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Thermocapillary instability of a surfactant-laden shear-imposed film flow
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We examine the linear thermocapillary instability of a two-dimensional gravity-driven
shear-imposed incompressible viscous film flowing over a uniformly heated inclined wall
when the film surface is covered by an insoluble surfactant. The aim is to expand the prior
research [Wei, Phys. Fluids 17, 012103 (2005)] to the case of a nonisothermal viscous
film. As a result, the energy equation is incorporated into the governing equations along
with the mass conservation and momentum equations. In the present study, we have found
two additional thermocapillary S- and P-modes in the low to moderate Reynolds number
regime, along with the known H-mode (surface mode) and surfactant mode. The long-wave
analysis predicts that the surfactant Marangoni number, which measures the surface tension
gradient due to a change in insoluble surfactant concentration, has a stabilizing impact
on the H-mode, but the thermal Marangoni number, which measures the surface tension
gradient due to a change in temperature, has a destabilizing impact. These opposing
effects produce an analytical relationship between them for which the critical Reynolds
number for the H-mode instability of the nonisothermal film flow coincides with that of
the isothermal film flow. On the other hand, the numerical result exhibits that the surfactant
Marangoni number has a stabilizing influence on the thermocapillary S-mode and P-mode.
More specifically, these thermocapillary instabilities diminish with an increase in the value
of the surfactant Marangoni number. However, these thermocapillary instabilities can be
made stronger by increasing the value of the thermal Marangoni number. Furthermore, the
thermal Marangoni number destabilizes the surfactant mode instability, but the onset of
instability is not affected in the presence of the thermal Marangoni number, which is in
contrast to the influence of the surfactant Marangoni number on the onset of surfactant
mode instability. Interestingly, the Biot number, which measures the ratio of heat convec-
tion and heat conduction, shows a dual role in the surfactant mode instability, even though
the threshold of instability remains the same. In the high Reynolds number regime, the
shear mode appears and is stabilized by the surfactant Marangoni number but destabilized
by the thermal Marangoni number. Moreover, the comparison of results with inertia and
without inertia exhibits a stabilizing role of inertia in the surfactant mode.
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I. INTRODUCTION

Because of their numerous applications in engineering and technology, the studies of interfacial
heat transfer and stability in falling liquid films have been of interest to researchers worldwide.
Since thin liquid films have a wide contact area and low thermal resistance, they are frequently
encountered in a variety of industrial equipment, including falling film evaporators, condensers,
etc. [1]. Moreover, liquid films are very useful for the cooling of microelectronic devices, the
solidification of liquid metal, and the thermal protection of rocket engines. Additionally, the solitary
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wave formation on the surface of a falling film greatly enhances heat and mass transfers, as reported
in the works of Frisk and Davis [2] and Brauner and Maron [3]. As a result, the inclusion of
heat transfer in the study of isothermal film flows plays an important role in the falling film
instability, especially in the development of surface waves downstream generated by the streamwise
gravitational force. Unlike the heat transfer phenomenon, the introduction of interfacial surfactant
also alters the interfacial properties of the liquid film and boundary conditions, and hence modifies
the rates of heat and mass transfers at the liquid-air interface [4]. These facts stimulate us to unravel
the combined thermal and surfactant effects on the falling film instability.

Since the seminal experimental work of Kapitza and Kapitza [5], there have been numerous
studies of the isothermal thin liquid films devoted to the investigation of linear and nonlinear stability
analyses, where they have revealed all the events, including the initiation of primary instability,
the nonlinear interaction of primary waves, and the evolution of a single tear-drop-shaped solitary
wave (see, for example, [6–8]). In this context, Benjamin [9] and Yih [10] conducted the linear
stability of a gravity-driven isothermal thin liquid film flowing on an impermeable substrate at
a low Reynolds number based on the Orr-Sommerfeld boundary value problem. They identified
the H-mode (surface mode) in the long-wave regime, where they assumed that the film thickness
is very small in comparison with the wavelength of the infinitesimal perturbation. The critical
Reynolds number for the onset of the H-mode instability was determined as a function of the angle
of inclination. In fact, the H-mode arises due to the streamwise component of the gravitational
force. After that, the emergence of shear mode instability in the high Reynolds number regime for
the isothermal gravity-driven film flow was reported by Lin [11], Bruin [12], and Chin [13]. Bruin
showed that the surface mode and the shear mode compete among themselves to control the primary
instability when the inclination angle is sufficiently small. Later the effect of surface tension on the
shear mode instability was examined by Floryan [14]. In particular, the shear mode and the surface
mode are not the same [15]. The shear mode emerges due to the viscous effect when the Reynolds
number is very high, but the inclination angle is sufficiently small [13].

In the context of thermocapillary instability, Lin [16] initiated the long-wave linear stability
analysis of a nonisothermal falling film on an inclined heated substrate when the Reynolds number is
low. For the onset of H-mode instability, he determined the critical Reynolds number. To investigate
the thermocapillary instability for disturbances of arbitrary wave numbers, Sreenivasan and Lin
[17] further revisited the flow model of Lin for a sufficiently small inclination angle. Later Smith
[18] introduced the effect of the Prandtl number on the primary instability of a nonisothermal thin
liquid film. To perform the stability analysis, he implemented the long-wave asymptotic expansion.
His result revealed that the thin film flow can be unstable to infinitesimal disturbances for large
values of the Prandtl number. He also discussed the physical mechanism of primary instability. On
the basis of the method of energy budget, Goussis and Kelly [19] rendered an alternative physical
mechanism of instability for a nonisothermal thin film flow over a uniformly heated substrate. They
identified one hydrodynamic mode (H-mode) and two thermocapillary modes (S-mode and P-mode)
for low to moderate values of the Reynolds number, where the S-mode and P-mode arise due to the
thermocapillary effect. In particular, the H-mode and the thermocapillary S-mode appear in the
long-wave regime, while the thermocapillary P-mode appears in the short-wave regime. As per
their discussion, the S-mode and P-mode instabilities, induced by the destabilizing thermocapillary
forces, emerge via two distinct physical mechanisms: (1) As the fluid surface deforms due to
an infinitesimal disturbance, it causes a modification to the base flow temperature. This fact is
responsible for the appearance of the thermocapillary S-mode instability in the long-wave regime.
(2) On the other hand, the appearance of the thermocapillary P-mode instability in the finite wave
number regime is responsible for the convective interaction between the perturbation velocity field
and the basic temperature. Furthermore, Goussis and Kelly [19] reported that the P-mode instability
for a nonisothermal film flow will emerge if the following criterion is satisfied:[

−dσ

dT
�T

]
ρcp

μλ
> 32.073, (1)
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where σ is the surface tension, �T is the difference between the wall temperature and the ambient
temperature, ρ is the density, cp is the specific heat capacity at constant pressure, μ is the dynamic
viscosity, and λ is the heat transfer coefficient at the liquid film surface. It should be noted that
the expression [− dσ

dT �T ], created by a change in surface tension due to a change in temperature,
represents a measure of the thermocapillary force, while the expression ρcp represents a measure of
the effect of convection in extracting energy from the basic state. Obviously, the large magnitudes
of these quantities endorse the appearance of P-mode instability. On the other hand, the dynamic
viscosity μ and the heat transfer coefficient λ, respectively, measure the energy loss due to viscous
dissipation and heat loss through the fluid surface. Therefore, these two quantities are opposing to
cause P-mode instability. Hence, for the emergence of P-mode instability, the energy transfer from
the basic state to the disturbance and the work done by the thermocapillary force should be greater
than these kinds of energy losses. Moreover, they examined the influence of the thermal Marangoni
number on the H-mode, S-mode, and P-mode and reported that the thermal Marangoni number has a
destabilizing impact on these dominant unstable modes. Joo et al. [20] incorporated the evaporation
effect into the studies of heated thin film flow and executed a linear stability analysis based on
the long-wave asymptotic expansion. After that, Joo et al. [21] further revisited their prior work
in exploring the nonlinear stability based on the evolution equation for the liquid film thickness.
As mentioned by them, the rivulet formation is generated due to the thermocapillary S-mode
instability. To decipher the complex wave dynamics on the surface of a nonisothermal falling
film on a heated substrate, Ruyer-Quil et al. [22] and Scheid et al. [23] carried out the instability
analysis in detail under the framework of low-dimensional modeling. As a result, they developed
three evolution equations in terms of the local film thickness, local flow rate, and mean temperature
across the layer. The steady-state traveling wave solution was computed numerically. They showed
that the results obtained from the low-dimensional model are in good agreement with those of the
Orr-Sommerfeld boundary value problem. Moreover, they recognized the hydrodynamic H-mode
and the thermocapillary S-mode instabilities, which reinforce each other as the thermal Marangoni
number increases. Hu et al. [24] accomplished a linear stability analysis for the nonisothermal binary
liquid film flowing over a heated substrate. They analyzed the influence of the Soret number on the
H-mode, S-mode, and P-mode in a low to moderate Reynolds number regime. These unstable modes
are destabilized as the Soret number rises. Moreover, they revealed an interesting phenomenon: the
H-mode and S-mode merge for the higher values of the Soret number. Pascal and D’Alessio [25]
and D’Alessio and Pascal [26] took the same flow model as Hu et al. [24] to examine the linear
and nonlinear stability analyses based on the Orr-Sommerfeld-type boundary value problem and
depth-averaged equations. After that, D’Alessio et al. [27] conducted a study on the Marangoni
instability for a heated falling film in the presence of soluble surfactant. Again, both linear and
nonlinear stability analyses were performed. Their results predicted that the surfactant Marangoni
number has a stabilizing effect, but the thermal Marangoni number has a destabilizing effect on
the H-mode. Furthermore, they showed that the results of insoluble surfactant can be recovered
in the limiting case. Samanta [28] investigated the impacts of the thermal Marangoni number
and the Biot number on the temporal instability in the limit of inertialess approximation for the
nonisothermal film flow over a uniformly heated substrate. He showed that the Biot number has
a destabilizing role in the H-mode instability. On the basis of the Benney-type surface evolution
equation, Dávalos-Orozco [29] performed a nonlinear stability analysis of a heated liquid film over
an impermeable substrate. He analyzed the effects of wall thickness and heat conductivity on the
H-mode instability. A thorough review of isothermal and nonisothermal thin film flows can be found
in the study of Dávalos-Orozco [30]. Recently, a detailed study on the thermocapillary instability
of a thin film flowing over a uniformly heated slippery substrate was provided by Choudhury and
Samanta [31]. They reported the existence of an additional shear mode when the Reynolds number
is high. They also revealed that wall slip destabilizes the thermocapillary P-mode instability but
stabilizes the shear mode instability. Furthermore, they showed that the spanwise wave number
has a destabilizing influence on the thermocapillary P-mode instability. After that, Choudhury and
Samanta [32] investigated the thermocapillary instability for a shear-imposed nonisothermal film
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flow. They showed that the H-mode and S-mode instabilities are destabilized, but the P-mode
instability is stabilized if the shear stress is imposed in the coflow direction. Furthermore, the onset
of instability for the H-mode and the onset of stability for the S-mode coalesce and produce a single
onset for the primary stability as the shear stress increases. However, an opposite phenomenon
occurs if the shear stress is applied in the counterflow direction. In addition, they demonstrated that
the shear mode instability is weakened if the shear stress is acting in the counterflow direction.

On the other hand, the studies of hydrodynamic instability for insoluble surfactant-laden flows are
of particular interest as the change in surfactant concentration imparts a variation in surface tension
at the interface, which in turn triggers and affects some important instability mechanisms. In this
context, the study of the linear stability of a falling film containing soluble and insoluble surfactants
was originated by Whitaker and Jones [33], and they predicted the critical Reynolds number for
the surfactant-laden film flow to become unstable. Later Blyth and Pozrikidis [34] extended the
flow model of Whitaker and Jones up to a moderate Reynolds number regime and reported a
stabilizing effect of insoluble surfactant on the dominant unstable H-mode. After that, Wei [35]
introduced a constant shear stress at the surface of a thin film flow when it is contaminated by an
insoluble surfactant. He developed the Orr-Sommerfeld-type boundary value problem to investigate
the primary instability in the long-wave regime. He stated that the surfactant mode emerges due to
the presence of surface surfactant and becomes unstable if the shear stress is imposed in the coflow
direction. The flow model of Wei was further revisited by Bhat and Samanta [36] to unravel the shear
mode instability in the high Reynolds number regime. They revealed that the surfactant Marangoni
number stabilizes the shear mode instability. The Marangoni instability of two-layer film flow with
insoluble surfactant was analyzed by Frenkel and Halpern [37] in the inertialess limit. Including
inertia, Samanta [38] extended the study of Frenkel and Halpern up to a moderate Reynolds number
regime and predicted that the presence of interfacial surfactant stabilizes the interfacial mode at high
viscosity ratio but destabilizes it at low viscosity ratio.

