure 2 shows the schematic representation of the in-line holography setup (side view). This
setup comprises several key components, including a continuous wave laser (model SDL-532-100T,
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FIG. 1. Schematic diagram of the experimental setup for shadowgraphy. It consists of two high-speed
cameras with a diffuser sheet and two light sources, an air nozzle, and a droplet-dispensing needle to generate
the droplet of constant size. The top camera captures the motion of the droplet from the dispensing needle to
the air nozzle. The bottom camera captures the droplet deformation and fragmentation in the airstream.

Shanghai Dream Lasers Technology Co. Ltd.), a spatial filter system, and collimating optics
(Holmarc Opto-Mechatronics Ltd.), and a high-speed camera (model Phantom VEO 640L, Vision
Research, USA). The high-speed camera is positioned at a distance of z = 500 mm, as depicted
in Fig. 2. The continuous wave laser generates a coherent beam with a wavelength of 532 nm. The
initial step involves passing this laser beam through a spatial filter consisting of an infinity-corrected
plan achromatic objective boasting 20x magnification (Holmarc Opto-Mechatronics Ltd.) and a
15 um pin hole. The purpose of the spatial filter is to efficiently remove unwanted noise, allowing
only the clean portion of the beam to pass through the pin hole. After the spatial filtering process,
the beam undergoes expansion through a plano-concave lens, followed by collimation achieved
with a plano-convex lens. The resultant collimated beam is then directed toward the droplet field.
The interference of scattered light emanates from the droplets, and the unscattered light generates
a hologram on the sensor. The holograms are captured using the high-speed camera at a frame
rate of 1400 frames per second (fps) with 1 us exposure time, resulting in images of dimensions
1664 x 1600 pixels. The recorded holograms have a spatial resolution of 40.70 um/pixel.
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FIG. 2. Schematic diagram of the digital in-line holography experimental setup (side view).
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FIG. 3. Temporal evolution of the droplet breakup dynamics for (a) #/D = 0.6 (vibrational mode),
(b) h/D = 0.8 (retracting bag breakup), (c) h/D = 1.9 (bag breakup), (d) #/D = 5.6 (bag-stamen breakup),
(e) h/D = 8.4 (retracting bag-stamen breakup), and (f) #/D = 11.2 (vibrational breakup) at We = 12.1. The
dimensionless time (T = Ut/p,/pw/do) is mentioned in each panel, wherein U is the free-stream velocity, ¢
is the physical time, p, is the density of air, p,, is the density of the water, and dj is the droplet diameter.
The instant, T = 0, represents the time when the droplet starts entering into the aerodynamic field. The
droplet breakup phenomena associated with panels (a)—(f) are provided as Supplemental Material movies 1-6,
respectively [45].

A detailed illustration of the digital in-line holography and the associated postprocessing
method can be found in Refs. [24,28,36]. In the following section, the dimensionless time, T =
Ut/ pa/pw/do, 1s used to describe the results, such that T = 0 indicates the instant the droplet
enters the aerodynamic field. Here ¢ denotes time in seconds and p,, represents the density of water
(998 kg m™3).

III. RESULTS AND DISCUSSION

We investigate the effect of the inertia of a droplet, released from different heights and exposed to
a horizontal airstream, on its morphology, breakup behavior, and the resultant size distribution of the
child droplets. To focus exclusively on the impact of dispensed height, we maintain a constant Weber
number (We = 12.1) in this study by keeping the diameter of the parent drop (dp = 3.2 £ 0.07 mm)
and the average velocity of the airstream (U) fixed.

A. Drop morphology

Figure 3 depicts the droplet dynamics for different values of the normalized released height
(h/D) and subjected to an airstream in a cross-flow configuration. Based on the stereo-particle
image velocimetry (PIV) measurements of the airstream, as detailed by Kirar et al. [27], in Fig. 4, we
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FIG. 4. Schematic representation of the relative positions of the droplet in various zones of the airstream
during the fragmentation process for different dispensing heights, 4/D.

illustrate a schematic representation of the relative positions of droplets in various flow zones during
the fragmentation process for different dispensing heights, #/D. The airstream can be characterized
by the potential core, shear, and outer regions as depicted in Fig. 4. Figure 3(a) shows the temporal
evolution of drop when it is released into the aerodynamic field from a height of #/D = 0.6 (slightly
above the air nozzle). Due to its minimal potential energy and reduced inertia, the droplet cannot
penetrate the airstream and remains positioned at the outer periphery of the airflow. In this outer
region of the airstream, the aerodynamic force lacks the necessary intensity to trigger fragmentation.
Consequently, the droplet exhibits a vibrational mode. Figure 3(b) depicts the droplet dynamics for
h/D = 0.8. In this scenario, the droplet possesses sufficient inertia to traverse the outer region of the
aerodynamic flow field, and it enters the shear zone. In the shear zone, the strong aerodynamic forces
lead to the deformation of the droplet from a sphere to a tilted disk, resulting from the pronounced
velocity gradients present within the shear zone. Subsequently, the aerodynamic influence induces
the formation of a liquid sheet from the tilted disk. This sheet retracts in a direction opposing the
prevailing airflow, driven by a negative pressure gradient, and the droplet undergoes fragmentation
due to capillary instability [19]. A similar breakup pattern was observed by Kirar et al. [27] in a
swirling airflow, which they referred to as “retracting bag breakup.” Increasing the droplet released
height further (h/D = 1.9), it can be seen in Fig. 3(c) that the droplet’s inertia becomes sufficient
to overcome the resistance posed by both the outer region and the shear zone of the aerodynamic
field. As a result, approximately half of the droplet takes position within the shear zone, while the
remaining half occupies the potential core region of the aerodynamic field. In both these regions, the
aerodynamic force is strong enough to counterbalance the surface tension force of the droplet. This
interaction causes the droplet to change its shape from a sphere to a disk. Due to the Rayleigh-Taylor
instability, air infiltrates the center part of the formed disk, creating a central baglike structure and
a toroidal rim encircling its periphery. Subsequently, the tip of the bag ruptures due to the exerted
aerodynamic forces, while the rim disintegrates due to capillary instability.

