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Varicose dynamics of liquid curtain: Linear analysis
and volume-of-fluid simulations
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The varicose dynamics of a forced gravitational liquid sheet (curtain) issuing into a
quiescent gaseous ambient is numerically investigated in this work. The study is relevant
for technological applications such as coating deposition, where varicose perturbations of
the curtain interfaces can arise due to axial velocity fluctuations coming from the delivering
pump placed upstream of the coating die. The investigation is performed in supercritical
regime, namely, for Weber number We > 1. Two methodologies are employed: a simplified
one-dimensional (1D) linear model and two-dimensional (2D) volume-of-fluid simula-
tions. Using harmonic forcing perturbations of the streamwise velocity applied at the inlet
section, the curtain varicose dynamics is excited by varying the forcing frequency f and
amplitude Au of the perturbations for different values of We. As a significant result, the
1D analysis reveals that the curtain oscillations amplitude reaches a maximum value for
a certain forcing frequency f = fmax. In other terms, it is found that the flow manifests a
resonance behavior, with the oscillation frequency fmax and corresponding amplitude Ah,max

both scaling as We1/3, while the average wavelength λ̄max scales as We−1/3. These scaling
laws are confirmed both by theoretical insights and 2D simulations. Moreover, it is found
that the 2D curtain breaks up numerically by increasing the forcing amplitude Au. The
numerical rupture is determined by a progressive curtain thinning induced by the varicose
deformation, which moves upstream by increasing We, i.e., downstream by increasing
the surface tension coefficient. In this respect, surface tension is found to play a stabilizing
role on the varicose oscillations of the curtain.

DOI: 10.1103/PhysRevFluids.9.084003

I. INTRODUCTION

The stability and dynamics of gravitational liquid sheets (curtains) interacting with an initially
quiescent gaseous ambient have been investigated by the scientific community for decades (Lin [1]).

Within a linear mathematical framework, Rayleigh [2] showed two linearly independent wave
modes of a liquid sheet, namely, sinuous and varicose modes, which were then experimentally
observed by Taylor [3]. The sinuous mode moves the two free surfaces of the curtain in phase,
while the varicose one symmetrically moves the free surfaces in opposite directions (see Fig. 1 in
the following Sec. II). First, investigations of the stability of sinuous and varicose modes were
performed by Squire [4] through a classic temporal linear stability approach. For finite values
of the gas-to-liquid density ratio rρ , the theory predicted instability of sinuous modes only for
Weber number values greater than 1. The definition of the Weber number here employed is

*Contact author: alessandro.dellapia@unina.it

2469-990X/2024/9(8)/084003(18) 084003-1 ©2024 American Physical Society

https://orcid.org/0000-0003-2989-4397
https://ror.org/04swxte59
https://ror.org/05290cv24
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevFluids.9.084003&domain=pdf&date_stamp=2024-08-09
https://doi.org/10.1103/PhysRevFluids.9.084003


DELLA PIA, CHIATTO, AND DE LUCA

FIG. 1. Sketch of the gravitational liquid sheet (curtain) flow. The forcing term u′
f superposed to the base

flow (red lines) excites the varicose deformation of the curtain shape (blue lines).

We = ρlU �2
i H �

i /(2σ ), where ρl is the liquid density, U �
i and H �

i are the inlet velocity and thickness
of the sheet, respectively, and σ the surface tension coefficient.

The experimental evidence contradicted the theoretical result by Squire [4] a few years later.
The experiments performed by Brown [5] indicated instability for We < 1 in the form of expanding
holes within the curtain, eventually determining its breakup. More recently, Roche et al. [6] also
observed ruptures in falling sheets with We < 1, which subsequently returned to a stable state,
while Le Grand-Piteira et al. [7] reported falling sheets able to withstand relatively high amplitude
sinuous oscillations without rupture.

To improve the agreement between the experimental evidence and theoretical predictions of
the curtain dynamics, a local spatiotemporal stability approach based on the method by Bers [8]
was employed first by Lin et al. [9] and then by de Luca and Costa [10], who considered a
slightly nonparallel (gravitational) base flow. The former work predicted neutral stability for sinuous
disturbances in a liquid sheet when We < 1 and rρ = 0. The latter work predicted stable sinuous
disturbances when We > 1 and rρ = 0, and absolutely unstable sinuous disturbances when We < 1
and rρ = 0, supporting the findings of Brown [5]. More recently, Barlow et al. [11] showed that,
if perturbed both in velocity and position, subcritical plane liquid sheets (We < 1) reveal absolute
instability, with algebraic temporal growth of sinuous modes following the power law t1/3, as first
predicted by de Luca and Costa [10].

The possibility to perform both direct numerical simulations and modal decompositions of the
relevant two-phase flow has recently disclosed new aspects of liquid sheets unsteady dynamics, both
in supercritical (We > 1) and subcritical (We < 1) regimes.

A linear destabilization mechanism of sinuous modes based on the interaction between the liquid
phase and the surrounding gaseous environment has been detected in supercritical conditions by
Della Pia et al. [12], who derived the eigenvalues spectrum of the one-dimensional curtain flow and
showed it is unstable when the density ratio rρ exceeds a threshold value. This result was confirmed
by Colanera et al. [13], who derived the BiGlobal spectrum of the curtain flow by performing a
dynamic mode decomposition analysis based on two-dimensional nonlinear simulation data.