Clearly, the above literature survey on heated film flows without surfactant demonstrates that
the thermal Marangoni number destabilizes the H-mode, S-mode, and P-mode instabilities. On the
other hand, the literature survey on surfactant-laden film flows reveals that the surfactant Marangoni
number has a stabilizing impact on the H-mode instability. However, there is no study devoted
to exploring the combined effect of the thermal Marangoni number and the surfactant Marangoni
number on the H-mode, S-mode, P-mode, shear mode, and surfactant mode simultaneously in
the presence of imposed shear stress. For this reason, we are motivated to carry out a linear
stability analysis of a shear-imposed insoluble surfactant-laden thin film flowing down a heated
substrate, where the heated substrate is maintained at a constant temperature. In this study we
have deciphered the effects of several parameters like the thermal Marangoni number, the Biot
number, and the surfactant Marangoni number on the H-mode, S-mode, P-mode, shear mode, and
surfactant mode, respectively. We have organized our paper in the following way: Sec. II concerns
the problem description along with the governing equations. Section III discusses the derivation of
the Orr-Sommerfeld-type boundary value problem (OS BVP) with its long-wave analytical solution.
The numerical solution of the OS BVP for an arbitrary Reynolds number as well as the current
numerical results are provided in Sec. IV. Section V deals with the linear stability analysis in the
inertialess approximation. Finally, we have presented the summary and conclusions in Sec. VI. In
addition, we have briefly discussed the thermocapillary instability of a liquid film with a soluble
surfactant in the presence of an imposed shear stress in Appendix. The details are kept for future
investigation.

II. GOVERNING EQUATIONS

The present study consists of a two-dimensional flow of viscous incompressible liquid film
falling down an inclined wall due to gravitational force. Suppose the inclined wall makes an angle
θ with the horizontal. The flow configuration is schematically depicted in Fig. 1. The mathematical
equations are developed based on the Cartesian coordinate system, where the origin is placed on the
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FIG. 1. Schematic diagram of a thin viscous liquid film falling down a uniformly heated inclined wall with
inclination angle θ in the presence of a constant shear stress τs. Here d is the height of the unperturbed film
flow, and h(x, t ) is the height of the perturbed film flow. Furthermore, Ū (y) and T̄ (y), respectively, represent
the velocity and temperature profiles of the base flow. Here �g = g sin θ î − gcos θ ĵ is the gravity acceleration
vector, and î and ĵ are unit vectors along x axis and y axis, respectively.

wall and the axes x and y are directed along the wall and normal to the wall, respectively. In this
study, we have considered a set of assumptions: (1) The liquid film surface is contaminated by a
layer of insoluble surfactant with concentration �(x, t ). (2) A constant shear stress, τs, is imposed
along the streamwise flow direction. If τs > 0, the shear stress is applied in the coflow direction.
Otherwise, it is applied in the counterflow direction if τs < 0. (3) The bounded wall is uniformly
heated with a temperature of T = Tw, which is higher than the ambient temperature T = Ta.
(4) As we intend to examine the thermocapillary instability, the surface tension σ (T, �) is con-
sidered to be a function of both temperature T and surfactant concentration �, and it will be varied
by the following linear relation [27,39,40]:

σ (T, �) = σa − β(T − Ta) − E (� − �a), (2)

where σa is the base surface tension at the base surfactant concentration �a when T = Ta. Here
β = −dσ/dT |T =Ta > 0 and E = −dσ/d�|�=�a > 0, as surface tension decreases with the increase
in the values of both temperature and surfactant concentration. (5) The other thermophysical
properties of the nonisothermal liquid film, like density ρ, dynamic viscosity μ, specific heat
capacity cp, and thermal conductivity κ , are considered constants throughout the study. The heights
of the unperturbed and perturbed liquid films are denoted by d and h(x, t ), respectively. The flow
dynamics of the two-dimensional nonisothermal liquid film and the heat transfer within the liquid
film are governed by the following mass conservation, momentum, and energy equations [41–43]:

∂xu + ∂yv = 0, (3)

ρ(∂t u + u∂xu + v∂yu) = −∂x p + μ(∂xxu + ∂yyu) + ρg sin θ, (4)

ρ(∂tv + u∂xv + v∂yv) = −∂y p + μ(∂xxv + ∂yyv) − ρgcos θ, (5)

ρcp(∂t T + u∂xT + v∂yT ) = κ (∂xxT + ∂yyT ), (6)

where u, v, p, and T are, respectively, the streamwise velocity component, cross-stream velocity
component, pressure, and temperature of the nonisothermal liquid film. Here g = |�g| is the magni-
tude of the gravity acceleration vector. The current flow configuration is completed by the following
boundary conditions: (1) At the tilted heated wall, y = 0, the streamwise and cross-stream velocity
components must satisfy the no-slip and no-penetration boundary conditions, but the temperature is
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constant on the wall. Accordingly, we can write

u = 0, v = 0, T = Tw, at y = 0, (7)

where Tw is the temperature at the tilted heated wall. (2) At the liquid-air interface, y = h(x, t ),
the tangential stress and the normal stress are balanced by the imposed shear stress and the stress
induced by the surface tension gradients due to changes in temperature and surfactant concentration,
which yield the following dynamic boundary conditions [27,31,32,39]:

μ{4∂yv∂xh + (∂yu + ∂xv)[1 − (∂xh)2]} + [β(∂xT + ∂xh∂yT ) + E∂x� − τs]
√

1 + (∂xh)2 = 0, (8)

Pa − p + 2μ

[1 + (∂xh)2]
{∂yv[1 − (∂xh)2] − ∂xh(∂yu + ∂xv)} = σ∂xxh

[1 + (∂xh)2]3/2
, (9)

where Pa denotes the ambient pressure. (3) At the liquid-air interface, y = h(x, t ), the convective
heat transfer is governed by Newton’s law of cooling [28,41]:

κ
(∂xT ∂xh − ∂yT )√

1 + (∂xh)2
= λ(T − Ta), (10)

where λ denotes the heat transfer coefficient. (4) The transport of insoluble surfactant concentration
at the liquid-air interface, y = h(x, t ), is described by the following boundary condition [37,44–46]:

∂t [�
√

1 + (∂xh)2] + ∂x[�u
√

1 + (∂xh)2] = Ds∂x[∂x�/
√

1 + (∂xh)2], (11)

where Ds denotes the surfactant diffusivity, which is usually small. (5) Finally, the liquid-air
interface, y = h(x, t ), evolves with time based on the following kinematic boundary condition:

∂t h + u∂xh = v. (12)

A. Nondimensional criterion

The nondimensionalization of the governing equations and associated boundary conditions (3)–
(12) is performed by using the following variables with star notation:

u∗ = u

Us
, v∗ = v

Us
, p∗ = pd

μUs
,

x∗ = x

d
, y∗ = y

d
, h∗ = h

d
, �∗ = �

�a
, (13)

t∗ = tUs

d
, σ ∗ = σ

σa
, T ∗ = T − Ta

Tw − Ta
, τ = τsd

μUs
,

where Us = ρgd2 sin θ/(2μ) is the base flow velocity at the unperturbed liquid-air interface, y = d ,
in the absence of imposed shear stress. From now on, we have dropped the star notation from
the nondimensional variables. The nondimensional governing equations and associated boundary
conditions can be expressed as follows:

∂xu + ∂yv = 0, (14)

Re(∂t u + u∂xu + v∂yu) = −∂x p + (∂xxu + ∂yyu) + 2, (15)

Re(∂tv + u∂xv + v∂yv) = −∂y p + (∂xxv + ∂yyv) − 2 cot θ, (16)

PeT(∂t T + u∂xT + v∂yT ) = (∂xxT + ∂yyT ), (17)

u = 0, v = 0, T = 1, at y = 0, (18)
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[4∂yv∂xh + (∂yu + ∂xv){1 − (∂xh)2}] + [MaT(∂xT + ∂xh∂yT )

+ MaS ∂x� − τ ]
√

1 + (∂xh)2 = 0, at y = h, (19)

pa − p + 2

[1 + (∂xh)2]
[∂yv{1 − (∂xh)2} − ∂xh(∂yu + ∂xv)]

= [Ca−1 − MaT T − MaS (� − 1)]
∂xxh

[1 + (∂xh)2]3/2
, at y = h, (20)

(∂xT ∂xh − ∂yT )√
1 + (∂xh)2

= Bi T, at y = h, (21)

∂t [�
√

1 + (∂xh)2] + ∂x[�u
√

1 + (∂xh)2] = 1

PeS
∂x[∂x�/

√
1 + (∂xh)2], at y = h, (22)

∂t h + u∂xh = v, at y = h, (23)

where pa = Pad
μUs

denotes the nondimensional ambient pressure, Re = ρUsd/μ specifies the
Reynolds number, which represents the ratio of inertia and the viscous force, MaT = β(Tw −
Ta)/μUs specifies the thermal Marangoni number, which represents the ratio of the Marangoni force
generated by the surface tension gradient due to a change in temperature and the viscous force,
MaS = E�a/μUs is the surfactant Marangoni number, which represents the ratio of the Marangoni
force generated by the surface tension gradient due to a change in surfactant concentration and
the viscous force, Ca = μUs/σa specifies the capillary number, which represents the ratio of the
viscous force and the surface force due to surface tension σa, Bi = λd/κ specifies the Biot number,
which represents the ratio of the heat convection at the liquid film surface and the heat conduction
within the liquid film, PeS = Usd/Ds specifies the surfactant Péclet number, which represents the
ratio of the advective mass transport and the diffusive mass transport at the liquid film surface,
and PeT = ρcpUsd/κ = Pr Re specifies the thermal Péclet number, where Pr = ρcpν/κ denotes the
thermal Prandtl number. We have also introduced the Kapitza number Ka = 2σa/[ρ(ν4g sin θ )1/3] =
(2Re)2/3Ca−1 to compare our numerical results with those available in the literature, where ν = μ/ρ

denotes the kinematic viscosity. To decipher the linear stability of the steady unidirectional parallel
flow with a constant film thickness, which is also known as the base flow, we require its solution.
We have determined the analytical solution of the base flow, which can be expressed as

Ū (y) = (2 + τ )y − y2, V̄ (y) = 0, 0 � y � 1, (24)

P̄(y) = 2 cot θ (1 − y) + pa, H̄ = 1, 0 � y � 1, (25)

T̄ (y) = 1 −
(

Bi

1 + Bi

)
y, �̄ = 1, 0 � y � 1, (26)

where H̄ is the nondimensional height of the base flow and �̄ is the nondimensional surfactant
concentration. Clearly, we can observe that the base velocity Ū (y) is a linear function of the imposed
shear stress τ but a quadratic function of y. As a result, the base velocity has a semiparabolic form in
y, and it increases monotonically as the imposed shear stress increases. Furthermore, the base flow
temperature T̄ (y) is a linear function of y and also depends on the Biot number Bi. Here we see that
the base flow temperature decreases linearly from the wall temperature as we move towards the film
surface.

B. Perturbation equations

In this subsection we will derive the linearized perturbation equations. Thereby, we superpose
an infinitesimal disturbance on the flat film flow of thickness H̄ = 1. To describe this phenomenon
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mathematically, we decompose each perturbation flow variable in the following form:

u = Ū + u′, v = V̄ + v′, p = P̄ + p′, T = T̄ + T ′, h = H̄ + h′, � = �̄ + �′, (27)

where u′, v′, p′, T ′, h′, and �′ represent the perturbation flow velocities in x and y directions,
perturbation pressure, perturbation temperature, perturbation surface deformation, and perturbation
surfactant concentration, respectively. Here the quantities with bar notation represent the base flow
variables. Next, the above perturbation decompositions (27) are inserted into the nondimensional
governing equations and associated boundary conditions (14)–(23) and linearized those equa-
tions with respect to the base flow solutions. Finally, we obtain the following perturbation equations:

∂xu′ + ∂yv
′ = 0, 0 � y � 1, (28)

Re(∂t u
′ + Ū∂xu′ + v′DŪ ) = −∂x p′ + (∂xxu′ + ∂yyu′), 0 � y � 1, (29)

Re(∂tv
′ + Ū∂xv

′) = −∂y p′ + (∂xxv
′ + ∂yyv

′), 0 � y � 1, (30)

PeT(∂t T
′ + Ū∂xT ′ + v′DT̄ ) = (∂xxT ′ + ∂yyT ′), 0 � y � 1, (31)

u′ = 0, v′ = 0, T ′ = 0, at y = 0, (32)

D2Ūh′ + ∂yu′ + ∂xv
′ + MaT[∂xT ′ + DT̄ ∂xh′] + MaS∂x�

′ = 0, at y = 1, (33)

−p′ − DP̄h′ + 2[∂yv
′ − DŪ∂xh′] = (Ca−1 − MaT T̄ )∂xxh′, at y = 1, (34)

∂yT ′ + Bi(DT̄ h′ + T ′) = 0, at y = 1, (35)

∂t�
′ + Ū∂x�

′ + ∂xu′ + DŪ∂xh′ = 1

PeS
∂xx�

′, at y = 1, (36)

∂t h
′ + Ū∂xh′ = v′, at y = 1, (37)

where D = d
dy represents the differential operator.