It can be seen in Figs. 3(d) and 3(e) that the droplet dispensed from #/D = 5.6 and 8.4 gets
sufficient inertia and downward velocity to traverse through the potential core region of the airstream
while it undergoes a rapid change in topology from a spherical shape to a disk shape. For h/D = 5.6
[Fig. 3(d)], the outer edge of the disk-shaped drop is elongated into a thin sheet due to drag forces.
The central region of the disk is subject to Rayleigh-Taylor instability, which occurs because the
lighter air is accelerated against the heavier liquid, leading to the formation of a baglike structure.
The Rayleigh-Taylor instability is predominant at the interface where the liquid disk meets the
air, causing the central region to expand outward and form a bag. The stamen that appears at the
center of the bag is due to the localized thinning and elongation of the liquid as it is pulled by
both aerodynamic forces and surface tension effects, accompanied by a toroidal rim surrounding
its periphery (r = 2.01). The bag eventually ruptures as the dominant aerodynamic forces exceed
the surface tension. In contrast, the toroidal rim and stamen fragment due to capillary instability
(r = 3.02) at the lower part of the air nozzle. This entire process is termed the bag-stamen breakup

084004-6



DROPLET BREAKUP AND SIZE DISTRIBUTION IN AN ...

phenomenon. For #/D = 8.4 [Fig. 3(e)], the higher downward velocity enables the deformed disk to
cross the potential core region, with part of the disk entering the lower shear zone of the airstream.
Here the outer edge of the disk experiences elongation into a thin sheet due to drag forces, while
the central portion undergoes Rayleigh-Taylor instability, extending outward to form a bag. This
results in a distinct bag-stamen pattern within the droplet. The bag-stamen structure inclines due
to the large velocity gradient within the lower shear layer. During the subsequent period, the bag
retracts, due to a negative pressure gradient, and the droplet fragments due to capillary instability.
This sequence of events is termed the retracting bag-stamen breakup phenomenon. For the highest
value of /D value considered in this study (2/D = 11.2), the droplet possesses significant potential
energy and greater inertia to migrate into the potential core with a higher downward velocity. The
droplet undergoes morphological change from sphere to disk quickly while the inertia effect is
sufficiently strong to cross the potential core and lower the shear layer. As a result, the droplet
enters the outer region of the lower portion of the flow field and undergoes vibrational breakup. The
characteristic timescales for the Rayleigh-Taylor and capillary instabilities align with the observed
timescales of the breakup process. The Rayleigh-Taylor instability develops rapidly as the droplet
enters the high-speed airstream, forming the bag within milliseconds. The subsequent breakup of
the bag, toroidal rim, and stamen due to capillary instability also occurs on a similarly short-time
scale, driven by the competing forces of surface tension and aerodynamic drag.

A falling drop exhibits natural oscillations in its shape, transitioning between oblate, spherical,
and prolate shapes as it descends from a height due to the competition between inertia and surface
tension forces. It detects the shape of the droplet as it enters the potential core region, which also
influences the drop breakup phenomenon. Thus, in order to gain better insights, we investigate the
shape oscillation of the drop during its free fall after release from the needle. The frequency (f) of
the natural oscillations of a freely suspended water drop derived using a linear theory in the inviscid
limit is given by [37,38]

20 12
f= [n(n - 1)(n+2)<m>] ; (1)

where n denotes the oscillation mode, with the fundamental mode corresponding to n = 2. The time
period (7},) of the natural oscillations of a drop is given by 1/f. In Fig. 5 we investigate the temporal
variation of the drop shape and the aspect ratio (a/b) during its free fall for 7/D = 11.2. Here a and
b are the droplet diameters in x and y directions, respectively, such that a/b > 1, a/b =1, and
a/b < 1 represent oblate, spherical, and prolate shapes, respectively. It can be seen that the falling
drop exhibits periodic shape oscillations about the spherical shape. These symmetric and periodic
oscillations have also been reported in earlier investigations in the context of a falling nonspherical
droplet in the air [39—41]. Inspection of Fig. 5 reveals that the dimensionless time period of
oscillations is ~2.97, which closely matches the theoretical prediction of the dimensionless time
period obtained using Eq. (1) for the fundamental mode ((1/f)U /p4/pw/do = 2.73). Note that the
time period of the shape oscillations of the primary droplet remains unchanged for different release
heights, as it depends solely on the liquid properties and the initial size of the droplet [Eq. (1)]. Our
experiments also observe the same time period regardless of the height from which the droplet is
released (not shown). However, as expected, the number of shape oscillation cycles decreases with
the decrease in the release height. Figure 6 shows the shape of the droplet at the instant when it
enters the aerodynamic field (represented by t = 0) for different values of #/D. As expected, it can
be observed that there is a substantial influence of the descent height, and consequently its inertia of
the drop, on both its shape and aspect ratio before encountering the airflow. This, in turn, influences
the ensuing droplet breakup phenomenon.

Figure 7 illustrates the morphology of the droplet for various breakup modes corresponding to
different values of 4/D. The droplet exhibits a vibrational mode for #/D = 0.6 to 0.7. As discussed
above, this phenomenon can be attributed to the position of the drop within the outer region of
the aerodynamic field. In the range of #/D = 0.7 to 1.1, the drop experiences a retracting bag
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FIG. 5. Temporal variation of (a) the shape of the drop and (b) the aspect ratio (a/b) during its free fall for
h/D = 11.2. The dimensionless time, 7, is given at the top of each panel. The value of the aspect ratio (a/b)
is given at the bottom of each drop shape in panel (a). Here a and b are the diameters of the droplet in x and y
directions, respectively.

breakup due to its presence within the shear region of the aerodynamic field. For h/D = 1.1 to
4.1, the drop undergoes a bag breakup mode as a result of the combined influences of the shear
region and the potential core within the aerodynamic field. As we increase the value of /D further,
between /D = 4.1 and 7.8, the droplet enters a distinct bag-stamen breakup phenomenon driven
by its position within the potential core of the aerodynamic field. Subsequently, for 2/D = 7.8
to 10.6, the droplet transitions to a retracting bag-stamen breakup due to its presence within the
potential core and the lower shear layer of the aerodynamic field. For A/D = 10.6 to 22.1, the
droplet again displays vibrational breakup mode attributed to its exposure to the lower outer region
of the aerodynamic field. A close inspection of Fig. 7 also reveals that the normalized bag inflation
in the streamwise direction, defined as 8 = [/dy, increases and then decreases as we increase the
value of i/D.