The sinuous forced dynamics has also been recently studied by Torsey et al. [14], who considered
an infinite curtain subjected to sinusoidal ambient pressure disturbances not coupled with the curtain
motion, and by Chiatto and Della Pia [15], who employed a theoretical model accounting for the
finite length of the curtain and a sheet-ambient interaction term. Moreover, the latter authors found
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a strict agreement between experimental values of the natural oscillation frequency of the curtain
and linear stability analysis predictions based on an inviscid one-dimensional model. In particular,
an abrupt increase (jump) in the natural frequency at the transcritical threshold (We = 1) was found
both in experiments and theoretical predictions. Note that the occurrence of the frequency jump was
also theoretically predicted by Girfoglio et al. [16], who studied a liquid curtain confined by an air
cushion located on one side of the sheet, namely, the nappe flow configuration, which has also been
recently simulated using the volume-of-fluid technique by Bodhanwalla et al. [17].

For We < 1, an energy budget decomposition analysis of the curtain flow recently performed by
Della Pia et al. [18] identified surface tension as a possible physical mechanism responsible for the
sinuous modes instability in subcritical conditions, as the Weber number is progressively decreased
down to Weth. The threshold Weber number Weth was defined as the We value for which the sheet
is entirely subcritical (local Weber number less than unity everywhere along the curtain). In these
conditions, a transient algebraic growth of perturbations was found in both asymptotically stable
(Weth < We < 1) and unstable (We < Weth) regimes, thus retrieving previous results by de Luca
and Costa [10] and Barlow et al. [11].

From the literature review summarized above, it arises that the sinuous dynamics of gravitational
liquid sheets has been deeply investigated over the years by means of theoretical, numerical, and
experimental approaches, both for We > 1 and We < 1. On the contrary, a corresponding systematic
characterization of the varicose dynamics of this class of flows still needs to be improved in the
literature. On the one hand, the topic is particularly relevant for industrial processes such as coating
deposition (Weinstein and Ruschak [19]). In this application, it is fundamental to maintain the
curtain stable during the whole process. Varicose perturbations of the curtain interfaces can arise
due to fluctuations of the streamwise velocity component coming from the liquid pump, which is
placed upstream of the coating die used to deliver the fluid and to form the curtain. On the other
hand, it has been recently shown that varicose modes can arise in sinuously forced curtain flow
configurations in resonance conditions, giving rise to a nonlinear sinuous-varicose modes interaction
in two-dimensional direct numerical simulations (Della Pia et al. [20]; Colanera et al. [21]). In order
to identify the physical mechanisms responsible for the excitation of the varicose modes in such
scenarios, a weakly nonlinear mathematical model of the curtain dynamics should be developed,
whose predictions could be finally compared with results coming from the linear analysis of the
sinuous and varicose modes evolution.

Therefore, as a further step towards the derivation of a weakly nonlinear mathematical model
accounting for the coupling between sinuous and varicose modes in the curtain flow, this work
aims to provide a numerical characterization of the varicose dynamics of a gravitational liquid
sheet, which is excited by harmonic disturbances of the inlet streamwise velocity component u. The
investigation is performed in a supercritical regime (We > 1) through a simplified one-dimensional
linear model (Sec. II A) and two-dimensional volume-of-fluid simulations (Sec. II B). The first
results are shown in Sec. III, where the varicose dynamics is explored by varying the forcing
frequency f and the Weber number We, thus identifying different flow conditions depending on
the specific values of the two parameters. Afterwards, the effect of the forcing amplitude Au is
investigated in Sec. IV, focusing attention on the most relevant flow conditions outlined in the first
part of the analysis. Conclusions are finally drawn in Sec. V.

II. PHYSICAL LAYOUT AND METHODOLOGIES

The gravitational liquid sheet (curtain) flow here considered is schematically reported in Fig. 1. In
the unperturbed configuration, the curtain issues vertically (along the x� direction) into a quiescent
gaseous ambient, and it is characterized by a steady velocity distribution and two symmetrical free
interfaces (red lines in Fig. 1). Due to the gravitational acceleration g, the unperturbed thickness
distribution H� decreases by moving downstream along x�. A streamwise velocity perturbation
u′

f is introduced at the inlet section (x� = 0) and excites the sheet unsteady dynamics, which is
characterized by a varicose (i.e., symmetric with respect to x�) displacement of the right (y�+) and
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left (y�−) interfaces (blue lines in Fig. 1). The total thickness distribution h�(x�, t�) thus results in
the sum of the base flow H�(x�) and the induced perturbation h′�(x�, t�). In terms of the curtain
interfaces positions, it is given as

h�(x�, t�) = y�+(x�, t�) − y�−(x�, t�). (1)

A. One-dimensional linear modeling

Starting from the two-dimensional Euler equations closed by kinematic and dynamic conditions
imposed at the free interfaces, a simplified inviscid model of the varicose curtain dynamics is
hereafter derived.

The simplifying assumptions are the same as those made by Della Pia et al. [12] to study
the sinuous dynamics of this class of flows. The unperturbed curtain configuration is assumed to
be thin with respect to the wavelength of superposed disturbances, so that velocity profiles can
be considered locally uniform across the sheet thickness (one-dimensional flow assumption). The
generic unsteady quantity, φ�, is considered as the sum of a steady contribution and a perturbation,
φ� = �� + φ′�. Note that the apex � denotes, here as elsewhere, dimensional quantities. Within
the approximation of small perturbations, the mass and x�-momentum balances are formulated by
neglecting the products of perturbation terms (linear flow assumption) and then integrated along y�,
and read as

∂h′�

∂t�
= − ∂

∂x�
(U �h′� + H �u′�), (2)

∂u′�

∂t�
+ ∂

∂x�
(U �u′�) = σ

2ρl

∂3h′�

∂x�3
− 1

2ρl

∂ (p′�+
a + p′�−

a )