III. ORR-SOMMERFELD-TYPE EQUATION

To develop the Orr-Sommerfeld-type equation, the perturbation stream function ψ ′(x, t ) is
introduced by using the following relationships:

u′(x, t ) = ∂yψ
′, v′(x, t ) = −∂xψ

′. (38)

Next, the solution of the perturbation equations (28)–(37) is considered in the form of normal mode
[31,47]:

ψ ′(x, y, t ) = φ̂(y) exp[i(kx − ωt )],

T ′(x, y, t ) = T̂ (y) exp[i(kx − ωt )],

�′(x, t ) = �̂ exp[i(kx − ωt )],

h′(x, t ) = η̂ exp[i(kx − ωt )],

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

(39)

where φ̂(y), T̂ (y), �̂(y), and η̂ are the amplitudes of the perturbation stream function, perturbation
temperature, perturbation surfactant concentration, and perturbation film surface, respectively. Here
k and ω = kc denote the wave number and angular frequency of the infinitesimal perturbation,
where c is the wave speed. Next, we will substitute the normal mode solution into the perturbation
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equations (28)–(37) and eliminate the pressure terms, which lead to the following form of the Orr-
Sommerfeld-type boundary value problem:

(D2 − k2)2φ̂ = ikRe[(Ū − c)(D2 − k2) − D2Ū ]φ̂, 0 � y � 1, (40)

(D2 − k2)T̂ = ikPeT[(Ū − c)T̂ − DT̄ φ̂], 0 � y � 1, (41)

φ̂ = 0, T̂ = 0, Dφ̂ = 0, at y = 0, (42)

(D2 + k2)φ̂ + ikMaT(T̂ + DT̄ η̂) + ikMaS �̂ + D2Ū η̂ = 0, at y = 1, (43)

(D3 − 3k2D)φ̂ − ikRe[(Ū − c)Dφ̂ − DŪ φ̂]

= ikη̂[k2(Ca−1 − MaT T̄ ) − DP̄ − 2ikDŪ ], at y = 1, (44)

DT̂ + Bi[T̂ + DT̄ η̂] = 0, at y = 1, (45)

Dφ̂ +
[

(Ū − c) − ik

PeS

]
�̂ + DŪ η̂ = 0, at y = 1, (46)

φ̂ + (Ū − c)η̂ = 0, at y = 1. (47)

To carry out the temporal stability analysis, we will consider that the angular frequency, ω = ωr +
iωi, is complex while the wave number k is real. Therefore, the wave speed, c = cr + ici, is complex.

A. Long-wave analytical solution of the Orr-Sommerfeld-type equation

To investigate the temporal stability analysis in the long-wave regime (k � 1), we will follow
the mathematical technique proposed by Yih [10]. As a result, the variables φ̂, T̂ , η̂, �̂, and c are
expanded as the sum of infinite series in the limit k → 0

φ̂(y) =
∞∑

n=0

φnkn, T̂ (y) =
∞∑

n=0

Tnkn,

η̂ =
∞∑

n=0

ηnkn, �̂ =
∞∑

n=0

�nkn, c =
∞∑

n=0

cnkn,

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

(48)

where n is a non-negative integer. In general, long-wave analysis shows the appearance of H-mode
(surface mode) and surfactant mode for the isothermal surfactant-laden film flow [35,36]. To
differentiate them, we will use the subscript notations s and m in the subsequent calculations for
the H-mode and surfactant mode, respectively. It should be fruitful to point out that the long-wave
series expansion (48) is valid in the limit k → 0. Hence, we can capture only the long-wave unstable
modes using the series expansion (48). As soon as k increases, the long-wave series expansion will
diverge. Therefore, the unstable modes that appear in the finite wave number regime cannot be
determined analytically by using the long-wave series expansion. To find out the unstable modes in
the arbitrary wave number regime, we have used the numerical technique discussed in Sec. IV.

B. Zeroth-order approximation

Inserting equation (48) into the Orr-Sommerfeld-type boundary value problem (40)–(47), we
collect the leading-order or zeroth-order [O(k0)] equations:

D4φ0(y) = 0, D2T0(y) = 0, 0 � y � 1, (49)

φ0(y) = 0, T0(y) = 0, Dφ0(y) = 0, at y = 0, (50)
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D2φ0(y) + D2Ū (y)η0 = 0, D3φ0(y) = 0, at y = 1, (51)

DT0(y) + Bi T0(y) + Bi DT̄ (y)η0 = 0, at y = 1, (52)

Dφ0(y) + [Ū (y) − c0]�0 + DŪ (y)η0 = 0, at y = 1, (53)

φ0(y) + [Ū (y) − c0]η0 = 0, at y = 1. (54)

After solving the zeroth-order equations (49)–(52), we get

φ0(y) = η0 y2 and T0(y) = Bi2η0 y

(1 + Bi)2
. (55)

It is noticed that the zeroth-order solution φ0(y) does not depend on the imposed shear stress τ , and
the zeroth-order temperature T0(y) depends only on the Biot number Bi. Next, with the aid of the
zeroth-order kinematic boundary condition (54), one can easily get the zeroth-order phase speed c0

of the infinitesimal disturbance:

c0 = c0s = (2 + τ ), (56)

provided η0 	= 0. Then, by substituting the expression of c0(= c0s) in the zeroth-order transport
equation (53), one can obtain the zeroth-order amplitude of the perturbation surfactant concentra-
tion:

�0 = (2 + τ )η0. (57)

As η0 	= 0, this mode is generated due to the deflection of the liquid film surface from the flat
film solution H̄ = 1, and for this reason, we can call it the H-mode (surface mode) [10]. However,
if η0 = 0, we cannot use the zeroth-order kinematic boundary condition (54) because it vanishes
automatically. Instead, we use the zeroth-order surfactant transport equation (53), which introduces
another mode in the flow configuration due to perturbation of the surfactant concentration from its
base solution �̄ = 1, which is called the surfactant mode [35]. The zeroth-order phase speed of the
surfactant mode is

c0m = (1 + τ ), (58)

provided �0 	= 0. The above result indicates that the surfactant mode travels at the same speed
as the fluid at the surface of a unidirectional parallel flow if η0 = 0. Moreover, it is evident that
the zeroth-order phase speed of the H-mode is greater than that of the surfactant mode. Hence,
from the leading-order approximation, one can conclude that the H-mode propagates faster than the
surfactant mode.

C. First-order approximation

Now our aim is to solve the first-order [O(k)] equations, and therefore, we collect the equa-
tions containing only first-order terms:

D4φ1(y) + i Re[D2Ū (y)φ0(y) + [c0 − Ū (y)]D2φ0(y)] = 0, 0 � y � 1, (59)

D2T1(y) + i PeT{DT̄ (y)φ0(y) + [c0 − Ū (y)]T0(y)} = 0, 0 � y � 1, (60)

φ1(y) = 0, T1(y) = 0, Dφ1(y) = 0, at y = 0, (61)

D2φ1(y) + i MaT[T0(y) + DT̄ (y)η0] + i MaS�0 + D2Ū (y)η1 = 0, at y = 1, (62)

D3φ1(y) + iRe{[c0 − Ū (y)]Dφ0(y) + DŪ (y)φ0(y)} + iDP̄(y)η0 = 0, at y = 1, (63)
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DT1(y) + Bi[T1(y) + DT̄ (y)η1] = 0, at y = 1, (64)

Dφ1(y) − [c0 − Ū (y)]�1 − (c1 + i/PeS)�0 + DŪ (y)η1 = 0, at y = 1, (65)

φ1(y) − [c0 − Ū (y)]η1 − c1η0 = 0, at y = 1. (66)

In the long-wave analysis, we assume that the nondimensional numbers like Re, Ca, PeT, MaS, MaT,
Bi, and PeS are of order O(1). After solving the first-order equations (59)–(64) using Mathematica,
we obtain the expressions of φ1(y) and T1(y) in the following forms:

φ1(y) = i

60(1 + Bi)2
[a2y2 + a3 y3 + a4 y4 + a5 y5], (67)

T1(y) = − i Bi y

60(1 + Bi)3
[b1 + b2 y2 + b3 y3 + b4 y4], (68)

where

a0 = 3{Bi η0 MaT − (1 + Bi)2[2(η0 cot θ + i η1) + MaS �0]},

a1 = −η0(1 + Bi)2(2 + τ − 3c0),

a2 = 10(a0 + a1 Re),

a3 = 20(1 + Bi)2η0 cot θ,

a4 = −5Re(1 + Bi)2c0η0,

a5 = Re(1 + Bi)2(2 + τ )η0,

b1 = 60i Bi(1 + Bi)η1 + η0PeT{20 + 2Bi[25 + 6Bi − 5(3 + Bi)c0] + 5Bi τ (4 + Bi)},
b2 = 10Bi(1 + Bi)c0η0PeT,

b3 = −5(1 + Bi)[1 + Bi(3 + τ )]η0PeT,

b4 = 3Bi(1 + Bi)η0PeT.

Next, inserting the expressions of φ1(y) and T1(y) in the first-order surfactant transport equation (65)
and the first-order kinematic boundary condition (66), we obtain the algebraic equations in terms of
the variables η0, η1, �0, and �1:

i{30(1 + Bi)2MaS�0 − 30Bi MaT η0 + (1 + Bi)2[(18 − 25c0)Re + 60i + 40 cot θ + 9Re τ ]η0}
− 30(1 + Bi)2{�0(c1 + i/PeS) − �1(c0 − 1 − τ ) − τ η1

+ i

2
[(10c0 − 6)Re − 20 cot θ − 3Re τ ]η0} = 0, (69)

60(1 + Bi)2[(1 + τ − c0)η1 − c1η0] − i{30MaS �0(1 + Bi)2 − 30Bi MaT η0

+ (1 + Bi)2[(18 − 25c0)Re + 60i + 40 cot θ + 9Re τ ]η0} = 0. (70)

Now for the H-mode (surface mode), we must have η0 	= 0. Using the expressions of c0s(= c0) and
�0, we have determined the expression of c1s for the H-mode:

c1s = i

30
(d0 + d1Re + d2 cot θ ), (71)

�1 = (e0 + e1Re + e2 cot θ ), (72)
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FIG. 2. (a) Variation of the critical Reynolds number Recs for the H-mode (surface mode) when the
imposed shear stress τ varies. Solid, dashed, dotted, and dash-dotted lines represent the results for isothermal
(MaS = MaT = 0), surfactant (MaS = 0.1, MaT = 0), thermal (MaS = 0, MaT = 10), and thermal-surfactant
(MaS = 0.1, MaT = 10) film flows, respectively. The other parameter values are Ca = 10, θ = 15◦, and Bi = 1.
(b) Schematic diagram of a physical mechanism for the H-mode instability. (c) Variation of MaS

MaT
with the Biot

number Bi when τ changes.

where

d0 = 15

[
MaT Bi

(1 + Bi)2
− MaS(2 + τ )

]
, d1 = 8(2 + τ ), d2 = −20,

e0 = η1(2 + τ ) − iη0

2

{
2(2 + τ )

PeS
+ τ

[
MaT Bi

(1 + Bi)2
− MaS(2 + τ )

]}
,

e1 = − 1

60
iη0(2 + τ )(7 + 16τ ), e2 = 1

3
iηo(1 + 2τ ).