B. Trajectory

Figure 8 depicts the droplet trajectories in the aerodynamic field before the onset of fragmentation
for different values of i/D. For h/D = 0.6, the droplet possesses minimal inertia, restricting its
vertical descent to the outermost region of the aerodynamic field. In this outer region, the droplet

h/D = 0.6 1.9 5.6 8.4 11.2
a/b = 0.86 1 0.85 0.88 0.9 1.09

FIG. 6. Shape of the drop at the onset of its entrance into the airstream (at 7 = 0) for different values of
h/D. The corresponding aspect ratio (a/b) is indicated at the bottom of each panel.
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FIG. 7. Shape of the drop at the onset of various breakup modes for different values of #/D. The value of
the normalized bag inflation, 8 = [/dy, is given at the top right corner of each panel. Here / denotes the length
of the bag in streamwise direction.

travels horizontally along the predominant airstream direction and undergoes a vibrational mode.
For h/D = 0.8, the droplet has sufficient inertia to cross the outer region and migrates vertically
downward up to the shear zone of the aerodynamic field. In this case, the droplet travels in both
horizontal and vertical upward directions in the shear region due to large velocity gradients. As a
result, the droplet exhibits the retracting bag breakup mode. For 4/D = 1.9, the droplet has high
inertia to migrate vertically downward and get exposed to both the shear and potential core zone of
the aerodynamic field. In this case, the droplet travels horizontally along the airstream and exhibits
bag breakup mode. For 1/D = 5.6, the droplet has higher inertia to migrate vertically downward
till the potential core region of the aerodynamic field. In this region, the droplet travels horizontally
due to the drag of the airstream and vertically downward due to the inertia effect while undergoing
a bag-stamen fragmentation. For #/D = 8.4, the droplet possesses more substantial inertia to travel
vertically downward and get exposed to the potential core and lower shear region of the aerodynamic
field. In this case, the droplet exhibits retracting bag-stamen breakup and generates a trajectory
similar to the bag-stamen mode. For h/D = 11.2, the droplet travels vertically downward with a
high velocity and first enters the potential core. Later, due to the high inertia effect, the droplet
further crosses the potential and lower shear zone and enters the lower outer region of the flow field.

H=— : : : : : :
0.4 0.5 0.6 0.7 0.8 0.9 1 1.1
x/D
FIG. 8. Trajectories of the droplet for /D = 0.6 (vibrational mode), #/D = 0.8 (retracting bag breakup),
h/D = 1.9 (bag breakup), h/D = 5.6 (bag-stamen breakup), #/D = 8.4 (retracting bag-stamen breakup), and

h/D = 11.2 (vibrational breakup) at We = 12.1. Note that the position of the droplet is determined based on
its centroid. The symbols (squares, circle, triangles, etc.) represent measured data points.
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FIG. 9. Temporal evolution of radial deformation of the drop, o = d./d, for different values of 1/D. Here
d. denotes the diameter of the disk. The symbols represent the experimental results with an error bar associated
with the standard deviation from three repetitions. The dashed lines represent the theoretical results.

In this case, the droplet trajectory follows less migration in the predominant airstream direction
and more travel vertically downward due to a more substantial inertia effect. It is important to note
that for the vibrational, retracting bag, and bag breakup modes, the trajectory of the droplet ends
above the central axis of the nozzle within the aerodynamic field. In contrast, for the bag stamen
and retracting bag-stamen modes, the trajectory of the droplet concludes below the central axis of
the nozzle.

C. Effective Weber number

As discussed in Sec. III A, the deformation of the droplet undergoes significant variations during
its interaction with the airstream when released from different heights, primarily due to changes in
inertia, even though the Weber number for the airstream is maintained fixed (We = 12.1). Due to
the intricate interplay between the inertia of the droplet and the aerodynamic flow field, the Weber
number (We) calculated based on the air velocity at the nozzle exit fails to adequately describe
the various droplet breakup modes associated with different release heights. Our experimental
results demonstrate that the release height (/D) has a profound impact on the radial deformation
of the droplet, which, in turn, influences both the breakup morphology and the resulting sizes of
the child droplets. Consequently, it becomes imperative to employ an effective Weber number
(We.t) that considers the effect of the radial deformation of the droplet in the analytical model
(discussed in the following section) to estimate the size distribution of the resulting child droplets
[22,27]. Figure 9 depicts the temporal evolution of the radial deformation of the droplet, denoted as
o = d./dy, for different values of h/D. Here d. represents the diameter of the disk-shaped droplet,
which is illustrated in the inset of Fig. 9. For h/D = 0.8, the droplet experiences minimal radial
deformation, primarily due to its residence in the shear zone of the airstream, where it encounters
weak aerodynamic forces. For i/D = 1.9, the droplet displays more substantial radial deformation
as it interacts with both the shear and potential core regions of the airstream, subjecting it to stronger
aerodynamic forces. For #/D = 5.6, the droplet undergoes the most extensive radial deformation as
it migrates into the potential core of the airflow, exposing it to the strongest aerodynamic forces.

Considering the radial deformation of the drop for various i/D values, we derive an expression
for the effective Weber number (We,¢r ) based on the analyses presented in Refs. [11,22,27]. We start
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our analysis by examining the aerodynamic field around the drops exposed to the airstream [11]. Let
U = (u,, uy) represent the axisymmetric velocity field near the drop. The continuity equation for the
airflow around the drop, assuming steady, inviscid, and incompressible flow, is given by

ouy,  0(ru,) _

- 0. 2
ay ar @

Due to the aerodynamic pressure imbalance between the aft and rear sides of the drop, the drop
deforms into a flat disk aligned with the airstream direction. This flow can be modeled as a
stagnation point flow, where u, = —yy, with y being the stretching rate, y the distance from the drop
surface on the front side, and r a direction pointing radially outward. Thus, u, = ry /2. The pressure
field P,(r,y) around the droplet can be obtained from the steady, inviscid, and incompressible
momentum equations in the r and y directions, which are given by

ou, 0P, auy P,

Uy —— = and p,uy— = — . 3
'Ouar ar p”)ay ay )