∂x�
, (3)

being

p′�+
a + p′�−

a = −ρa

π

∫ L�

0

∂2h′�

∂t�2 ln

∣∣∣∣x� − ξ�

L�

∣∣∣∣dξ�. (4)

In Eqs. (2) and (3), H� and U � are the base flow thickness and velocity distributions, respectively,
while h′� and u′� are the corresponding perturbations. Moreover, L� is the curtain length; ρl , ρa, and
σ stand for the liquid density, the gaseous ambient density, and the surface tension coefficient,
respectively; and t� denotes the time. In Eq. (4), the ambient pressure perturbations of the right
(p′�+

a ) and left (p′�−
a ) curtain-ambient interfaces are respectively given as

p′�+
a = −ρa

π

∫ L�

0

∂2y′�+

∂t�2 ln

∣∣∣∣x� − ξ�

L�

∣∣∣∣dξ�, (5)

p′�−
a = ρa

π

∫ L�

0

∂2y′�−

∂t�2 ln

∣∣∣∣x� − ξ�

L�

∣∣∣∣dξ�, (6)

which are derived by employing the unsteady Bernoulli’s equation in the absence of external gas
velocity (see Kornecki et al. [22] and Chap. 5 of De Rosa [23] for further details). Note that the
symbol ξ� in Eqs. (5) and (6) denotes the spatial integration variable, which spans the entire liquid
sheet length L�. The curtain and gaseous ambient dynamics are thus coupled through the integral
term represented by Eq. (4), being the local ambient pressure perturbations dependent on the global
liquid sheet deformation.

The dimensionless form of Eqs. (2) and (3) is finally obtained:

∂h′

∂t
+ U

∂h′

∂x
= − ε

U

∂u′

∂x
− h′ ∂U

∂x
+ εu′

U 2

∂U

∂x
, (7)

∂u′

∂t
+ U

∂u′

∂x
= −u′ ∂U

∂x
+ ε

4We

∂3h′

∂x3
+ rρ

2π

∂

∂x

∫ 1

0

∂2h′

∂t2
ln |x − ξ |dξ, (8)
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FIG. 2. One-dimensional velocity u′ (a) and thickness h′ (b) streamwise distributions at different fractions
of an oscillation period T = 1/ f : t = 0T (black dashed curve); 0.25T (black continuous curve); 0.5T (red
dashed curve); 0.75T (red continuous curve). Here, We = 2.5, Au = 0.1, and f = 5.34.

where Eq. (4) has been substituted in Eq. (3), and the following dimensionless parameters,

We = ρlU �2
i H �

i

2σ
, Fr = U �2

i

gL�
, ε = H �

i

L�
, rρ = ρa

ρl
, (9)

and nondimensional variables,

H = H�

H �
i

, U = U �

U �
i

, h′ = h′�

H �
i

, u′ = u′�

εU �
i

, x = x�

L�
, t = t�U �

i

L�
, (10)

have been introduced. In Eq. (9), We is the Weber number, Fr the Froude number, ε the curtain
slenderness ratio, and rρ the density ratio. Based on the works by Finnicum et al. [24] and Weinstein
et al. [25], the Torricelli’s free-fall model,

U =
√

1 + 2

Fr
x, (11)

is employed as the base flow in Eqs. (7) and (8).
The two unknowns in Eqs. (7) and (8) are the spatiotemporal evolutions of the curtain thickness

[h′(x, t )] and velocity [u′(x, t )] perturbations. The system (7)-(8) is thus closed by assigning the
following inlet boundary conditions,

h′(0, t ) = 0, (12)

u′(0, t ) = u′
f = Au

ε
sin(2π f t ), (13)

the free-outflow condition at the outlet section (x = 1) being self-guaranteed. The coefficients Au =
A�

u/U �
i and f = f �L�/U �

i in Eq. (13) represent the amplitude and frequency of the harmonic forcing,
respectively. As will be shown in Sec. III, adding the forcing perturbation [Eq. (13)] allows one to
identify the natural frequencies of the varicose dynamics by searching for the resonance conditions
of the curtain flow.

The numerical resolution of the system (7)-(8) equipped with boundary conditions (12) and (13)
is performed by means of a standard finite-difference discretization method in MATLAB. Note that,
for any x = ξ , the integrand in Eq. (8) is singular, and its evaluation requires a suitable treatment
(De Rosa [23]).

A typical one-dimensional curtain flow unsteady solution obtained employing the procedure
described above is provided in Fig. 2, where the velocity u′ [panel (a)] and thickness h′ [panel (b)]
streamwise distributions are reported at different fractions of the oscillation period T = 1/ f . The
numerical solutions shown in Fig. 2 are evaluated for the following values of the governing param-
eters [previously defined in Eq. (9)]: We = 2.5, Fr = 0.33, ε = 0.02, and rρ = 0.01. Moreover, the
forcing amplitude and frequency are chosen equal to Au = 0.1 and f = 5.34, respectively (further
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discussion will be provided in Sec. III). The analysis of Fig. 2 reveals that the oscillatory velocity
perturbation u′

f introduced at the inlet [Eq. (13)] yields an analogous perturbation of the curtain
thickness, which results in a traveling wave advected downstream towards the curtain tail region by
the underlying base flow U [Eq. (11)]. For We = 2.5, the maximum temporal oscillations amplitude
of the thickness distribution h′(x) over x is equal to Ah = 0.21 [see Fig. 2(b)]. Note that de Luca
and Costa [10] also found, by means of a spatiotemporal linear stability analysis approach, that for
density ratio rρ > 0, the varicose modes of a curtain are convectively unstable, and so perturbations
travel downstream by leaving the liquid sheet globally stable.