As the imaginary part of the complex wave speed, ci ≈ |kc1s| in the limit k → 0, c1s = 0 specifies
the neutral stability condition, which leads to the critical value of the Reynolds number, Recs, for
the onset of H-mode instability, and it can be read as

Recs =

⎡
⎢⎢⎢⎣ 15

8
MaS︸ ︷︷ ︸

Surfactant effect

+ 5

2(2 + τ )
cot θ − 15

8

Bi MaT

(1 + Bi)2(2 + τ )︸ ︷︷ ︸
Thermal effect

⎤
⎥⎥⎥⎦. (73)

Clearly, the analytical expression of the critical Reynolds number for the onset of H-mode instability
coincides with that of Wei [35] and Bhat and Samanta [36] for the isothermal (MaS 	= 0, MaT = 0)
surfactant-laden film flowing down an inclined plane in the presence of imposed shear stress at the
film surface. This result is depicted in Fig. 2(a) by a dashed line when MaS = 0.1. Furthermore, it
recovers the critical Reynolds number for the H-mode instability of the nonisothermal film flowing
down an inclined plane [32,48] in the absence of insoluble surfactant (MaS = 0, MaT 	= 0), which
is illustrated by a dotted line in Fig. 2(a) when MaT = 10. If both the thermal effect and surfactant
effect are removed (MaS = 0, MaT = 0), then the critical Reynolds number matches very well that
of the isothermal shear-imposed viscous film flow [18], which is demonstrated by a solid line in
Fig. 2(a). The above expression (73) indicates that the critical Reynolds number for the H-mode
(surface mode) increases with the increasing value of the surfactant Marangoni number MaS [34,49],
but attenuates with the increasing value of the thermal Marangoni number MaT [32,48]. Hence, one
can expect a stabilizing influence of the surfactant Marangoni number but a destabilizing influence
of the thermal Marangoni number on the H-mode. The combined thermal-surfactant effect (MaS 	=
0, MaT 	= 0) on the onset of H-mode instability is displayed in Fig. 2(a) by a dash-dotted line
when MaS = 0.1 and MaT = 10. In all cases, the threshold of instability for the H-mode decreases
as the imposed shear stress increases, which causes a destabilizing impact if it acts in the coflow
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direction. However, the imposed shear stress shows a stabilizing influence on the H-mode if it is
applied in the counterflow direction. In addition, we can see that the isothermal viscous film flow
with an insoluble surfactant is more stable to infinitesimal disturbances, while the nonisothermal
viscous film flow without an insoluble surfactant is more unstable compared to the other three
film flows. The physical mechanism for the stabilizing impact of the surfactant Marangoni number
and the destabilizing impact of the thermal Marangoni number can be described in the following
way: (1) For the H-mode (surface mode), we must have η0 	= 0, and the perturbation surfactant
concentration and the fluid surface deformation are in the same phase. As a result, the surfactant
concentration is low at the trough but high at the crest of the deformed film surface. This fact
generates a local flow from the crest-to-trough direction by the surfactant Marangoni traction and
yields a stabilizing impact on the H-mode [34,35,37,44]. (2) In contrast, due to the difference in
height of the deformed film surface from the wall, the temperature of the viscous film is maximum
at the trough and minimum at the crest. Consequently, surface tension is minimum at the trough and
maximum at the crest, which causes a local flow from the trough-to-crest direction on the deformed
film surface by the thermal Marangoni traction and causes a destabilizing impact on the H-mode.
In simple words, the stabilizing influence of surface tension on the H-mode weakens because the
surface tension of the viscous film decreases as the thermal Marangoni number MaT increases and
exhibits a destabilizing impact on the H-mode compared to the isothermal viscous film flow. The
above physical mechanism is further shown schematically in Fig. 2(b). Since the effects of the
surfactant Marangoni number and the thermal Marangoni number on the H-mode are opposite,
these effects can be nullified if the first and third terms of the expression (73) are equal,

15

8
MaS = 15

8

Bi MaT

(1 + Bi)2(2 + τ )
, (74)

which implies

MaS

MaT
= Bi

(1 + Bi)2(2 + τ )
⇒ E�a

β(TW − Ta)
= Bi

(1 + Bi)2(2 + τ )
. (75)

In this situation, the critical Reynolds number for the onset of H-mode instability for the nonisother-
mal viscous film flow becomes

Recs = 5

2(2 + τ )
cot θ, (76)

which coincides with the critical Reynolds number for the shear-imposed isothermal viscous film
flow [50,51]. That is, for the change in surface tension due to a change in surfactant concentration,
we can create a change in surface tension by a change in temperature, for which the critical Reynolds
number for the onset of H-mode instability will be independent of the thermal and surfactant effects.
This result is demonstrated in Fig. 2(c) for various values of the imposed shear stress τ . If τ = 0,
the dashed line in Fig. 2(c) provides the critical Reynolds number of an isothermal viscous film flow
down an inclined plane [10]. If τ = 0.5 > 0, the solid line in Fig. 2(c) supplies the critical Reynolds
number of an isothermal viscous film flow down an inclined plane when the imposed shear stress
acts in the coflow direction [52]. If τ = −0.5 < 0, the dotted line in Fig. 2(c) supplies the critical
Reynolds number of an isothermal viscous film flow down an inclined plane when the imposed
shear stress acts in the counterflow direction [52]. Next, if θ = π/2, the critical Reynolds number
for the H-mode instability vanishes. Hence, in this situation, that is, when the thermal and surfactant
effects are nullified, the base flow becomes linearly unstable to any infinitesimal disturbance because
Recs = 0 at θ = π/2. However, if the thermal and surfactant effects are not canceled, that is, when
the first and third terms in the expression (73) are not balancing each other, we have a nonzero
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expression of the critical Reynolds number for the surface mode at θ = π/2, given by

Recs =

⎡
⎢⎢⎢⎣ 15

8
MaS︸ ︷︷ ︸

Surfactant effect

− 15

8

Bi MaT

(1 + Bi)2(2 + τ )︸ ︷︷ ︸
Thermal effect

⎤
⎥⎥⎥⎦. (77)

Therefore, if MaS
MaT

> Bi
(1+Bi)2(2+τ ) , there exists a range of the Reynolds number where the infinitesimal

disturbance is linearly stable. Otherwise, it will be unstable.
Now, for the surfactant mode, we must have η0 = 0, but �0 	= 0. With the help of the expression

c0m, one can determine c1m and η1 in the following forms:

c1m = i

[
1

2
MaS τ − 1

PeS

]
, (78)

η1 = i

2
MaS �0. (79)

Therefore, for an unstable surfactant mode, c1m > 0, which implies

PeS >
2

τ

1

MaS
= Pecm, (80)

where Pecm represents the critical value of the surfactant Péclet number for the onset of surfactant
mode instability. Obviously, the expression of Pecm captures the results of Wei [35] and Bhat and
Samanta [36]. It should be noted that the expression (80) is independent of the Reynolds number
Re, the thermal Marangoni number MaT, and the Biot number Bi. Hence, the critical value of the
surfactant Péclet number will not be affected by Re, MaT, and Bi. Furthermore, Eq. (78) indicates
that the constant shear stress τ must be positive, or equivalently, it should be applied in the coflow
direction for the positive growth rate of the surfactant mode. If the above criterion is fulfilled, the
surfactant mode will be linearly unstable to infinitesimal surfactant perturbation once PeS > Pecm.

D. Second-order approximation

Next, we collect the second-order [O(k2)] equations and solve those equations separately in
a similar way as discussed above for the H-mode (surface mode) and surfactant mode. The
expressions of c2s for the H-mode and c2m for the surfactant mode can be read as

c2s = 1

5040

[
f0 − f1 MaS + f2 MaS

2 + f3 Re − f4 Re2 + f5 cot θ − f6
Bi MaT

(1 + Bi)3

]
, (81)

c2m = MaS

12

{
6(2 + τ )

PeS
− 2(1 + 2τ ) cot θ + τ

[
3Bi MaT

(1 + Bi)2
− 3(2 + τ )MaS

]}
, (82)

where

f0 = −3360(3 + τ ),

f1 = 2520(2 + τ )/PeS,

f2 = 1260τ (2 + τ ),

f3 = 2100MaS(2 + τ ),

f4 = 5(2 + τ )(256 + 77τ ),

f5 = 20[(160 + 49τ )Re + 426MaS(1 + 2τ )],

f6 = 42[(1 + Bi)(57 + 60τ )Re + (15 − 7Bi − 5Bi τ )PeT + 1260MaS τ (1 + Bi)].
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E. Third-order approximation

Next, we solve the third-order [O(k3)] equations for the H-mode (surface mode) and the surfac-
tant mode, respectively. In this case, the expressions of c3s and c3m can be read as

c3s = − i

129 729 600

{
1287

[
1680g0

PeS
2 + MaTg1

(1 + Bi)4
+ 2100Bi2MaT

2g2

(1 + Bi)5

]

+ 2574

[
20g3 + MaTg4

(1 + Bi)3
+ 5250Bi2MaT

2

(1 + Bi)4

]
Re + 13

[
g5 + MaTg6

(1 + Bi)2
Re2 + g7Re3

]}
,

(83)

c3m = − iMaS

5040(1 + Bi)4PeS
2

{
7
[
20(1 + Bi)4(h0 + h1PeS

2) + h2MaT + 90Bi2Pe2
SMaT

2τ
]+ h3Re

}
,

(84)

where

g0 = [4(5Ca−1 − 18 cot θ )PeS
2 + 15MaS

3PeS
2τ (2 + τ ) + 5MaS

2PeS[cot θPeS(8 + 7τ )

+ 3(2 + τ )((1 − ic1sPeS)τ − 2)] + 10MaS(−3(2 + τ ) + PeS{6ic1s + cot θ + (3ic1s + 2 cot θ )τ

− PeS[24 + 6c2s + 4ic1s cot θ − 2 csc2 θ + (9 + 3c2s + 2ic1s cot θ )τ ]})
]
,

g1 = 16 800{(Bi2(5 + 3Bi) − 2} + Bi
[− 50 400MaS

2(1 + Bi)2(1 + τ )

+ PeT(280(1 + Bi)(7Bi − 33) cot θ + PeT}5435 − Bi(2090 + 749Bi) − 10τ [254Bi − 130

+ 76Bi2 + Bi(52 + 17Bi)τ ]}) + {420(1 + Bi)MaS[60(1 + Bi)τ + PeS(3PeT[8Bi − 20

+ 5(Bi − 1)τ ] + 20i{1 + Bi[7i cot θ + 3c1s(2 + τ )]})]}/PeS
]
,

g2 = 12(1 + Bi)MaS − (Bi − 3)PeT,

g3 = 6617 + 448 csc2 θ + 1470MaS
2(2 + τ )10τ (422 + 49τ )

+ {7MaS[150(2 + τ ) + cot θPeS(249 + 52τ )]}/PeS,

g4 = −Bi[13 720(1 + Bi) cot θ + 1050(1 + Bi)MaS(28 + 5τ )

+ PeT{3653Bi − 9605 + (3209Bi − 3490 + 560Biτ )τ }],
g5 = −990MaS(2 + τ )[8522 + τ (3786 + 385τ )] − 2 cot θ [4 444 928 + 11τ (231 519 + 25 400τ )],

g6 = 2475Bi[2707 + 2τ (750 + 77)],

g7 = 4(2 + τ )[9 711 616 + 13τ (434 841 + 54 800τ )],

h0 = 18(2 + τ ) − 3PeS[3MaS(2 + τ )(2 + 3τ ) + 2 cot θ (5 + 4τ )],

h1 = 9MaS
2τ (1 + τ )(2 + τ ) + 2(2 cot θ − 3τ )(1 + 2τ ) + 6 cot θMaS(1 + τ (5 + 3τ )),

h2 = 3Bi(1 + Bi)PeS(120(1 + Bi)(1 + τ ) + PeS{−20(1 + Bi) cot θ + τ [−80(1 + Bi) cot θ

− 30(1 + Bi)MaS(4 + 3τ ) + Bi PeT(2 + 5τ )]}),

h3 = 2(1 + Bi)4PeS{cot θPeS[11 + 3τ (10 + 7τ )] − 21(MaSPeSτ − 2)(2 + (8τ + 7)τ )}.
Finally, we combine the expressions of c0s, c1s, c2s, and c3s to determine the complex wave speed cs

for the H-mode [53]

cs = c0s + kc1s + k2c2s + k3c3s + O(k4) = crs + icis. (85)

Hence, the H-mode will be linearly unstable, and the associated infinitesimal perturbation will grow
exponentially with time if cis > 0. Next, we combine the expressions of c0m, c1m, c2m, & c3m to
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determine the complex wave speed cm for the surfactant mode [53]

cm = c0m + kc1m + k2c2m + k3c3m + O(k4) = crm + icim. (86)

In this case, the surfactant mode will be linearly unstable if cim > 0.