By substituting the expressions of u, and u, into the above equations and integrating the resultant
equations, we obtain

paU?  par®y® | pay’y?
Pa ’ = - . 4
(r,y) 2 s T3 4)
Therefore, the pressure of air at the drop surface is
IOuU2 par2y2
Pa ’ = O = - . 5
(r,y=20) > 2 %)
Now, the pressure inside the disk-shaped droplet (P;) can be evaluated as
W U? WR(1)?p? 20
p— PaU”  paR(1)"y n (6)

2 8 ()

Here R represents the radius of the disk-shaped droplet, o denotes for the surface tension at
the liquid-gas interface, and & denotes the thickness of the disk-shaped droplet. We employ the
continuity equation for inviscid and incompressible fluid in order to evaluate the velocity field (u;)
inside the droplet, which is given by

oh  0(ruh) _

r—

0. 7
Jat or @

Now substituting h(t) = dg /6R? (obtained using the global mass conservation) into the above
equation and integrating the resultant equation yields

r dR

=—-—. 8
W= ®)
The momentum equation for the droplet is given by
314[ T 8u, 3P[ (9)
— tuy— | =—-——.
PG T ar or
Nondimensionalizing and integrating Eq. (9) from r = 0 to »r = R and using Eq. (6), we obtain
d*a fr 24 _o (10)
dr? 4 We) 7
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FIG. 10. Variation of the (a) effective velocity (V) and (b) residence time (#g) of the droplet with /D.
The residence time refers to the duration spent by the droplet in the airstream.

where a(t) = 2R/dy = d./dy, and f = ydy/U denotes the stretching factor. Now, solving Eq. (10)
using the initial conditions, given by «(0) = 1 and de/dt = 0, we get [27]

fr 24
a:cosh(r Z—W) (11

In Eq. (11), the radial expansion of a droplet « = d./dy can be evaluated for a given value of We
at different dimensionless times 7. However, this equation does not consider the falling inertia of
the droplet, which can significantly impact the breakup dynamics and the resultant size distribution.
Therefore, it is essential to incorporate the effective Weber number (We.g) in Eq. (11). Thus, the
modified equation considering the falling inertia of the droplet becomes

f? 24
o =cosh| 7,/[— — . (12)
4 weeff

Here f represents the stretching factor, which is approximately 2+/2 for the cross-flow configuration
[22]. The variation of o with 7 is evaluated experimentally using high-speed images. Therefore,
in the above equation, the only unknown is We.s, which is determined through curve fitting of
the experimental data for different values of #/D. This approach allows us to incorporate the
combined effects of size and shape deformation under various experimental conditions. We found
that substituting We.ss = 12 in Eq. (12) yields the best match with the experimental values of «
for the retracting-bag breakup mode. Similarly, We.;s = 17.5 aligns well with the experimental
values for the bag breakup mode, and We.s = 31 provides the best agreement for the bag-stamen
breakup mode. These values of We. effectively incorporate the combined effects of size and
shape deformation under different experimental conditions, allowing the theoretical model to better
capture the dynamics observed in the experiments.

To gain deeper insights into the analysis of droplet breakup dynamics, we present the results
of effective velocity (V.) and droplet residence time (fg) for different values of the normalized
height (/D). These results help elucidate the connection between effective velocity and the resident
time of the droplet in the airstream. Figure 10(a) illustrates the variation of effective velocity (V)
with #/D. As evident in Fig. 10(a), Vi first increases and then decreases. The V¢ represents the
relative velocity between the airflow and the droplet at the point of maximum radial deformation.
The increase in Vg up to i/D = 5.6 is due to higher droplet inertia, causing the drop to experience
progressively higher velocity from the outer region to the potential core. Beyond #/D = 5.6, droplet
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FIG. 11. Variation of We.g with 4/D. The dashed line represents We s = 11 + 1.8(h/D) + 0.4(h/D)>.

inertia increases further, leading to a trend reversal, and V¢ begins to decrease as the drop crosses
the potential core, interacting with the lower velocity aerodynamic fields. It is to be noted that
We, is not directly evaluated from Vg and therefore does not exhibit similar trends. This complex
interaction of the droplet with the aerodynamic field leads to different breakup modes. Figure 10(b)
illustrates the variation of droplet residence time (fz) in milliseconds with 4/D. The tx represents
the time the droplet spends in the aerodynamic field. As shown in Fig. 10(b), #z decreases with an
increase in i/D. This decreasing trend is due to the increase in the droplet’s falling inertia (and
hence the falling velocity) with height. A higher #/D leads to a shorter residence time because the
droplet falls faster through the aerodynamic field. Figure 11 illustrates the variation of We.¢ with
h/D. The best-fit curve, represented as We.r = 11 + 1.8(h/D) + 0.4(h/D)?, qualitatively captures
the observed variations for the range of parameters considered in the present study. We utilize the
values of the effective Weber number (Weg) to estimate the droplet size distributions that arise
from different breakup modes corresponding to various release heights.

D. Droplet size distribution

In this section, we present the size distribution of child droplets resulting from the retracting
bag, bag, and bag-stamen breakup phenomena. We also compare the experimental results with the
analytical model [21] by employing the We.¢ instead of We. The volume probability density (P,) is
defined as the ratio of the volume occupied by all child droplets of a specific diameter to the total
volume occupied by droplets of all diameters. To provide a comprehensive analysis, we incorporate
both gamma and log-normal distributions. This dual approach allows for a more robust and detailed
comparison with experimental data, thereby providing a deeper understanding of the underlying
physical processes.

The volume probability density using the gamma distribution function is given by

. oe £*P,
T Pde - BT +3)/T(@)]

13)

where P, = ¢%"1e=¢/ /BT (); ¢ (= d /dy); T'(r) represents the Gamma function; o = (¢ /o) and
B = o2/ are the shape and rate parameters, respectively; ¢ and oy are the mean and standard devia-
tion of the distribution, which are estimated based on the characteristic breakup sizes corresponding
to each mode.
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The volume probability density (P,) for log-normal distribution is given by

p__ O _ R
Y Rde 3u+4.507

(14)

where ¢ (= d/dy) and P, is the number probability density function for log-normal distribution, and
it can be determined using the following equation as

b exp[—aog@)—mz]
! toiN2m 2012 .