The effect of the forcing frequency f on the spatiotemporal curtain dynamics h′(x, t ) at different
values of the Weber number We will be investigated in Sec. III.

B. Two-dimensional volume-of-fluid simulations

The two-dimensional two-phase flow field represented by the liquid curtain interacting with the
initially quiescent gaseous environment is modeled through the one-fluid formulation of incom-
pressible Navier-Stokes equations (Scardovelli and Zaleski [26]), reading as

∂u�
i

∂x�
i

= 0, (14a)

ρ

(
∂u�

i

∂t�
+ u�

j

∂u�
i

∂x�
j

)
= −∂ p�

∂x�
i

+ ρgi + ∂

∂x�
j

[
μ

(
∂u�

i

∂x�
j

+ ∂u�
j

∂x�
i

)]
+ σκ�niδS, (14b)

∂C

∂t�
+ ∂Cu�

i

∂x�
i

= 0. (14c)

The vectors u� = (u�, v�) and g = (g, 0) represent the flow velocity and the gravitational acceler-
ation, respectively, p� the pressure field, κ� the mean gas-liquid interface curvature, and n = (nx, ny)
the outward pointing normal vector to the interface. The Dirac distribution function δS is equal to 1
at the interface, and 0 elsewhere. The density ρ and viscosity μ fields are discontinuous across the
interface separating the two fluids,

ρ = ρa + (ρl − ρa)C, (15a)

μ = μa + (μl − μa)C, (15b)

being the volume fraction C a discontinuous function, which is equal to either 1 or 0 in the liquid or
gaseous regions, respectively.

Equations (14a)–(14c) are solved using the finite volume method in the open-source code
BASILISK, an improved version of GERRIS (Popinet [27]) that has been extensively used and validated
for plane liquid jet flow problems (Schmidt and Oberleithner [28]; Schmidt et al. [29]; Della Pia
et al. [20]). The code employs the volume-of-fluid (VOF) method by Scardovelli and Zaleski [26]
to track the interface on a quadtree structured grid, with an adaptive mesh refinement based on a
criterion of wavelet-estimated discretization error (van Hooft et al. [30]) and no special treatment
required in the presence of liquid phase breakup (Agbaglah [31]). A multigrid solver is employed
to satisfy the incompressibility condition, while the calculation of the surface tension term is based
on the balanced continuum surface force technique (Francois et al. [32]), which is coupled with
a height-function curvature estimation method to avoid the generation of spurious currents. For
exhaustive details about the code BASILISK, the reader is referred to Popinet [27,33] and to the
software official website [34,35].

The computational domain employed to calculate two-dimensional curtain flow solutions is a
square, whose length side is equal to the curtain length L�. The liquid sheet shape is initialized as
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FIG. 3. Two-dimensional curtain flow steady solution: volume fraction C (a) and streamwise velocity
component u (b) contours; u distribution on the symmetry axis (black continuous curve) compared with the
Torricelli’s model (red dashed curve) (c). The curtain-ambient interface is highlighted by a black curve in
panels (a) and (b). Here, We = 2.5.

a rectangle of area L� × H �
i at t = 0. Inflow boundary conditions are prescribed at the inlet: at the

curtain slot exit section (−1/2 < y < 1/2, where y = y�/H �
i ), they read as

u =
{

3
2 (1 − 4y2), t � tsteady

3
2 (1 − 4y2) + u′

f (t ), t > tsteady,
(16a)

v = 0, (16b)

C = 1, (16c)

while the values u = v = C = 0 are enforced for |y| > 1/2. Note that the streamwise velocity
boundary condition, Eq. (16a), is the sum of a steady contribution, corresponding to a fully
developed parabolic velocity profile, and an unsteady perturbation u′

f (t ). The latter term represents
the harmonic forcing [previously defined by Eq. (13)] exciting the curtain varicose dynamics after
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TABLE I. Physical quantities involved in the problem, including values corresponding to the two-
dimensional steady solutions reported in Fig. 3.

Name Variable Value Unit

Gas density ρa 9.97 kg m−3

Liquid density ρl 997 kg m−3

Gas viscosity μa 1.84 × 10−5 kg m−1 s−1

Liquid viscosity μl 8.90 × 10−4 kg m−1 s−1

Gravity acceleration g 9.81 ms−2

Inlet liquid mean velocity U �
i 0.49 ms−1

Inlet sheet thickness H �
i 1.5 × 10−3 m

Sheet length L� 75 × 10−3 m
Surface tension coefficient σ 72.5 × 10−3 Nm−1

the steady base flow solution is achieved, for which a computational time equal to tsteady ≈ 1.5
is required. A standard free-outflow boundary condition is enforced at the outlet, namely, p =
∂u/∂x = ∂v/∂x = ∂C/∂x = 0, while homogeneous Neumann boundary conditions for all variables
are enforced on the remaining sides of the domain.