F. Padé approximation of the long-wave solutions

In an analogous fashion with the works of Lange et al. [54] and Pal and Samanta [55], we
implement the Padé approximation to improve the accuracy of the long-wave result. Consequently,
we express the complex wave speed cs of the H-mode (surface mode) as a ratio of two polynomials
in terms of wave number k (k → 0),

cs = p0 + p1k + p2k2 + · · · + piki

1 + q1k + q2k2 + · · · + q jk j
, (87)

where the unknown coefficients p0, p1, . . . , pi, and q1, . . . , q j are computed analytically with
the aid of the different order long-wave solutions. First, we have demonstrated the results of the
H-mode. In particular, we have plotted the neutral stability curve and the temporal growth rate
for the H-mode in Figs. 3(a) and 3(b), respectively. The results are computed from the various
order long-wave analytical solutions, the Padé approximation, and the numerical simulation. The
numerical scheme used for solving the boundary value problem (40)–(47) is discussed in Sec. IV.
Clearly, the result determined from the Padé approximation is more accurate compared to the third-
order and fifth-order long-wave analytical solutions when the validation is done with the numerical
result. In fact, the Padé approximation result arrests the numerical result in a larger range of wave
number than those of the third-order and fifth-order long-wave analytical solutions. The reason can
be attributed to the nonconverging long-wave result as the wave number increases. On the other
hand, Figs. 3(c) and 3(d) demonstrate the comparison of the neutral curve and temporal growth
rate for the surfactant mode, where the results are computed from the third-order and fifth-order
long-wave analytical solutions, the Padé approximation, and the numerical simulation, respectively.
Again, we can see a similar scenario, i.e., the results obtained from the Padé approximation are
more accurate than the third-order and fifth-order long-wave solutions, respectively. Figures 4(a)
and 4(b) display the neutral stability curve and temporal growth rate for the surfactant mode when
MaT varies. These results are produced from the third-order long-wave solution. It is observed
that the unstable region bounded by the neutral stability curve magnifies as the thermal Marangoni
number increases. However, the critical surfactant Péclet number for the onset of the surfactant
mode instability remains the same because it does not depend on the thermal Marangoni number
[see also Eq. (80)]. To confirm the above result, we further compute the temporal growth rate for the
surfactant mode by choosing a fixed value of the surfactant Péclet number from the unstable zone
and illustrate it in Fig. 4(b). It should be noted that the temporal growth rate intensifies with the
increase in the value of the thermal Marangoni number. Hence, one can conclude that the thermal
Marangoni number MaT has a destabilizing effect on the surfactant mode. Physically, at higher
values of the thermal Marangoni number, surface tension reduces, which in turn destabilizes the
surfactant mode. In addition, the current analytical result recovers the result of Bhat and Samanta
[49] very well as soon as the thermal Marangoni number MaT is set to zero.

IV. NUMERICAL SOLUTION OF THE ORR-SOMMERFELD-TYPE EQUATION

Now we will solve the Orr-Sommerfeld-type equation numerically for disturbances of arbitrary
wave numbers. To this end, we employ the Chebyshev spectral collocation method [56]. First, the
boundary value problem (40)–(47) is recast into a generalized matrix eigenvalue problem given by

Aξ̂ = ωBξ̂ , (88)
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FIG. 3. (a) Comparison of the neutral stability curves in (Re, k) plane for the H-mode (surface mode).
(b) Comparison of the associated temporal growth rates in (k, ωi) plane when Re = 2. The other parameter
values are Ca = 0.016, Pr = 7, Bi = 1, MaT = 25, θ = 15◦, τ = 0.5, MaS = 1.25, and PeS = 1000. (c) Com-
parison of the neutral stability curves in (Pes, k) plane for the surfactant mode. (d) Comparison of the associated
temporal growth rates in (k, ωi) plane when PeS = 90. The other parameter values are Re = 20, Ca = 2,
Pr = 7, Bi = 1, MaT = 10, θ = 3◦, τ = 0.5, and MaS = 2.5. Solid, dashed, dotted, and dash-dotted lines
stand for the results of the numerical simulation, third-order [O(k3)] long-wave analytical solution, fifth-order
long-wave analytical solution, and the Padé approximation, respectively.

where ω = kc is the eigenvalue and ξ̂ = [φ̂, T̂ , η̂, �̂]T is the associated eigenvector. The matrices
A and B can be expressed as follows [51]:

A =

⎛
⎜⎜⎝
A11 0 0 0
A21 A22 0 0

k 0 k(1 + τ ) 0
A41 0 kτ A44

⎞
⎟⎟⎠ and B =

⎛
⎜⎜⎝
B11 0 0 0
0 B22 0 0
0 0 1 0
0 0 0 1

⎞
⎟⎟⎠, (89)

where

A11 = kŪ (D2 − k2) − kD2Ū − (D2 − k2)2/(iRe),

A21 = −kDT̄ , A22 = kŪ − (D2 − k2)/(iPeT),
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FIG. 4. (a) Variation of the neutral stability curve corresponding to the surfactant mode in (PeS, k) plane
for different values of the thermal Marangoni number MaT when Re = 4, θ = 4◦, Ca = 2, Pr = 7, Bi = 1,
MaS = 0.5, and τ = 0.1. (b) Associated temporal growth rate in (k, ωi) plane for different values of MaT when
PeS = 140. Solid points are the results of Bhat and Samanta [36].

B11 = (D2 − k2), B22 = 1, D = d

dy
,

A41 = kD, A44 = k(1 + τ ) − ik2/PeS.

The last two rows in the matrix eigenvalue problem (88), respectively, represent the evolution of
the perturbation film surface deformation and perturbation surfactant transport equations at y = 1.
The eigenvalue problem is further closed by the remaining boundary conditions (42)–(45). In the
Chebyshev spectral collocation method, we expand the amplitude function ξ (y) in a truncated series
of the Chebyshev polynomials [47]

ξ (y) =
N∑

m=0

ξmTm(y), (90)

where N is the number of the Chebyshev polynomials. Here ξm, (m = 0, 1, . . . , N ) are unknown
Chebyshev coefficients to be determined numerically. Since the Chebyshev polynomials Tm(y) are
defined in the interval [−1, 1], the viscous liquid film layer domain [0, 1] is converted to the
interval [−1, 1] by using the transformation y = (x + 1)/2. Thereby, the derivatives of the flow
variables are also converted by the relations D → 2D, D2 → 4D2, and so on. After substitution
of Eq. (90) into the matrix eigenvalue problem (88), the Chebyshev functions Tm(y) are computed
at the Gauss-Lobatto collocation points xl = cos(π l/N ), (l = 0, 1, . . . , N ), which are extrema of
the Chebyshev polynomials. Before producing the numerical results, we shall justify our numerical
code by comparing its results with the analytical results acquired from the long-wave analysis.
Thereby, we compute the critical Reynolds number Recs for the H-mode (surface mode) as well as
the critical surfactant Péclet number Pecm for the surfactant mode numerically and analytically. Both
results are presented in Tables I and II, respectively. We can see that there is an excellent match
between the analytical and numerical results. Moreover, the critical Reynolds number for the onset
of H-mode instability increases with increasing MaS but the critical surfactant Péclet number for the
onset of surfactant mode instability decreases with increasing MaS. Hence, the surfactant Marangoni
number has a stabilizing influence on the H-mode instability but has a destabilizing influence on
the surfactant mode instability. As there is a large set of dimensionless numbers, it is difficult
to explore their individual effects on the different unstable modes. Moreover, the dimensionless
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TABLE I. Comparison between the analytical and numerical values of the
critical Reynolds number Recs for the H-mode (surface mode) when the surfac-
tant Marangoni number MaS varies. The other parameter values are Ca = 0.016,
θ = 15◦, Pr = 7, Bi = 1, MaT = 25, PeS = 1000, and τ = 0.5.

MaS Analytical value (Recs) Numerical value (Recs)

1.2500 1.3883 1.3826
1.5625 1.9742 1.9791
1.8750 2.5602 2.5648
2.1875 3.1461 3.1454
2.5000 3.7321 3.7356

numbers MaS, MaT, and Bi depend on the physical properties of the nonisothermal surfactant-laden
liquid as well as the thickness of the unperturbed liquid layer. Therefore, our aim is to construct
dimensionless groups that are dependent only on the physical properties of the nonisothermal
surfactant-laden liquid at a given inclination angle θ . Based on the study of Goussis and Kelly [19],
we have the following reduced set of relevant flow parameters: MT = MaT(2Re)2/3 = 2β(Tw−Ta )

ρ[g sin θ ν4]1/3 ,

MS = MaS(2Re)2/3 = 2E �a
ρ(g sin θ ν4 )1/3 , and B = Bi/(2Re)1/3 = λ ν4/3

κ (g sin θ )1/3 , where MT , MS , and B can be
called the modified thermal Marangoni number, the modified surfactant Marangoni number, and
the modified Biot number, respectively. Clearly, the new dimensionless groups MT , MS , and B
are independent of the thickness, d , of the unperturbed liquid layer. First of all, we will search
for different unstable modes that dominate the primary instability in the low to high Reynolds
number regime. Numerically, we have observed the existence of five distinct modes, which are
called the H-mode (surface mode), surfactant mode, S-mode, P-mode, and shear mode. In general,
H-mode, surfactant mode, S-mode, and P-mode trigger the primary instability in the low to moderate
Reynolds number regime, while the shear mode triggers the primary instability in the high Reynolds
number regime [12–14,57]. However, the H-mode and the shear mode compete with each other to
control the primary instability in the high Reynolds number regime, depending on the magnitude
of the inclination angle [12,14,49]. We have illustrated these distinct unstable modes in Fig. 5
for various sets of flow parameters. In fact, we have identified these distinct modes by their
phase speeds because the phase speeds of these distinct modes are completely different from each
other. To confirm our argument, we have further produced the numerical results corresponding to
surface and surfactant modes in Figs. 5(e) and 5(f), respectively. We can see that the phase speed
corresponding to the surface mode/H-mode is approximately equal to crs ≈ 2.0094 when k = 0.01
and τ = 0.01, which agrees well with the analytical result crs ≈ c0s + k2c2s = 2.00938 because k
lies in the long-wave region. Similarly, the phase speed corresponding to the surfactant mode is
approximately equal to crm ≈ 1.4999 when k = 0.01 and τ = 0.5, which also agrees well with the
analytical result crm ≈ c0m + k2c2m = 1.49997 because k lies in the long-wave region. Indeed, we

TABLE II. Comparison between the analytical and numerical values of the
critical surfactant Péclet number Pecm for the surfactant mode when the surfactant
Marangoni number MaS varies. The other parameter values are Ca = 2, θ = 15◦,
Pr = 7, Bi = 1, MaT = 25, PeT = 70, Re = 10, and τ = 0.5.

MaS Analytical value (Pecm) Numerical value (Pecm)

1.0 4.0000 4.0025
2.0 2.0000 2.0019
3.0 1.3333 1.3336
4.0 1.0000 1.0008
5.0 0.8000 0.7994
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FIG. 5. Eigenvalues in (cr , ci) plane. (a) Re = 11, θ = 15◦, k = 0.2, MT = 22, Ka = 500, MS = 0.2, PeS =
160, B = 1, and τ = 0.5. (b) Re = 0.22, θ = 15◦, k = 0.05, MT = 25, Ka = 500, MS = 0.001, PeS = 1000,
B = 1, and τ = 0.5. (c) Re = 20, θ = 15◦, k = 3, MT = 55, Ka = 500, MS = 0.02, PeS = 1000, B = 1, and
τ = 0.125. (d) Re = 8000, θ = (1/60)◦, k = 1.8, MT = 15, Ka = 51000, MS = 0.001, PeS = 140, B = 1, and
τ = 0.05. (e) Re = 3, θ = 15◦, k = 0.01, MT = 5.15, Ka = 1.65, MS = 3.3, PeS = 140, B = 0.55, and τ =
0.01. (f) Re = 3, θ = 15◦, k = 0.01, MT = 3.3, Ka = 1.65, MS = 1.65, PeS = 1000, B = 0.55, and τ = 0.5.
The other parameter value is Pr = 7.

have chosen a small value of k in the numerical simulation to compare with the analytical results.
The existence of more than one temporal mode, or equivalently, more than one value of ω, can also
be figured out from the dispersion relation associated with the perturbation equations (28)–(37). In
particular, a perturbation field ψ ′

p(x, t ) in real space is connected to the Fourier variables k and ω in
Fourier space by the following double Fourier integral [58,59]

ψ ′
p(x, t ) = 1

(2π )2

∫
Lω

∫
Fk

ψp(k, ω) exp[i(kx − ωt )] dk dω, (91)

where Lω and Fk are contours in the complex ω and k planes. Using Eq. (91), one can obtain an
implicit dispersion relation involving angular frequency ω and wave number k corresponding to
the perturbation equations (28)–(37). As unsteady terms are present in the perturbation momentum
equations, perturbation energy equation, perturbation surfactant transport equation, and perturbation
kinematic boundary condition, one can expect multiple values of ω from the dispersion relation.