Here p and o7 are the logarithmic mean and logarithmic standard deviation of the distribution, which
are estimated based on the characteristic breakup sizes corresponding to each mode.

In the retracting bag, bag, and bag-stamen breakup phenomena, the overall size distribution of
child droplets is influenced by three distinct modes, namely, the node, rim, and bag fragmentation.
Hence, it is crucial to account for their respective contributions to the size distribution by performing
a weighted summation of each mode. Thus, the total volume probability density (P,) can be
determined as

15)

Py tots = wyPy n + wrP, g + wpP, 3, (16)

where wy = Vy/Vo, wg = Vr/Vo, and wg = Vp/V; represent the contributions of volume weights
from the node, rim, and bag, respectively. Here Vi, Vg, Vg, and V; are the node, rim, bag, and
initial droplet volumes, respectively. The volume probability density for the node, rim, and bag
breakup modes are denoted as P, y, P, g, and P, p, respectively. The expressions for the char-
acteristic breakup sizes and the weight contributions for each mode can be found in Appendix.
In the following, we present the size distribution of child droplets obtained from three repeated
measurements for each set of parameters.

Figures 12(a)-12(c) illustrates the comparison between theoretically predicted characteristic
breakup sizes and experimental data for retracting bag breakup (h/D = 0.8 and We ¢ = 12). In
Fig. 12(a) it can be seen that for the bag fragmentation mode, the rupture of the bag results in four
specific breakup sizes: dgpp due to Rayleigh-Plateau instability, dy, g due to nonlinear instability
of liquid ligaments, dp due to minimum bag thickness, and d,,p due to receding rim instability
(see Appendix Sec. A 3). These sizes represent the smallest characteristic dimensions governing the
analytical size distribution in the bag rupture mode. Figure 12(b) shows the characteristic breakup
sizes due to rim fragmentation mode. The rim breakup process results in four characteristic sizes: dg
due to capillary instability, d, due to receding rim instability, and dg g and ds, - due to nonlinear
instability of liquid ligaments near the pinch-off point (see Appendix Sec. A 2). These characteristic
sizes are larger than those produced during the bag ruptures and ultimately govern the analytical
size distribution in the rim breakup process. Figure 12(c) displays the three characteristic sizes, dy,
corresponding to n = 0.2, n = 0.4, and n = 1, obtained after the node breakup process. The value
of n represents the volume fraction of the node relative to the rim (see Appendix Sec. A 1). These are
the largest characteristic sizes in the entire fragmentation process and govern the size distribution
in the node breakup. Thus, Figs. 12(a)-12(c) confirm that the theoretically predicted characteristic
sizes align well with the experimental results. Specifically, the peak of the experimental distribution
corresponds closely to the mean value of these characteristic sizes.

In Fig. 13(a), we compare the analytical prediction of the overall size distribution obtained
using the gamma distribution function with our experimental results for #/D = 0.8 at T = 4.78
(an instant after completion of the breakup phenomenon). This case is associated with the retracting
bag breakup corresponding to Wesr = 12. It can be seen that there are three distinct modes with
one marginal and two significant contributions to the size distribution. The solid line indicates the
sum of all the modes (bag + rim + nodes) of the size distribution, while the dotted, dashed, and
dash-dotted lines represent the contributions from the individual modes. In this breakup scenario, as
the droplet stays in the shear layer, the bag fragmentation has a marginal contribution to the overall
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FIG. 12. Comparison of the theoretically predicted droplet characteristic breakup sizes with experimental
data for /D = 0.8 and We = 12.1 (retracting bag breakup with We iz = 12). Panels (a), (b), and (c) represent
the characteristic sizes corresponding to the bag, rim, and node fragmentation processes, respectively. In
panel (a), drpp, dsat.B, dp, and d,. g represent characteristic breakup sizes due to Rayleigh-Plateau instability,
nonlinear instability of liquid ligaments, minimum bag thickness, and receding rim instability, respectively.
In panel (b), dg and d,, are the characteristic sizes resulting from capillary and receding rim instabilities,
respectively, while dg, g and d, . are the two breakup sizes due to nonlinear instability of liquid ligaments
near the pinch-off point. In panel (c), dy represents the characteristic sizes obtained from node breakup, where
n is the volume fraction of the node relative to the disk.

size distribution. Therefore, the rim and node fragmentation mainly contribute to the overall size
distribution. Due to the Rayleigh-Plateau capillary instability, the breakup of the rim generates child
droplets with a distribution peak at d/dy ~ 0.22, while the node breakup due to Rayleigh-Taylor
instability contributes to the droplet size distribution with a peak at d/dy = 0.34. The theoretical
model employing the effective Weber number provides reasonable predictions for rim and node
breakup processes. However, it overpredicts the size distribution for the bag breakup process. This
is due to the fact that the current model does not account for the retraction of the bag and its
subsequent collapse into the rim. Figure 13(b) illustrates the corresponding comparison with the
analytical prediction obtained using the log-normal distribution. It is evident that the log-normal
distribution accurately predicts the volume contribution of the retracting bag, showing a distribution
peak around d/dy ~ 0.08. This accuracy is attributed to the long exponential tail characteristic of
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FIG. 13. Comparison of the volume-weighted density (P, tow1) Of all fragments at t = 4.78 (after comple-
tion of the breakup phenomenon) obtained from our experiments with the analytical prediction for #/D = 0.8
and We = 12.1. Panels (a) and (b) are associated with the gamma and log-normal distributions, respectively.
The analytically predicted individual contributions from different breakup mechanisms, such as bag, rim, and
node fragmentations, are also depicted. This distribution corresponds to the retracting bag breakup scenario
with Weeff =12.

the log-normal distribution. Furthermore, the log-normal distribution also effectively predicts the
volume contributions resulting from rim and node fragmentation.