A quadtree-structured grid is employed in the computations, which is characterized by a maxi-
mum level of refinement LoR = 10 in a rectangular region containing the entire liquid sheet, and by
a dynamical refinement of the cells elsewhere in the domain according to user-defined adaptation
criteria (van Hooft et al. [30]). In particular, the refinement of a generic grid cell is performed at
each iteration reducing by one and then increasing again its grid level, resulting in a down- and
up-sampling of the stored scalar fields. Therefore, the error χ = ||φ − φ+|| between the original
(φ) and the up-sampled (φ+) fields can be estimated; the cell is refined if χ > β and coarsened if
χ < β, where β is the error threshold of the specific scalar field. For all simulations reported herein,
the value β = 1.0 × 10−4 has been prescribed for both the velocity components and the volume
fraction field. The maximum LoR employed here gives a minimum cell size equal to �x� = 0.05H �

i ,
which corresponds to 20 grid cells within H�

i .
A typical two-dimensional steady base flow obtained by means of the procedure described above

is shown in Figs. 3(a) and 3(b) in terms of volume fraction C(x, y) and streamwise velocity com-
ponent u(x, y) contours, respectively, while in Fig. 3(c) the axial velocity distribution u(x, y = 0) is
compared with the Torricelli’s model theoretical solution [Eq. (11)]. Values of the inviscid governing
parameters (We, Fr, rρ , and ε) are the same as those specified in previous Sec. II A. Moreover, since
recent studies have shown that varicose modes can arise in sinuously forced liquid curtains only in
the high Reynolds number Re limit (Della Pia et al. [20]), the volume-of-fluid results reported in this
work have been obtained in almost inviscid conditions, namely, for Re = ρlU �

i H �
i /(2μl ) = O(102).

The analysis of Fig. 3 shows that, as expected, the two-dimensional curtain shape becomes thinner
by moving downstream along x [panel (a)], while the liquid flow correspondingly accelerates by
gravity [panel (b)]. The small white regions around the left corners of Fig. 3(b) represent negative
values of the streamwise velocity in the ambient phase, which highlight a phenomenon of gas
entrainment. Moreover, note that the parabolic velocity profile enforced at x = 0 progressively
relaxes towards a uniform distribution (i.e., constant throughout the curtain thickness) as x increases,
which determines the convergence of the axial velocity (black continuous curve) to the Torricelli’s
one-dimensional theoretical prediction (red dashed curve) by moving downstream along the curtain,
as shown in Fig. 3(c).

The physical quantities and the corresponding dimensionless parameters involved in the two-
dimensional numerical simulations of the steady curtain flow are summarized in Tables I and II,
respectively. The effect of frequency f and amplitude Au of the harmonic forcing superposed to
the base flow for different Weber number We values will be investigated in Sec. III, as regards the
simplified 1D linear model, and in Sec. IV, via the 2D VOF simulations.
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TABLE II. Dimensionless parameters corresponding to the physical quantities listed in Table I.

Name Relation Value

Gas-to-liquid density ratio rρ = ρa/ρl 0.01
Gas-to-liquid viscosity ratio rμ = μa/μl 0.02
Sheet slenderness ratio ε = H �

i /L� 0.02
Reynolds number Re = ρlU �

i H �
i /(2μl ) 420

Froude number Fr = U �2
i /(gL�) 0.33

Weber number We = ρlU �2
i H �

i /(2σ ) 2.5

III. FREQUENCY RESPONSE OF 1D VARICOSE DYNAMICS

A. Resonance conditions

The forcing frequency f effect on the one-dimensional curtain flow stationary (i.e., long-time)
solution obtained for Weber number We = 2.5 and forcing velocity amplitude Au = 0.1 is first
considered; results are reported in Fig. 4. In particular, Fig. 4(a) shows the curtain perturbation
thickness spatial distribution h′(x) for three significant values of the forcing frequency, namely, f =
0.76 (black curve), f = 5.34 (red curve), and f = 11.43 (blue curve), while the complete frequency
response (i.e., the oscillations amplitude) is reported in Fig. 4(b) as a function of f , for a broad
range of forcing frequency values [ f ∈ [0.15, 15]]. Note that the function Ah( f ) has been scaled
with respect to its maximum value Ah,max = 0.21.

The nonparallelism of the base flow U (x) due to the gravitational acceleration [see Eq. (11)]
determines a spatial variation of the wavelength λ = λ�/L� of the curtain thickness perturbation
h′(x), which increases by moving downstream along the curtain [λ(x) = U (x)/ f ], as shown in
Fig. 4(a). By considering the average value of the base flow Ū = 1.96 as a reference velocity, one
can estimate the average wavelength λ̄ = Ū/ f corresponding to each case. It is thus obtained that
λ̄ = 2.57, 0.37, and 0.17 for f = 0.76, 5.34, and 11.43, respectively, which well represents the
distance between two consecutive peaks of the h′(x) distribution [see, in particular, red and blue

FIG. 4. Forcing frequency f effect on the curtain perturbation thickness spatial distribution h′(x) (a) and
on its maximum temporal oscillations amplitude Ah scaled with respect to the value Ah,max = 0.21 (b). The red
dashed line in (b) denotes the peak frequency fmax = 5.34. Here, We = 2.5 and Au = 0.1.
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FIG. 5. Frequency response in terms of curtain perturbation thickness Ah as a function of the forcing
frequency f (a); peak frequency fmax (b) and corresponding amplitude Ah,max (c) variations with the Weber
number We. Here, the forcing amplitude is Au = 0.1.

curves in Fig. 4(a), for which λ̄ < 1]. Moreover, the analysis of Fig. 4(b) reveals that the oscillation
amplitude reaches a maximum value equal to Ah,max = 0.21 at the forcing frequency f = 5.34.
Therefore, as a significant result of the present investigation, it is found that the value f = 5.34
represents the resonance (and thus the natural) frequency of the flow system for We = 2.5, being
the trend Ah( f ) peaked at fmax = 5.34 [red dashed line in Fig. 4(b)].