A. Effects of the modified surfactant Marangoni number and the modified thermal Marangoni number
on the H-mode, S-mode, and P-mode in the low to moderate Reynolds number regime

In this subsection we will decipher the effects of the surfactant Marangoni number and the
thermal Marangoni number on the H-mode (surface mode), S-mode, and P-mode. To do that, we
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FIG. 6. (a) Variation of the neutral stability curves for the H-mode (surface mode) and S-mode in (Re, k)
plane for different values of MS when MT = 37 and τ = 0.5. (b) Variation of the neutral stability curves for
the H-mode and S-mode in (Re, k) plane for different values of MT when MS = 1 and τ = 0.1. The other
parameter values are Ka = 500, θ = 15◦, Pr = 7, B = 1, and PeS = 1000.

solve the Orr-Sommerfeld-type boundary value problem (40)–(47) numerically and compute the
neutral stability curves for the H-mode and S-mode, respectively. In the numerical simulation, we
vary the Reynolds number up to a moderate value. The ensuing results are depicted in Figs. 6(a) and
6(b), respectively. In Fig. 6(a) we see that there is only one neutral stability curve that separates
the stable and unstable regions when MS = 1, while the other flow parameters are fixed. This
neutral stability curve is specified by a solid line in (Re, k) plane. However, if the value of MS ,
or equivalently, the surfactant Marangoni number is increased, the neutral stability curve suddenly
gets separated into two neutral stability curves. One curve is associated with the S-mode, while
the other one is associated with the H-mode. In particular, the unstable zone generated by the
S-mode neutral stability curve emerges in the low Reynolds number regime, while the unstable
zone generated by the H-mode neutral stability curve emerges in the moderate Reynolds number
regime. Clearly, if the value of MS is further increased, the unstable zone induced by the S-mode
gradually attenuates and finally disappears from the (Re, k) plane at higher values of MS . Moreover,
we see that the unstable zone induced by the H-mode also reduces as long as the modified surfactant
Marangoni number increases. This fact indicates that the modified surfactant Marangoni number
has a stabilizing effect on the S-mode and H-mode. In Fig. 6(b) we have again displayed the neutral
stability curves for the H-mode and S-mode. However, in this case, the modified thermal Marangoni
number is changed while the other flow parameters are constant. It should be noted that there are two
separate unstable zones when MT = 30. Hence, there are two neutral stability curves; one curve is
pertaining to the S-mode, while the other curve is pertaining to the H-mode. These neutral stability
curves are specified by solid lines. Interestingly, these unstable zones created by the neutral stability
curves magnify as long as the modified thermal Marangoni number increases, and ultimately,
they merge together and form one unstable region. This fact indicates the destabilizing role of
the modified thermal Marangoni number in the S-mode and H-mode, which is in contrast to the
stabilizing role of the modified surfactant Marangoni number in the S-mode and H-mode. Next, we
have computed the neutral stability curve for the thermocapillary P-mode when only the modified
surfactant Marangoni number changes. The associated result is depicted in Fig. 7(a). Obviously, the
neutral stability curve for the P-mode has an island shape. It is interesting to note that the P-mode
unstable zone emerges in the finite wave number zone rather than the long-wave zone. Unlike
the S-mode instability, we observe that the unstable zone created due to the P-mode instability
decreases as long as the modified surfactant Marangoni number increases and ultimately disappears
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FIG. 7. (a) Variation of the neutral stability curve for the P-mode in (Re, k) plane for different values of MS

when MT = 55. (b) Variation of the neutral stability curve for the P-mode in (Re, k) plane for different values
of MT when MS ≈ 2.31. The other parameter values are Ka = 500, θ = 15◦, Pr = 7, B = 1, τ = 0.125, and
PeS = 1000.

from the neutral diagram at higher values of the modified surfactant Marangoni number. Hence,
the modified surfactant Marangoni number also stabilizes the thermocapillary P-mode instability.
On the other hand, if the modified thermal Marangoni number is varied, we observe an opposite
phenomenon, i.e., the unstable zone created by the P-mode instability magnifies as the modified
thermal Marangoni number increases [see Fig. 7(b)]. Therefore, the modified thermal Marangoni
number destabilizes the P-mode instability. Physically, with the increasing value of the modified
surfactant Marangoni number, the surface tension gradient increases, or equivalently, the local flow
induced by the surfactant Marangoni traction from the crest-to-trough direction of the deformed
liquid film surface increases and yields a stabilizing influence. Instead of varying the modified
surfactant Marangoni number, if the modified thermal Marangoni number is increased, the surface
tension of the liquid film decreases, which leads to a destabilizing effect.

B. Effects of the modified thermal Marangoni number, modified surfactant Marangoni number, and
modified Biot number on the surfactant mode

Now we will explore the individual effects of different flow parameters on the surfactant mode.
To do that, the Orr-Sommerfeld-type boundary value problem (40)–(47) is solved numerically,
and the neutral stability curve and temporal growth rate for the surfactant mode are computed.
Figure 8(a) demonstrates the variation of the neutral stability curve for the surfactant mode when
the modified thermal Marangoni number and the modified surfactant Marangoni number are altered
but other flow parameters are kept constant. Initially, we fix the modified surfactant Marangoni
number in the numerical simulation. Clearly, we notice that the unstable zone created by the neutral
stability curve magnifies as the modified thermal Marangoni number increases. However, the onset
of primary instability for the surfactant mode does not vary with the change in the modified thermal
Marangoni number because the critical surfactant Péclet number, above which the surfactant mode
instability emerges, is independent of the thermal Marangoni number MaT [see also Eq. (80)]. This
result indicates the destabilizing impact of the modified thermal Marangoni number on the surfactant
mode. However, if the modified surfactant Marangoni number is varied, the onset of surfactant
mode instability shifts towards the left, i.e., the critical surfactant Péclet number decreases with
increasing MS . Moreover, the unstable zone generated by the neutral stability curve is enhanced
in the presence of the modified surfactant Marangoni number. Hence, unlike the modified thermal
Marangini number, the modified surfactant Marangoni number also destabilizes the surfactant mode
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FIG. 8. (a) Variation of the neutral stability curve for the surfactant mode in (PeS, k) plane for different
values of MT when MS = 2.475 as well as for different values of MS when MT = 80. (b) Variation of the
temporal growth rate ωi for the surfactant mode with streamwise wave number k for different values of MT

when PeS = 140 and MS = 2.475 as well as for different values of MS when PeS = 140 and MT = 80. The
other parameter values are Re = 3, θ = 4◦, Ca = 2, Pr = 7, B = 1, and τ = 0.1. The solid points are the
results of Bhat and Samanta [36].

instability. To strengthen our above findings, we have further demonstrated the numerical result
pertaining to the temporal growth rate of the surfactant mode for a fixed value of the surfactant
Péclet number PeS selected from the unstable zone. Again, one can see that the temporal growth
rate for the surfactant mode intensifies as the modified thermal Marangoni number and the modified
surfactant Marangoni number increase [see Fig. 8(b)]. These results fully support the destabilizing
influences of both the modified thermal Marangoni number and the modified surfactant Marangoni
number on the surfactant mode. Physically, with an increase in the value of the modified thermal
Marangoni number, the surface tension decreases as the temperature of the viscous film rises. This
fact prevents the local flow from occurring in the crest-to-trough direction due to the surfactant
Marangoni traction, which leads to a destabilizing effect on the surfactant mode. Next, we have
shown the individual effect of the modified Biot number on the surfactant mode. Here we perceive
that the modified Biot number exhibits a dual role in the surfactant mode instability. To disclose
these peculiar results, we have first computed the neutral stability curve and temporal growth rate
for the surfactant mode when the modified Biot number changes, but it takes a value smaller
than or equal to 0.5 (B � 0.5) when Re = 3, θ = 4◦, Ca = 2, Pr = 7, MT = 80, MS = 2.475,
and τ = 0.1. Figure 9(a) reveals the variation of the neutral stability curve in (PeS, k) plane. In
this case, the unstable zone bounded by the neutral stability curve enhances as the modified Biot
number increases. This result indicates the destabilizing influence of the modified Biot number on
the surfactant mode. Again, we have observed that the critical surfactant Péclet number for the
onset of primary instability for the surfactant mode remains the same for the various values of the
modified Biot number because it is not a function of the modified Biot number [see also Eq. (80)].
To support the above numerical result, the temporal growth rate is also depicted with an increase
in the value of the modified Biot number, where the temporal growth rate becomes stronger in the
presence of the modified Biot number [see Fig. 9(b)]. This event is consistent with the destabilizing
role of the modified Biot number in the surfactant mode. Second, we have produced the results
when the modified Biot number takes a value greater than or equal to 0.5 (B � 0.5) when Re = 3,
θ = 4◦, Ca = 2, Pr = 7, MT = 80, MS = 2.475, and τ = 0.1. Figure 9(c) displays the variation of
the neutral stability curve with the modified Biot number. Clearly, the unstable zone attenuates as
the modified Biot number increases. To ensure this result, we have also plotted the temporal growth

084002-23



ARNAB CHOUDHURY AND ARGHYA SAMANTA

FIG. 9. (a) Variation of the neutral stability curve for the surfactant mode in (PeS, k) plane for different
values of B (B � 0.5). (b) Variation of the temporal growth rate ωi for the surfactant mode for different values
of B when PeS = 80. (c) Variation of the neutral stability curve for the surfactant mode in (PeS, k) plane for
different values of B (B � 0.5). (d) Variation of the temporal growth rate ωi for the surfactant mode for different
values of B when PeS = 80. The other parameter values are Re = 3, θ = 4◦, Ca = 2, Pr = 7, MT = 80, MS =
2.475, and τ = 0.1.

rate [see Fig. 9(d)]. Here one can see that the temporal growth rate becomes weaker as the modified
Biot number increases, which indicates a stabilizing influence of the modified Biot number on the
surfactant mode.

C. Effects of the surfactant Marangoni number and thermal Marangoni number on the shear mode

In this subsection, we will explore the shear mode, which generally emerges in the high Reynolds
number regime when the inclination angle is very low [11–14,57]. This mode is retrieved by its
phase speed as the shear mode has a smaller phase speed than the surface mode [32] [see also
Fig. 5]. The neutral stability curve for the shear mode is computed numerically and demonstrated in
Fig. 10(a) when the surfactant Marangoni number increases while the other flow parameters are kept
at constant values. We can see that the unstable zone created by the neutral stability curve decreases
gradually as long as the surfactant Marangoni number increases, which is followed by the successive
promotion of the critical Reynolds number for the onset of shear mode instability. This result implies
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FIG. 10. (a) Variation of the neutral stability curve for the shear mode in (Re, k) plane for different values
of the surfactant Marangoni number MaS when MaT = 15. (b) Variation of the neutral stability curve for the
shear mode in (Re, k) plane for different values of the thermal Marangoni number MaT when MaS = 5. The
other parameter values are Bi = 1, Pr = 7, PeS = 1000, θ = (1◦/60), Ca = 2, and τ = 0.1.

that the surfactant Marangoni number has a stabilizing effect on the shear mode, as shown in the
case of the surface mode. As before, however, if the thermal Marangoni number is increased, the
critical Reynolds number for the onset of the shear mode instability is decreased, which is fully
opposite to the role of the surfactant Marangoni number in the shear mode [see Fig. 10(b)]. How the
critical Reynolds number for the shear mode instability alters with the surfactant Marangoni number
and the thermal Marangoni number is shown in Fig. 11(a). The results reveal that the increment of
the threshold of instability for the shear mode with increasing MaS happens at a faster rate than

FIG. 11. (a) Variation of the critical Reynolds number Rec for the shear mode instability when the surfac-
tant Marangoni number MaS and the thermal Marangoni number MaT vary. Solid line stands for the variation
of Rec with MaS when MaT = 15 and dashed line stands for the variation of Rec with MaT when MaS = 2.5.
Star point represents data (MaS = 2.5, MaT = 15). The circular symbols in solid and dashed lines represent the
data MaS = 4.8 and MaT = 125, respectively. (b) Variation of the neutral stability curve for the shear mode in
(Re, k) plane. Solid line represents the result for MaS = 2.5 and MaT = 15. Dashed line represents the result
for MaS = 4.7 and MaT = 125. The other parameter values are Bi = 1, Pr = 7, PeS = 1000, θ = (1◦/60),
Ca = 2, and τ = 0.1.
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its decrement with increasing MaT. However, we can equalize these variations by using a larger
change of MaT and a smaller change of MaS so that the critical Reynolds number for the shear
mode instability will be the same. In other words, we can neutralize the increment of Rec due to
the increase of MaS and the decrement of Rec due to the increase of MaT. To strengthen our claim,
we first choose the crossing point (MaS = 2.5, MaT = 15) and draw the neutral stability curve in
Fig. 11(b). Next, we select the point (MaS = 4.8, MaT = 125) in such a way that the increment
and decrement of Rec are the same. Again, we draw the neutral stability curve in Fig. 11(b) when
MaS = 4.8, MaT = 125. Indeed, the critical Reynolds number, or equivalently, the threshold of
instability for the shear mode, is the same in both cases.