Figures 14(a)-14(c) depict the comparison of theoretically predicted characteristic breakup sizes
with experimental data for bag breakup (7/D = 1.9 and We.s = 17.5). Figure 14(a) represents the
characteristic sizes of the bag fragmentation mode. In this case, as the droplet interacts with the shear
and potential core region, it exhibits the classical bag breakup process. Figure 14(a) illustrates the
four characteristic sizes resulting from Rayleigh-Plateau instability, nonlinear instability of liquid
ligaments, minimum bag thickness, and receding rim instability in the bag rupture process. These
are the smallest characteristic sizes that govern the size distribution for bag fragments. Figure 14(b)
depicts the four characteristic sizes resulting from capillary instability, receding rim instability, and
nonlinear instability of liquid ligaments near the pinch-off point in the rim breakup process. These
moderate characteristic sizes determine the size distribution for rim fragments. Figure 14(c) shows
the three characteristic sizes resulting from Rayleigh-Taylor instability in the node fragmentation
process. These are the largest characteristic sizes that govern the size distribution in the node
breakup mode.

The size distribution of the child droplets at T = 3.37 for h/D = 1.9 associated with the bag
breakup phenomenon for We; = 17.5 is shown in Figs. 15(a) and 15(b). Figures 15(a) and
15(b) are associated with the gamma and log-normal distributions, respectively. The theoretical
predictions of the size distribution for individual modes and the overall size distribution are also
depicted. It can be seen that the bag breakup exhibits three distinct modes in the size distribution
of the child droplets. In this case, as the droplet interacts with both the shear and potential core
region, the droplet undergoes the normal bag breakup process, which involves the breakup of the
inflated bag, rim, and nodes. As a result, all these processes contribute to the overall size distribution.
In Fig. 15(a), the first peak at d/dy ~ 0.07 is attributed to the bag rupture. The second peak
observed at d/dy ~ 0.19 is due to the fragmentation of the rim, and the third peak at d/dy ~ 0.42
is due to the node breakup. Inspection of Fig. 15(a) also reveals that the analytically estimated
contributions for bag and rim and node breakups provide reasonable predictions for the experimental
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FIG. 14. Comparison of the theoretically predicted droplet characteristic breakup sizes with experimental
data for /D = 1.9 and We = 12.1 (bag breakup with We.; = 17.5). Panels (a), (b), and (c) represent the
characteristic sizes corresponding to the bag, rim, and node fragmentation processes, respectively. In panel (a),
drp g, dsa g, dg, and d,,. g represent characteristic breakup sizes due to Rayleigh-Plateau instability, nonlinear
instability of liquid ligaments, minimum bag thickness, and receding rim instability, respectively. In panel (b),
dg and d,, are the characteristic sizes resulting from capillary and receding rim instabilities, respectively, while
dsae g and dgy .- are the two breakup sizes due to nonlinear instability of liquid ligaments near the pinch-off
point. In panel (c), dy represents the characteristic sizes obtained from node breakup, where 7 is the volume
fraction of the node relative to the disk.

size distribution associated with these modes. In addition, the theoretically predicted characteristic
sizes are in reasonable agreement with the experimental results. The percentage deviation between
the experimental and analytical distributions for bag, rim, and node breakup processes are 20%,
8.7%, and 1.4%, respectively. We found that the volume fraction of bag, rim, and nodes are
15%, 45%, and 40%, respectively. Inspection of Fig. 15(b) reveals that the log-normal distribution
significantly underpredicts the volume contribution of the bag. On the other hand, the analytical
distribution reasonably predicts the volume contributions for rim and node fragmentation, with
slight discrepancies of 8.5% and 16%, respectively. A careful inspection of Figs. 15(a) and 15(b)
also reveals that the gamma distribution accurately predicts the volume contribution for smaller child
droplets due to its short exponential tail, whereas the log-normal distribution predicts the volume
contribution for larger child droplets reasonably well due to its long exponential tail.
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FIG. 15. Comparison of the volume-weighted density (P, o) Of all fragments at t = 3.37 (after comple-
tion of the breakup phenomenon) obtained from our experiments with the analytical prediction for /D = 1.9
and We = 12.1. Panels (a) and (b) are associated with the gamma and log-normal distributions, respectively.
The analytically predicted individual contributions from different breakup mechanisms, such as bag, rim,
and node fragmentations, are also depicted. This distribution corresponds to the bag breakup scenario with
Weeff =17.5.

Figures 16(a)-16(c) compare theoretically predicted characteristic breakup sizes with experi-
mental data for bag-stamen breakup (h/D = 5.6 and Wes = 31). In this case, the droplet interacts
with the potential core of the flow field. Figure 16(a) represents the four characteristic sizes resulting
from Rayleigh-Plateau instability, nonlinear instability of liquid ligaments, minimum bag thickness,
and receding rim instability during the bag rupture process. These sizes are the smallest and dictate
the size distribution for bag fragments. Figure 16(b) shows the four characteristic sizes resulting
from capillary instability, receding rim instability, and nonlinear instability of liquid ligaments near
the pinch-off point in the rim breakup process. These sizes are moderate and determine the size
distribution for rim fragments. Figure 16(c) presents the three characteristic sizes resulting from
Rayleigh-Taylor instability in the node fragmentation process. These are the largest sizes of child
droplets and mainly contribute to the size distribution of the node breakup mode.

Figure 17(a) shows the analytical prediction of the overall distribution obtained using the gamma
distribution function with the experimental results for 2/D = 5.6 associated with the bag-stamen
breakup at We.ss = 31. Similar to the bag breakup (h/D = 1.9), the bag-stamen breakup (h/D =
5.6) undergoes three different modes in the size distribution. For /D = 5.6, the droplet completely
migrates into the potential core region of the airstream and undergoes the bag-stamen breakup
process, which involves the breakup of the inflated bag, rim stamen, and nodes. As a result, all these
processes contribute to the overall size distribution. In Fig. 17(a), the first peak at d/dy ~ 0.058
corresponds to the fragmentation of the bag. The second peak observed at d/dy =~ 0.18 is due to
the fragmentation of the rim, and the third peak at d/dy = 0.47 is due to the node breakup. The
comparison with the analytical prediction reveals that the contributions of the bag and node to
the volume-weight size distributions are over- and underestimated, respectively. On the other hand,
the contribution of rim fragmentation is slightly underpredicted. This discrepancy arises because
the model does not account for the fragmentation of the stamen, which is similar in size to the rim.
Furthermore, since the volume of the bag contributes to the formation of the stamen, the model
also falls short in predicting the extent of child droplets produced by the bag breakup. However, the
theoretically predicted characteristic sizes reasonably agree with the experimental results. We found
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FIG. 16. Comparison of the theoretically predicted droplet characteristic breakup sizes with experimental
data for i/D = 5.6 and We = 12.1 (bag-stamen breakup with We.z = 31). Panels (a), (b), and (c) represent the
characteristic sizes corresponding to the bag, rim, and node fragmentation processes, respectively. In panel (a),
drp B, dsat. 8, dp, and d,, p represent characteristic breakup sizes due to Rayleigh-Plateau instability, nonlinear
instability of liquid ligaments, minimum bag thickness, and receding rim instability, respectively. In panel (b),
dg and d,, are the characteristic sizes resulting from capillary and receding rim instabilities, respectively, while
dsa.r and dg, ,» are the two breakup sizes due to nonlinear instability of liquid ligaments near the pinch-off
point. In panel (c), dy represents the characteristic sizes obtained from node breakup, where n is the volume
fraction of the node relative to the disk.