The varicose oscillatory dynamics of the forced flow is further investigated in Fig. 5, where the
Weber number effect on the whole frequency response Ah( f ) [panel (a)], the resonance frequency
fmax [panel (b)], and the corresponding amplitude Ah,max [panel (c)] are reported in the range
We ∈ [1.25, 10]. Note that the Weber number variation is achieved by varying the surface tension
coefficient σ . As a valuable result of the present analysis, Figs. 5(b) and 5(c) show that both the
resonance frequency fmax and the corresponding maximum amplitude Ah,max exhibit an increasing
trend with the Weber number, both following the scaling law ∝We1/3. As a consequence, the average
wavelength in resonance conditions scales as λ̄max ∝ We−1/3. Theoretical insights on these scaling
laws are provided in following Sec. III B.

It is interesting to highlight that results found in this section qualitatively resemble the findings by
Le Dizés and Villermaux [34] regarding the destabilization mechanisms of a round (axisymmetric)
gravitational viscous liquid jet subjected to noise perturbations, which are distributed along the
entire jet length. In particular, these authors theoretically studied the interplay between the instability
growth of perturbations and the jet thinning and longitudinal stretching, finding an increasing
(decreasing) trend of the most dangerous frequency (wavelength) in the case of a water jet in
incipient breakup conditions (see Fig. 9 of Le Dizés and Villermaux [34]). However, it is important
to note that, while capillary forces play the well-known destabilizing role for round gravitational
liquid jets, in the present planar configuration we found a stabilizing effect of surface tension on the
curtain dynamics induced by varicose perturbations. This is discussed in more detail in Sec. IV.

B. Scaling laws of fmax and Ah,max with We number: Theoretical insights

To provide a theoretical justification of the scaling laws reported in Sec. III A for the frequency
and amplitude of the stationary (i.e., long-time) varicose oscillations in resonance conditions, one
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can reconsider the governing system of Eqs. (7) and (8) under two simplifying assumptions: absence
of external gaseous ambient (rρ = 0) and spatially invariant base flow [U (x) = Ū ], with Ū being
the averaged velocity along the entire curtain length. The simplified system reads as

∂h′

∂t
+ Ū

∂h′

∂x
= − ε

Ū

∂u′

∂x
, (17)

∂u′

∂t
+ Ū

∂u′

∂x
= ε

4We

∂3h′

∂x3
. (18)

The common term ∂u′
∂x can be eliminated from the equations and the system is rearranged into a

single partial differential equation, namely,

∂h′

∂t
+ Ū

∂h′

∂x
+ ε2

4Ū 2We

∂3h′

∂x3
= ε

Ū 2

∂u′

∂t
. (19)

Based on Eq. (19) the evolution of the curtain thickness perturbation h′(x, t ) is interpreted as
an advection dynamics subjected to a reaction term due to the surface tension (which scales with
1/We), and forced by the (time derivative of) streamwise velocity perturbation u′(x, t ) induced
via the inlet boundary condition [see Eq. (13) in Sec. II A]. Moreover, as shown in Secs. II A and
III A, the governing system of Eqs. (7) and (8) exhibits long-time traveling wave solutions for both
the velocity and the thickness perturbations [see, in particular, Figs. 2 and 4(a)]. Therefore, one
can assume the following ansatz for the stationary solutions to Eq. (19) of velocity and thickness
perturbations:

u′(x, t ) = Au sin(2π f t − kx), (20)

h′(x, t ) = Ah sin(2π f t − kx + ϕ). (21)

In Eqs. (20) and (21), f is the temporal forcing frequency of the curtain oscillations, k is the spatial
wavenumber of the thickness distribution (k = 2π/λ, where λ is the wavelength), and ϕ represents
the phase shift between the forcing (with amplitude Au) and the response (with amplitude Ah). Note
explicitly that due to the assumptions made, the forcing scales linearly with the frequency.

By substituting Eqs. (20) and (21) into Eq. (19) and rearranging the terms, we obtain

2π

(
f − Ū

λ

)
+ 8π3ε2

4Ū 2We

1

λ3
= Au

Ah

2πε

Ū 2
f

cos(2π f t − kx)

cos(2π f t − kx + ϕ)
. (22)

By considering the frequency-wavelength relationship f = Ū/λ, we can rearrange Eq. (22) as the
relationship of the gain between the stationary oscillation amplitude Ah and the forcing amplitude
Au, thus obtaining

Ah

Au
∝ We

f 2
. (23)

Therefore, the amplification of the curtain thickness results from the competition between advection
(forcing frequency) and stiffness (surface tension) effects. The case of very high frequency ( f →
∞) corresponds to an infinitely stiff curtain (We → 0), and this scaling law is retrieved in the
numerical data shown in Fig. 6, which depicts gain Ah/Au asymptotically vanishing for high f
values and low We numbers.

Let us consider now the opposite case, namely, We → ∞ (i.e., absence of surface tension) and/or
f → 0 (i.e., low forcing frequency); the solution of Eqs. (17) and (18) in terms of curtain oscillation
amplitude scales as Ah/Au ∝ f , namely, it is a linear function of the forcing frequency f regardless
of the Weber number We (see Fig. 6 for f → 0 and/or for We → ∞). This is due to the fact that
the right-hand side of Eq. (18) becomes negligible, thus giving a simple advection equation for the
velocity u′. If we again assume a traveling wave form of the perturbations [Eqs. (20) and (21)],
it is easy to verify that the advected signal u′, acting as a forcing term on the curtain thickness
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FIG. 6. Gain between the stationary oscillation amplitude Ah and the forcing amplitude Au as a function of
the frequency f by varying the Weber number We.

perturbation [Eq. (17)] via the time derivative ∂u′/∂t , produces an oscillation amplitude Ah varying
linearly with f .