V. INERTIALESS STABILITY ANALYSIS

This section concerns the linear stability of surfactant-laden nonisothermal film flow in the
inertialess limit, i.e., when Re → 0. As a consequence, the Orr-Sommerfeld-type boundary value
problem (40)–(47) simplifies into the following forms:

(D2 − k2)2φ̂ = 0, 0 � y � 1, (92)

(D2 − k2)T̂ = 0, 0 � y � 1, (93)

φ̂ = 0, T̂ = 0, Dφ̂ = 0, at y = 0, (94)

(D2 + k2)φ̂ + ikMaT(T̂ + DT̄ η̂) + ikMaS�̂ + D2Ū η̂ = 0, at y = 1, (95)

D3φ̂ − 3k2Dφ̂ = ikη̂[k2(Ca−1 − MaTT̄ ) − DP̄ − 2ikDŪ ], at y = 1, (96)

DT̂ + Bi[T̂ + DT̄ η̂] = 0, at y = 1, (97)

Dφ̂ +
[

(Ū − c) − ik

Pes

]
�̂ + DŪ η̂ = 0, at y = 1, (98)

φ̂ + (Ū − c)η̂ = 0, at y = 1. (99)

We solve the above boundary value problems (92)–(99) analytically and express the general solution
in the following form:

φ̂(y) = p1eky + p2e−ky + p3yeky + p4ye−ky, (100)

T̂ (y) = p5eky + p6e−ky. (101)

Here p1, p2, p3, p4, p5, and p6 denote the integration constants. Using the boundary conditions
(94)–(99), we can obtain a set of algebraic equations in terms of the unknown variables p1, p2, p3,
p4, p5, p6, �̂, and η̂. This set of equations is further cast into a homogeneous matrix equation form
as follows:

NX = 0, (102)
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where

N =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 1 0 0 0 0 0 0

k −k 1 1 0 0 0 0

0 0 0 0 1 1 0 0

2k2ek 2k2e−k 2k(k + 1)ek 2k(k − 1)e−k k2MaTek k2MaTe−k ik MaS −(2 + ik MaT Bi
1+Bi )

−2k3ek 2k3e−k −2k3ek 2k3e−k 0 0 0 −ik[k2(Ca−1 − MaT
1+Bi ) − DP̄ − 2ikτ ]

0 0 0 0 (Bi + k)ek (Bi − k)e−k 0 − Bi2

1+Bi

kek −ke−k (1 + k)ek (1 − k)e−k 0 0 Ū − c − ik
PeS

−2

ek e−k ek e−k 0 0 0 (1 + τ ) − c

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

and

X =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

p1

p2

p3

p4

p5

p6

�̂

η̂

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

Hence, for a nontrivial solution of the homogeneous system (102), the determinant of the matrix N
has to be zero. Therefore, one can have

det(N ) = 0, (103)

which finally provides the following dispersion relation for the nonisothermal surfactant-laden
inertialess film flow

F (c, k, MaT, MaS, PeS, Ca, Bi, τ, θ ) = 0. (104)

Note that the dispersion relation (104) is a quadratic function of c, and therefore, it will supply
two distinct roots of c: one root corresponds to the H-mode (surface mode), and the other root
corresponds to the surfactant mode. Now we use the long-wave analysis (k → 0) to determine
the complex wave speeds for the H-mode and the surfactant mode, respectively. The analytical
expressions are the following:

cs = (2 + τ ) − i

6

[
4 cot θ − 3MaT Bi

(1 + Bi)2
+ 3MaS(2 + τ )

]
k

− 1

12

{
MaS

[
2 cot θ − 6(2 + τ )

PeS
+ τ

(
4 cot θ − 3Bi MaT

(1 + Bi)2
3MaS(2 + τ )

)]
− 8(3 + τ )

}
k2

+ i

360(1 + Bi)4PeS
2

(
m0 + m1PeS + m2PeS

2 + m3MaT + m4MaT
2
)
k3 + O(k4), (105)

cm = (1 + τ ) + i

2

(
MaS τ − 2

PeS

)
k

− MaS

12

{
−2 cot θ + 6(2 + τ )

PeS
+ τ

[
3Bi MaT

(1 + Bi)2
− 4 cot θ − 3MaS(2 + τ )

]}
k2

+ i MaS

72(1 + Bi)4PeS
2

(
n0 + n1PeS + n2PeS

2 + n3MaT + n4MaT
2
)
k3 + O(k4), (106)
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where

m0 = 180(1 + Bi)4MaS(2 + τ ),

m1 = −30(1 + Bi)4MaS[−3MaS(2 + τ )(2 + 3τ ) + 2 cot θ (5 + 4τ )],

m2 = 2(1 + Bi)4(216 cot θ − 60Ca−1 + 5MaS{4(14 + csc2 θ ) + 2(4 csc2 θ − 6τ − 7)τ

+ 9MaS
2τ (1 + τ )(2 + τ ) + 6 cot θ MaS[1 + τ (5 + 3τ )]}),

m3 = −15(1 + Bi)PeS{4[Bi(2 + 3Bi) − 2]PeS + 3Bi(1 + Bi)MaS
2 PeS τ (4 + 3τ )

+ 2Bi(1 + Bi)MaS[PeS(1 + 4τ ) cot θ − 6(1 + τ )]},
m4 = 45Bi2 MaS PeS

2 τ,

n0 = 36(1 + Bi)4(2 + τ ),

n1 = −6(1 + Bi)4[3MaS(2 + τ )(2 + 3τ ) + 2 cot θ (5 + 4τ )],

n2 = 2(1 + Bi)4{9MaS
2 τ (1 + τ )(2 + τ ) + 2(2 cot2 θ − 3τ )(1 + 2τ )

+ 6 cot θ MaS[1 + τ (5 + 3τ )]},
n3 = 3Bi PeS(1 + Bi)2(12(1 + τ ) − PeS{2 cot θ + τ [8 cot θ + 3MaS(4 + 3τ )]}),

n4 = 9Bi2 PeS
2 τ.

The next step is to use the neutral stability condition, ci ≈ |kc1s| = 0, in the limit k → 0, which
leads to the analytical expression of the onset of H-mode instability in the inertialess approximation

MaS

MaT
= Bi

(1 + Bi)2(2 + τ )
− 4

3

cot θ

(2 + τ )MaT
. (107)

Equation (107) coincides with the expression (73) when the Reynolds number is set to zero.
Furthermore, if θ = π/2, and MaS

MaT
> Bi

(1+Bi)2(2+τ ) , the infinitesimal disturbance will be completely
stable. In other words, if the stabilizing surfactant effect dominates the destabilizing thermal effect,
the infinitesimal disturbance will be damped in the inertialess approximation. However, one can
make this stable disturbance unstable by including inertia terms in the momentum equations [see
also Eq. (75)]. In a similar fashion, we determine the onset of instability for the surfactant mode,

PeSc = 2

τ MaS
, (108)

which is exactly the same as determined for the flow configuration when inertia is present. This
result shows that the Reynolds number, or equivalently, inertia has no impact on the onset of
surfactant mode instability. Figure 12(a) reveals the comparison between the results obtained nu-
merically from the inertialess approximation (solid line), the long-wave third-order approximation
(dashed line), the long-wave fifth-order approximation (dotted line), and the Padé approximation
(dash-dotted line). Clearly, we can see that the Padé approximation result almost accurately captures
the numerical result. However, the long-wave third-order result has a much larger deviation from
the numerical result in comparison with the long-wave fifth-order result. Figures 12(b) and 12(c),
respectively, display the neutral stability curve and temporal growth rate for the surfactant mode.
More specifically, we have compared the results with inertia and without inertia when the thermal
Marangoni number varies. Obviously, the Reynolds number has no influence on the threshold of
instability for the surfactant mode. However, the unstable zone induced by the surfactant mode’s
neutral stability curve diminishes in the presence of inertia. This fact implies that inertia has a
stabilizing effect on the surfactant mode. On the other hand, the surfactant mode instability becomes
stronger as the thermal Marangoni number increases because the unstable zone magnifies with MaT.
These results are further confirmed by the plot of the temporal growth rate [see Fig. 12(c)].
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FIG. 12. (a) Variation of the neutral stability curve for the surfactant mode in (PeS, k) plane when Re = 0,
Ca = 2, MaS = 0.5, Bi = 1, MaT = 10, θ = 15◦, and τ = 0.1. Solid, dashed, dotted, and dash-dotted lines
stand for the numerical result, the long-wave third-order result, the long-wave fifth-order result, and the Padé
approximation, respectively. (b) Variation of the neutral stability curve for the surfactant mode in (PeS, k)
plane for different values of MaT. (c) Variation of the temporal growth rate ωi with wave number k when
MaT changes and PeS = 150. Thick lines represent the results with inertia (Re = 80) and thin lines represent
the results without inertia (Re = 0). The other parameter values are Ca = 2, MaS = 0.75, Bi = 1, PeT = 560,
θ = 4◦, and τ = 0.1.

VI. SUMMARY AND CONCLUSIONS

The linear thermocapillary instability is investigated for a two-dimensional gravity-driven shear-
imposed incompressible viscous film flowing over a uniformly heated inclined wall. It is assumed
that the film surface is contaminated by an insoluble surfactant. As the film flow is nonisothermal,
we have also included the energy equation in the set of governing equations. To explore the different
unstable modes, we have formulated the Orr-Sommerfeld-type equation. In particular, two different
approaches are followed to solve the boundary value problem. The analytical approach is nothing
but long-wave analysis, which shows the existence of H-mode (surface mode) and surfactant mode.
The results reveal that the H-mode is stabilized by the surfactant Marangoni number but destabilized
by the thermal Marangoni number. Therefore, one can retrieve an analytical relationship between the
surfactant and thermal Marangoni numbers for which the critical Reynolds number for the H-mode
instability will be completely independent of the nonisothermal effects.

Because of the convergence issue of the long-wave analysis, we have also computed the analyt-
ical result based on the Padé approximation. Clearly, the results acquired from the third-order and
fifth-order long-wave analyses are less accurate than those obtained from the Padé approximation
when the comparison is performed with the numerical results. On the other hand, the numerical
results reveal the existence of five unstable modes, which can trigger the primary instability in
the low to high Reynolds number regime. In particular, the H-mode (surface mode) emerges
due to the streamwise component of gravitational force, the surfactant mode emerges due to the
transport of insoluble surfactant at the liquid film surface, the S-mode and P-mode appear due to the
thermocapillary effect, and the shear mode appears due to the viscous effect. These distinct unstable
modes are recognized by their phase speeds, as they are different from each other.

Moreover, it is observed that the thermocapillary S-mode and P-mode instabilities are weakened
in the presence of the insoluble surfactant at the liquid film surface. In fact, these thermocapillary
primary instabilities can be completely suppressed by increasing the magnitude of the modified
surfactant Marangoni number. However, if the modified thermal Marangoni number is increased in
the numerical simulation, the S-mode and P-mode instabilities are intensified. More specifically, the
impact of the modified thermal Marangoni number opposes the impact of the modified surfactant
Marangoni number on the S-mode and P-mode instabilities.
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TABLE III. Brief description of the physical effects of various dimensionless
numbers on the different unstable modes.

Unstable modes Dimensionless numbers Physical effect

H-mode MS Stabilizing

MT Destabilizing

S-mode MS Stabilizing

MT Destabilizing

P-mode MS Stabilizing

MT Destabilizing

Surfactant mode MS Destabilizing

MT Destabilizing

B(< 0.5) Destabilizing

B(� 0.5) Stabilizing

Shear mode MaS Stabilizing

MaT Destabilizing

In the case of the surfactant mode, we notice that the unstable region induced by the neutral
stability curve magnifies, and the associated temporal growth rate amplifies with the increase in
the value of the modified thermal Marangoni number. Therefore, the surfactant mode instability
is destabilized by the modified thermal Marangoni number. However, the critical surfactant Péclet
number, above which the surfactant mode instability occurs, remains the same as it is independent
of the modified thermal Marangoni number. In contrast, the critical surfactant Péclet number for
the onset of the surfactant mode instability decreases as the modified surfactant Marangoni number
increases because it is explicitly dependent on the surfactant Marangoni number. When we analyze
the effect of the modified Biot number on the surfactant mode, it exhibits a peculiar behavior. We
perceive that an increase in the modified Biot number enhances the surfactant mode instability when
it keeps a value lower than or equal to 0.5 (B � 0.5). As soon as it keeps a value higher than or equal
to 0.5 (B � 0.5), the result becomes fully opposite. That is, for values of B higher than or equal to
0.5, increasing the modified Biot number instead stabilizes the surfactant mode instability.