that the volume fraction of bag, rim, and nodes are 20%, 40%, and 40%, respectively, for h/D = 5.6.
In Fig. 17(b), we observe that log-normal distribution underestimates the volume contribution of the
bag by 42.8%, but the analytical distribution accurately predicts the volume contributions for rim
and node fragmentation, with minor discrepancies of 4.5% and 18%, respectively. It can be seen in
Figs. 17(a) and 17(b) that the gamma distribution accurately predicts the volume contribution for
smaller child droplets due to its short exponential tail, while the log-normal distribution reasonably
predicts the volume contribution for larger child droplets due to its long exponential tail.

In summary, while the model initially developed by Jackiw and Ashgriz [21] was for bag breakup
in a cross-flow configuration involving droplets released with negligible inertia into the airstream,
the present study enhances the analytical model by incorporating the effective Weber number. This
addition allows the model to account for the inertia effects of droplets released from varying heights,
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FIG. 17. Comparison of the volume-weighted density (P, o) Of all fragments at t = 3.02 (after comple-
tion of the breakup phenomenon) obtained from our experiments with the analytical prediction for #/D = 5.6
and We = 12.1. Panels (a) and (b) are associated with the gamma and log-normal distributions, respectively.
The analytically predicted individual contributions from different breakup mechanisms, such as bag, rim, and
node fragmentations, are also depicted. This distribution corresponds to the bag-stamen breakup scenario with
Weer = 31.

enabling it to predict size distributions for a range of breakup phenomena, including retracting bag,
bag, and bag-stamen breakups. The size distribution of the retracting bag is primarily influenced by
rim and node fragmentation, resulting in a bimodal distribution. In contrast, the bag and bag-stamen
breakups yield a trimodal size distribution due to the collective contributions of the three breakup
modes: bag, rim, and node.

IV. CONCLUDING REMARKS

We investigate the effect of the inertia of a droplet, caused by its free fall from various heights,
on its morphology, breakup, and resulting size distribution of the child droplets when it encounters
an airstream using high-speed imaging and in-line holography techniques. In contrast to previous
studies that considered neglecting the inertia of a spherical droplet when introduced into the
potential core region of the airstream, a droplet dispensed from a height undergoes an accelerating
phase during its free fall. Thus, a complex interplay between its weight, the aerodynamic forces of
the airstream, and the inertia of the droplet influences its subsequent dynamics.

Our findings reveal that a droplet falling from varying heights displays distinct breakup patterns,
even when exposed to a constant airstream (maintaining We = 12.1). It is well known that a droplet
undergoes a transition from the vibrational to the bag breakup at We &~ 12 when introduced in
the potential core region of the airstream. For the parameters considered in the present study, we
found that the droplet experiences vibrational breakup when introduced at /D = 0.6 (at a location
slightly above the air nozzle). In this scenario, due to its low inertia, the droplet cannot penetrate
the airstream and exhibits the vibrational mode near the outer periphery of the airflow, which is
caused by a weak aerodynamic force. In contrast, increasing the release height of the droplet leads
to a sequence of breakup modes, transitioning from vibrational breakup to retracting bag breakup
(h/D = 0.8), bag breakup (h/D = 1.9), bag-stamen breakup (h/D = 5.6), retracting bag-stamen
breakup (h/D = 8.4), and eventually returning to vibrational breakup (h/D = 11.2). As the release
height increases, the inertia of the droplet also increases, causing it to migrate into the potential
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core region. For #/D = 11.2, the droplet possesses enough momentum to traverse the potential
core region. Consequently, the droplet displays vibrational breakup in the shear zone located in
the lower part of the airstream. We also found that the droplet undergoes natural oscillations in its
shape, transitioning between oblate, spherical, and prolate shapes as it descends from a height. These
shape oscillations arise from the interplay between inertia and surface tension forces, resembling the
fundamental mode of the theoretically predicted oscillations observed in a freely suspended droplet
[37].

We observed that the radial deformation of the droplet when encountering the same airstream
(fixed Weber number defined based on the air velocity at the nozzle exit) undergoes significant
alterations when released from different heights. This deformation plays a crucial role in the breakup
morphology and in determining the sizes of the resulting child droplets. Consequently, we have
incorporated an effective Weber number (Weeg) that accounts for the radial deformation in the
analytical model [21] to estimate the droplet size distribution for different release heights. This
approach adequately predicts the size distribution of child droplets for various breakup modes
observed at different heights. Our findings also highlight that the size distribution resulting from
the retracting bag breakup primarily results from rim and node fragmentation, leading to a bimodal
distribution. In contrast, bag and bag-stamen breakups yield a trimodal size distribution due to the
combined contributions of three breakup modes: bag, rim, and node.

To the best of our knowledge, the influence of droplet inertia when interacting with an airstream,
a factor relevant in numerous practical applications and natural phenomena, has hitherto remained
largely unexplored. Therefore, the present study, which investigates the distinct morphologies,
breakup phenomena, and resulting size distribution of child droplets as the primary droplet descends
freely from a height and encounters an airstream, offers a different perspective and holds signifi-
cance in enhancing our understanding of numerous practical applications and natural phenomena.
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APPENDIX: ANALYTICAL MODEL FOR DROPLET SIZE DISTRIBUTION

In this Appendix, we provide the volume weights and characteristic sizes associated with each
mode, specifically bag, rim, and node, as outlined in Jackiw and Ashgriz [20] and Jackiw and
Ashgriz [21].