Finally, it is interesting to observe that these scaling laws can be further discussed by recon-
sidering the system of Eqs. (17) and (18) [or, alternatively, Eq. (19)] in two different physical
scenarios, namely, for f 3/We � 1 and f 3/We 	 1, with f 3/We scaling the reaction term in the
momentum equation (18). Since the amplification Ah( f ) linearly increases with f for f 3/We � 1,
while it monotonically decreases as We/ f 2 for f 3/We 	 1, a maximum ( fmax, Ah,max), which
physically represents the resonance conditions, must exist linking the two regimes. This is found for
f 3/We = O(1), thus retrieving the scaling law of the resonance frequency fmax ∝ We1/3 empirically
obtained via the numerical simulations presented in previous Sec. III A. By substituting this relation
into Eq. (23), the scaling Ah,max ∝ We1/3 is also straightforwardly recovered.

IV. VOF SIMULATIONS IN 2D RESONANCE CONDITIONS: THINNING-INDUCED
NUMERICAL BREAKUP

The forcing frequency f effect on the two-dimensional curtain flow field obtained with VOF
simulations for Weber number We = 2.5 and forcing amplitude Au = 0.1 is reported in Fig. 7.
In particular, the streamwise velocity perturbation u′(x, y) contour is shown in panels (a)–(c) for
f = 0.76, 5.34, and 11.43, respectively, which are the same values as previously considered in
Sec. III. The three forcing frequencies are also represented by the vertical dashed lines in panel
(d), which reports the fast Fourier transform of the thickness distribution temporal signal h′(t ) at
the streamwise station x = 0.5. Note that each curve in panel (d) is normalized with respect to the
overall maximum.

The two-dimensional volume-of-fluid simulations confirm the predictions of the one-
dimensional linear analysis: the curtain flow exhibits a resonance behavior at f = 5.34 [Fig. 7(d)],
for which the varicose oscillations of the curtain reach the maximum amplification. It is also
interesting to observe that the varicose displacement of the two curtain-ambient interfaces induces
analogous perturbations within the gaseous phase, as can be appreciated by looking at the symmetric
(with respect to the axis y = 0) velocity contour distributions in Figs. 7(a)–7(c). Note that a
curtain-ambient interaction effect via velocity perturbations has also been found by Della Pia et al.
[20] for a curtain subjected to a normal-to-flow (i.e., sinuous) velocity forcing.

The curtain dynamics in resonance conditions is further investigated in Fig. 8, which shows
snapshots of the two-dimensional curtain shapes obtained for f = fmax by varying the inlet forcing
amplitude Au, at the same Weber number values considered in Sec. III. In particular, starting from the
value Au = 0.1 so far considered (black curves), the forcing amplitude is increased, and four more
cases are investigated: Au = 0.15 (red curves), 0.20 (blue curves), 0.25 (green curves), and 0.30
(magenta curves). The main result arising from the analysis of Fig. 8 is that, in resonance conditions,
the curtain breaks up due to the reduction of its thickness induced by the varicose deformation. This
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FIG. 7. VOF simulations of two-dimensional curtain flow: streamwise velocity perturbation u′ contour
(a)–(c) and fast Fourier transform of the thickness perturbation h′ (d). Black curves in (a)–(c) denote the curtain-
ambient interface. Vertical dashed lines in (d) denote the forcing frequency values: f = 0.76 (black); f = 5.34
(red); f = 11.43 (blue). Here, We = 2.5 and Au = 0.1.

thinning-induced numerical breakup results in the formation of an unsteady curtain fragmentation
[see, e.g., the magenta curve in Fig. 8(a) for x ≈ 0.8], which is convected downstream along the
curtain by the underlying gravitational base flow and expelled at the domain outlet (not shown in
Fig. 8). It is worth pointing out that, once a “thin enough” sheet is created by means of the thinning
physical mechanism, one may reasonably assume that the curtain will break due to short-range
forces. On the other hand, we recall explicitly that such forces (or other nonequilibrium effects) are
of course not included in the Navier-Stokes model here employed.

Interestingly, for each Weber number value considered, the reduction of curtain thickness induced
by the varicose deformation (which leads to numerical breakup) occurs at a specific value of the
forcing amplitude, i.e., Au = 0.30, not depending on We. On the other hand, it can be seen that
the streamwise station where this thinning occurs moves upstream by increasing the Weber number
[e.g., it goes from x ≈ 0.8 for We = 2.5, panel (a), to x ≈ 0.5 for We = 10, panel (d)], i.e., it
shifts downstream by considering progressively higher values of the surface tension coefficient,
thus “spatially delaying” the breakup. In this respect, surface tension is found to play a stabilizing
role on the varicose oscillations of the gravitational curtain. Note that a stabilizing effect of surface
tension on the convective instability of unconfined planar liquid jets was also found by Turner et al.
[36] by means of spatiotemporal stability analysis.
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FIG. 8. Curtain shape in resonance conditions for different values of the Weber number We by increasing
the forcing amplitude Au: 0.1 (black); 0.15 (red); 0.2 (blue); 0.25 (green); 0.3 (magenta).

The thinning-induced numerical breakup of liquid curtain found here significantly resembles
the experimental findings by Lhuissier et al. [37]. These authors studied the response of a steady
free-falling liquid sheet to localized varicose perturbations, which were imposed at fixed streamwise
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TABLE III. Resonance frequency fmax as a function of the Weber number We. The corresponding average
wavelength λ̄max and amplitude Ah,max of the varicose oscillations are also reported. Here, the forcing amplitude
is Au = 0.1.

We 2.5 5 7.5 10

fmax 5.34 6.71 7.47 8.23
λ̄max 0.37 0.29 0.26 0.24
Ah,max 0.21 0.26 0.30 0.33

stations along the curtain. The perturbations were generated by blowing the liquid curtain by
means of two air jets symmetrically located with respect to the curtain frontal plane, and thus
able to introduce a varicose perturbation in the form of a local curtain thinning with controlled
amplitude. For all the liquid flow rates investigated, Lhuissier et al. [37] found that the varicose
thinning of the curtain determined the formation of a steady hole downstream from the perturba-
tion location. Although a quantitative comparison between present results and those of Lhuissier
et al. [37] is made unfeasible by the different flow-rate ranges investigated (here, the flow rate is
Q� = U �

i H �
i = 7.35 cm2/s, while in Lhuissier et al. [37] it is Q� ∈ [0.6, 4.5] cm2/s), the physical

mechanism determining the hole formation outlined by Lhuissier et al. [37] is the same which causes
the 2D curtain (numerical) breakup in the present work, namely, a thinning of the curtain induced
by the varicose perturbations. However, it is worth pointing out that Lhuissier et al. [37] considered
steady varicose perturbations generated by continuously blowing the curtain, thus determining the
formation of a steady hole in the liquid flow. On the contrary, we have examined here the response of
the curtain to time-varying (harmonic) perturbations, which results in the formation of an unsteady
(2D) fragmentation advected downstream by the underlying gravitational base flow.

The values of the resonance frequency fmax and the corresponding average wavelength λ̄max and
amplitude Ah,max of the varicose oscillations as a function of the Weber number We are summarized
in Table III, for a forcing amplitude Au = 0.1. As already outlined in Sec. III, it is found that
fmax and Ah,max increase with We, both following the scaling law ∝We1/3, while λ̄max decreases
as We−1/3. In the same way as the natural frequency, the average wavelength λ̄max predicted by
the one-dimensional linear model is also well retrieved in the two-dimensional volume-of-fluid
simulations. This can be appreciated in Fig. 9, which shows the curtain shapes obtained using the
two methodologies when breakup conditions are approached. Note that the 1D linear shape has been

FIG. 9. Curtain shape induced by the varicose forcing as predicted by the one-dimensional linear model
(red dashed curve) and the two-dimensional volume-of-fluid simulation (black curve) approaching breakup
conditions. Here, We = 10, f = 8.23, and Au = 0.25.
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obtained by superposing to the base flow thickness distribution H = 1/U [see Eq. (11) in Sec. II A]
the perturbation quantity h′(x, t ) obtained for We = 10, f = 8.23, and Au = 0.25. As shown in
Fig. 9, the 1D linear model correctly predicts the wavelength of the varicose perturbation dynamics,
as well as the thinning of the curtain leading to breakup, while of course it is not able to reproduce
the nonlinear saturated shape characterizing the curtain in incipient breakup conditions.

Finally, it is interesting to observe that the 2D nonlinear shapes shown in Figs. 8 and 9 qualita-
tively agree with the typical experimental shapes of axisymmetric liquid jets accelerated by faster
coaxial gaseous streams, as those reported, for example, in Fig. 38 of Eggers and Villermaux [38].

V. CONCLUSIONS

The varicose dynamics of a forced gravitational liquid sheet (curtain) issuing into a quiescent
gaseous ambient has been numerically studied. The investigation has been performed in supercritical
regime, namely, for Weber number We > 1. Two methodologies have been employed: a simplified
one-dimensional linear model, and two-dimensional VOF simulations. Employing harmonic forcing
perturbations of the streamwise velocity applied at the inlet section, the varicose dynamics of the
curtain has been excited and characterized by varying the forcing frequency f and amplitude Au of
the perturbations, for different values of We.

As a first significant result, the one-dimensional linear analysis has shown that the curtain
oscillations amplitude reaches a maximum for a certain forcing frequency f = fmax. In other terms,
it has been found that the flow manifests a resonance behavior, with the natural oscillation frequency
fmax and corresponding amplitude Ah,max both scaling as We1/3, while the average wavelength
λ̄max scales as We−1/3. These scaling laws have been fully recovered by theoretical insights. The
two-dimensional VOF simulations have confirmed the one-dimensional model predictions of the
flow natural frequency, as well as of the wavelength in resonance conditions.

It has been also found that the curtain breaks up by increasing the forcing amplitude Au, ex-
hibiting a nonlinear saturated shape in incipient breakup conditions, recalling that of axisymmetric
liquid jets sheared by faster coaxial gaseous streams. The rupture is determined by a reduction of
the curtain thickness induced by the varicose deformation, and it occurs at a specific value of the
forcing amplitude, which does not depend on the Weber number. It has been explicitly stressed that
the nature of this breakup is numerical because the relevant short-range forces are not included
in the Navier-Stokes model here employed. The streamwise station where the curtain thinning
occurs moves upstream by increasing We, i.e., it shifts downstream by increasing the surface tension
coefficient, thus “spatially delaying” the numerical breakup. In this respect, the surface tension is
found to play a stabilizing role on the varicose oscillations of the curtain.

The present work constitutes, together with previous investigations in the literature of the sinuous
dynamics of liquid curtains, a further step towards deriving a weakly nonlinear mathematical model
accounting for the coupling between sinuous and varicose modes in such flow configurations.

The data that support the findings of this study are available from the Contact author upon
reasonable request.
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