The node breakup volume weight, wy, can be calculated as follows:
Vv VbVWy

VWw WW

Y

where the disk volume V}, is given by [20]

Vo 3| (2R\*( hi 2R\ [ hi \?
D) (2 —2(1—1)— B (A2)
Vo 2 dy do 4 do do

In Eq. (A2), h; denotes the thickness of the disk, and 2R; represents the major diameter of the rim.

The expression for calculation of /; and 2R; are given as follows [20,21]:

hi 4

7 (A3)
dy Weim + 10.4
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and

2R;
= = 1.63 — 2.88¢(0312Wear), (A4)
do

In Egs. (A3) and (A4), Wey,, represents the rim Weber number, which signifies the balance
between the radial momentum generated at the outer edge of the droplet and the surface tension
that stabilizes the droplet. This parameter is calculated using the formula Wey, = p,R*dy/o. The

constant radial expansion rate of a droplet (R) can be determined as R = % (£3— %) [21]. The
ratio of Viy /Vp indicates the volume fraction between the nodes and the disk, which is approximately
equal to 0.4 according to Jackiw and Ashgriz [21].

The volume weight of the rim, wg, can be calculated from the following equation [20]:

Ve 37| 2R\ [ hi\* hi\°
WR—VO—T[(?O)(%) () } A

The volume weight of the bag, wg is given by

Vs Vo W V)
wp= — =2 N _ K (A6)

The aforementioned discussion describes the method for the calculation of volume weights for
each mode. To obtain both individual and overall size distributions, it is essential to determine the
characteristic droplet sizes for each mode. Therefore, in the subsequent sections, we present the
estimation of these characteristic sizes for each mode.

1. Node droplet sizes (dy)

The nodes are generated on the rim due to the Rayleigh-Taylor (RT) instability, where the lighter
fluid (air phase) displaces the heavier fluid (liquid phase) [42]. The droplet size (dy) resulting from
node breakup, as per the RT instability theory, is described by [21] as follows:

4 ) 1/3
N [E(&) )ﬂn:| i (A7)
dy 2\dy) do

where n = Vy/Vp signifies the volume fraction of the nodes compared to the disk. Jackiw and

Ashgriz [21] approximated that the minimum, mean, and maximum values for » are 0.2, 0.4, and

1, respectively. Using these three values of n, the three characteristic sizes of the node droplets

can be calculated. Subsequently, the number-based mean and standard deviation for node breakup

can be determined based on these three characteristic sizes. The maximum susceptible wavelength
of the RT instability is given as Agr = 2w +/30 /pwa, such that a = %CDZ—OZ%(Dmax/do)2 is the
acceleration of the deforming droplet. According to Zhao et al. [42], the drag coefficient (Cp) of
the disk shape droplet is about 1.2, and the extent of droplet deformation is expressed as D, /dy =
2/[1 + exp (—0.0019 Weg7)].

2. Rim droplet sizes (dg)

The child droplets formed during the rim breakup result from three main mechanisms: the
Rayleigh-Plateau instability, the receding rim instability as described by Jackiw and Ashgriz [21],
and the nonlinear instability of liquid ligaments near the pinch-off point.

The size of child droplets (dg) resulting from the Rayleigh-Plateau instability mechanism is as
follows:

dg hy

— =1.89—. (A8)
dy do
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Here Ay is the final rim thickness, which is given by

hy = B [Ri (A9)
dy do\| R’

where Ry is the bag radius at the time of its burst, and it can be evaluated as [27]

R, = ;l_;[zef’ﬁ + (*/72 - 1)e—fkﬂ7 _ (% + 1)%@] (A10)

where n = f2 — 120/ Weeg, p = f2 — 96/We and g = 24/We.s. In Eq. (A10), the dimensionless
time, denoted as 7, is defined as the ratio of the bursting time (f;,) to the characteristic deformation
time (¢;). These times can obtained as follows [21]:

2RY (ki 2R
g V3Wear [(2) - 2(5)]\ %
and
_d [P
=g (A12)

The second mechanism contributing to rim breakup is the receding rim instability, as described
by Jackiw and Ashgriz [21]. This mechanism yields a droplet size (d,,) determined as follows:

d 3\ ]

o= [—(—f) ﬁ} : (A13)

do 2\dy/) dp
Here X,, represents the wavelength of the receding rim instability and is calculated as X, = 4.5b,,.
Here b,, signifies the thickness of the receding rim and is determined by b,, = +/o /(pwa,), with
a,r = U2 /R, representing the acceleration of the receding rim as described by Wang et al. [43].
The receding rim velocity, denoted as U, is determined experimentally.

The rim breakup is a consequence of the nonlinear instability of liquid ligaments near the

pinch-off point. To determine the characteristic size associated with this mechanism, it is neces-
sary to consider both the Rayleigh-Plateau and receding rim instabilities, which are expressed as

follows [44]:

d
dgp = ————— and (A14)

V2 +30hg/v/2

drr

,/2+3OhR/\/§’

respectively. In this context, Ohg is defined as the Ohnesorge number based on the final rim

(A15)

dsat,rr =

thickness, calculated as Ohg = 1/, / pwh;a. The characteristic sizes described in Eqs. (AS8), (A13),

(A14), and (A15) are employed to determine the number-based mean and standard deviation for the
rim breakup.

3. Bag droplet sizes (dp)

The factors influencing the droplet size distribution resulting from the rupture of a bag
film include the minimum bag thickness, the receding rim thickness (b,,), the Rayleigh-Plateau
instability, and the nonlinear instability of liquid ligaments. These factors collectively give rise to
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four characteristic sizes for the satellite droplets, which are expressed as [21]

dB = hminv (A16)
drr,B = brrv (A17)
drpp = 1.89b,,, (A18)
d,
dup = L (A19)

,/2+30h,,/«/§.

Jackiw and Ashgriz [21] found that h,,;, = £2.3 um. In the above equations, Oh,, represents the
Ohnesorge number based on the receding rim thickness, denoted as b,,. These characteristic sizes
are employed to calculate the number-based mean and standard deviation associated with the bag
fragmentation mode.
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