If the Reynolds number is kept at a high value but the inclination angle is kept at a low value,
another mode arises, which is called the shear mode. The numerical results show that the instability
induced by the shear mode attenuates with increasing values of the surfactant Marangoni number.
Furthermore, the critical Reynolds number for the onset of the shear mode instability increases as
the surfactant Marangoni number increases. However, the increment of the critical Reynolds number
for the shear mode can be reduced by increasing the value of the thermal Marangoni number because
the onset of the shear mode instability decreases in the presence of the thermal Marangoni number.
In fact, for a given value of the surfactant Marangoni number, we can find a value of the thermal
Marangoni number for which the threshold of instability for the shear mode will remain the same.
The key results of the current study are further briefly presented in Table III.

Finally, the instability analysis is carried out in the inertialess approximation. In this case,
we have found the H-mode and the surfactant mode. The long-wave analysis reveals that the
infinitesimal disturbance becomes stable when the stabilizing surfactant effect dominates the desta-
bilizing thermal effect ( MaS

MaT
> Bi

(1+Bi)2(2+τ ) ). However, this stable disturbance can be made unstable
by adding inertia to the momentum equations. Moreover, we see that the Reynolds number, or
equivalently, inertia has no role in the onset of the surfactant mode instability. But the unstable zone
for the surfactant mode in the finite wave number regime is suppressed in the presence of inertia,
which yields a stabilizing impact on the surfactant mode.
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FIG. 13. Schematic diagram of a thin viscous liquid film with a soluble surfactant flowing down a
uniformly heated inclined plane in the presence of a constant shear stress τs acting in the coflow direction.
Here d is the height of the unperturbed film flow, and h(x, t ) is the height of the perturbed film flow.
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APPENDIX: THERMOCAPILLARY INSTABILITY OF A SHEAR-IMPOSED FILM FLOW WITH
SOLUBLE SURFACTANT

In this Appendix we discuss the thermocapillary instability of a gravity-driven film flow con-
taminated by a soluble surfactant. In particular, the liquid flows down a uniformly heated inclined
plane, where the temperature at the plane, T = Tw, is greater than the constant ambient temperature
of T = Ta. The flow configuration is exactly similar to that of D’Alessio et al. [27]. However,
a constant shear stress τs(> 0) is imposed at the liquid film surface in the coflow direction. In
Fig. 13 we have illustrated the schematic of the flow problem under consideration. To describe the
nonisothermal liquid film flow, we have employed the following mass conservation, momentum,
and energy equations:

∂xu + ∂yv = 0, (A1)

ρ(∂t u + u∂xu + v∂yu) = −∂x p + μ(∂xxu + ∂yyu) + ρg sin θ, (A2)

ρ(∂tv + u∂xv + v∂yv) = −∂y p + μ(∂xxv + ∂yyv) − ρgcos θ, (A3)

ρcp(∂t T + u∂xT + v∂yT ) = κ (∂xxT + ∂yyT ). (A4)

As we are interested in examining the effect of soluble surfactant on the thermocapillary instability,
we will take two different concentrations: one pertains to the surfactant absorbed at the liquid film
surface, while other pertains to the surfactant dissolved in the bulk. Moreover, we assume that
the surfactants are existed in the liquid as monomers and they do not form micelles. Hence, the
mass conservation of soluble surfactant in the bulk is governed by the following advection-diffusion
equation [27,60,61]:

(∂t cb + u∂xcb + v∂ycb) = Db(∂xxcb + ∂yycb), (A5)

where cb is the concentration of the soluble surfactant dissolved in the bulk and Db is the surfactant
diffusivity in the bulk. On the other hand, the transport of surfactant absorbed at the liquid film
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surface, y = h(x, t ), is described by the following equation [27,62,63]:

∂t� + u∂x� + �

1 + (∂xh)2
[∂xu + ∂xh∂xv + ∂xh(∂yu + ∂xh∂yv)]

= Ds√
1 + (∂xh)2

∂x[∂x�/
√

1 + (∂xh)2] + Jba, (A6)

where �(x, t ) is the concentration of the surfactant absorbed at the liquid film surface, Ds is the
surface surfactant diffusivity, and Jba represents the net flux of soluble surfactant that characterizes
the mass exchange between the bulk and liquid film surface. Then Jba can be expressed as [63,64]

Jba = ka(1 − �/�∞)cb − kd�, (A7)

where �∞ is the surface surfactant concentration at maximum packing, and ka and kd are the
absorption and desorption rate constants, respectively. At the film surface, y = h(x, t ), the net flux
of soluble surfactant can also be described by the following Fickian diffusion [63]

Jba = Db√
1 + (∂xh)2

(∂xh∂xcb − ∂ycb). (A8)

Finally, no mass flux condition at the inclined impermeable plane, y = 0, requires

∂ycb = 0. (A9)

Since the surface tension σ changes with both the surface surfactant concentration � and temper-
ature T , we will consider its linear variation as given in Eq. (2). The other boundary conditions at
the liquid film surface, y = h(x, t ), are the same as provided in Eqs. (8)–(10), and (12). As our aim
is to reproduce the results of D’Alessio et al. [27] in the limit τs → 0, we have preferred the same
characteristic scales as suggested by them to nondimensionalize the governing equations. Then we
can write

u∗ = du

Q
, v∗ = dv

Q
, p∗ = pd2

ρQ2
, c∗

b = dcb

�∞
,

x∗ = x

d
, y∗ = y

d
, h∗ = h

d
, �∗ = �

�∞
, (A10)

t∗ = tQ

d2
, σ ∗ = σ

σa
, T ∗ = T − Ta

Tw − Ta
, τ = τsd2

μQ
,

where Q = ρg sin θd3

3μ
is the flow rate for the steady unidirectional parallel flow with a constant

film thickness d without imposed shear stress at the film surface. On the basis of the above
characteristic scales, we can write the nondimensional governing equations and the associated
boundary conditions as follows:

∂xu + ∂yv = 0, (A11)

Re(∂t u + u∂xu + v∂yu + ∂x p) = (∂xxu + ∂yyu) + 3, (A12)

Re(∂tv + u∂xv + v∂yv + ∂y p) = (∂xxv + ∂yyv) − 3 cot θ, (A13)

PeT(∂t T + u∂xT + v∂yT ) = (∂xxT + ∂yyT ), (A14)

PeB(∂t cb + u∂xcb + v∂ycb) = (∂xxcb + ∂yycb), (A15)

u = 0, v = 0, T = 1, ∂ycb = 0, at y = 0, (A16)
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[4∂yv∂xh + (∂yu + ∂xv){1 − (∂xh)2}] + [Re M2(∂xT + ∂xh∂yT )

+ Re M1 ∂x� − τ ]
√

1 + (∂xh)2 = 0, at y = h, (A17)

Re(pa − p) + 2

[1 + (∂xh)2]
{∂yv[1 − (∂xh)2] − ∂xh(∂yu + ∂xv)}

= Re[We − M2 T − M1(� − �E )]
∂xxh

[1 + (∂xh)2]3/2
, at y = h, (A18)

(∂xT ∂xh − ∂yT )√
1 + (∂xh)2

= Bi T, at y = h, (A19)

(∂xh∂xcb − ∂ycb)

PeB

√
1 + (∂xh)2

= ks[ξs(1 − �)cb − �], at y = h, (A20)

∂t� + u∂x� + �

1 + (∂xh)2
[∂xu + ∂xh∂xv + ∂xh(∂yu + ∂xh∂yv)]

= 1

PeS

√
1 + (∂xh)2

∂x

[
∂x�√

1 + (∂xh)2

]
+ ks[ξs(1 − �)cb − �], at y = h, (A21)

∂t h + u∂xh = v, at y = h, (A22)

where Re = ρQ
μ

is the Reynolds number, PeT = ρcpQ
κ

is the thermal Péclet number, PeB = Q
Db

is the

solutal Péclet number, PeS = Q
Ds

is the surfactant Péclet number, We = σad
ρQ2 is the Weber number,

Bi = λd
κ

is the Biot number, M1 = E�∞d
ρQ2 is the surfactant Marangoni number, M2 = β(Tw−Ta )d

ρQ2

is the thermal Marangoni number, ks = kd d2

Q , ξs = ka
kd d , and �E = �a

�∞
. For our convenience, we

have dropped the star notation from the nondimensional variables. For the linear stability anal-
ysis of the steady unidirectional parallel flow, we need its solution, which can be expressed as
follows:

Ū (y) = (3 + τ )y − 3

2
y2, V̄ (y) = 0, 0 � y � 1, (A23)

P̄(y) = 3 cot θ

Re
(1 − y) + pa, H̄ = 1, 0 � y � 1, (A24)

T̄ (y) = 1 −
(

Bi

1 + Bi

)
y, �̄ = �E , c̄b = �E

ξs(1 − �E )
= cE , 0 � y � 1, (A25)

where �E and cE are constants. Clearly, the range of �E will be 0 < �E < 1. Moreover, we see that
the surfactant concentration, c̄b, in the bulk vanishes when ξs(1 − �E ) → ∞, which indicates the
limiting situation of film flowing down a heated inclined plane with an insoluble surfactant at the
surface.

1. Linear stability analysis

To study the primary instability of the steady unidirectional parallel flow, we apply an infinitesi-
mal disturbance on the flat film flow of thickness H̄ = 1. Then, mathematically, we can write

u = Ū + u′, v = V̄ + v′, p = P̄ + p′, T = T̄ + T ′, h = H̄ + h′,

� = �̄ + �′, cb = c̄b + c′
b, (A26)

where prime quantities represent the perturbation variables. Next, we follow the same procedure as
described in Sec. III. To develop the Orr-Sommerfeld-type boundary value problem, we assume the
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solution of the linearized perturbation equations in the normal mode form:

ψ ′(x, y, t ) = φ̂(y) exp[ik(x − ct )],

T ′(x, y, t ) = T̂ (y) exp[ik(x − ct )],

c′
b(x, y, t ) = ĉb(y) exp[ik(x − ct )],

�′(x, t ) = �̂ exp[ik(x − ct )],

h′(x, t ) = η̂ exp[ik(x − ct )],

⎫⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎭

(A27)

in which hat quantities specify the amplitudes of the perturbation variables. Inserting Eq. (A27) in
the linearized perturbation equations, and after some mathematical calculations, one can derive the
following form of the Orr-Sommerfeld-type boundary value problem:

(D2 − k2)2φ̂ = ikRe[(Ū − c)(D2 − k2) − D2Ū ]φ̂, 0 � y � 1, (A28)

(D2 − k2)T̂ = ikPeT[(Ū − c)T̂ − DT̄ φ̂], 0 � y � 1, (A29)

(D2 − k2)ĉb = ikPeB(Ū − c)ĉb, 0 � y � 1, (A30)

φ̂ = 0, T̂ = 0, Dφ̂ = 0, Dĉb = 0, at y = 0, (A31)

(D2 + k2)φ̂ + ikReM2(T̂ + DT̄ η̂) + ikReM1 �̂ + D2Ū η̂ = 0, at y = 1, (A32)

(D3 − 3k2D)φ̂ − ikRe[(Ū − c)Dφ̂ − DŪ φ̂]

= ikη̂[k2Re(We − M2 T̄ ) − ReDP̄ − 2ikDŪ ], at y = 1, (A33)

DT̂ + Bi[T̂ + DT̄ η̂] = 0, at y = 1, (A34)

Dĉb + PeBks[ξs(1 − �E )ĉb − (1 + ξsc̄b)�̂] = 0, at y = 1, (A35)

ik(Ū − c)�̂ + ik�E [Dφ̂ + DŪ η̂] = − k2

PeS
�̂ + ks[ξs(1 − �E )ĉb − (1 + ξsc̄b)�̂], at y = 1,

(A36)

φ̂ + (Ū − c)η̂ = 0, at y = 1. (A37)

It should be useful to mention here that the Orr-Sommerfeld-type boundary value problem (A28)–
(A37) coincides with that of D’Alessio et al. [27] in the absence of imposed shear stress if we ignore
their printing mistakes present in Eqs. (3.2) and (3.5).

2. Long-wave analytical solution

To explore the temporal stability analysis, we follow the same technique as described in Sec. III.
As a result, we expand the variables φ̂, T̂ , ĉb, η̂, �̂, and c as the sum of infinite series in the limit
k → 0

φ̂(y) =
∞∑

n=0

φnkn, T̂ (y) =
∞∑

n=0

Tnkn, ĉb =
∞∑

n=0

cbnkn,

η̂ =
∞∑

n=0

ηnkn, �̂ =
∞∑

n=0

�nkn, c =
∞∑

n=0

cnkn.

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

(A38)
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After substituting the long-wave expansion (A38) in the Orr-Sommerfeld-type boundary value
problem (A28)–(A37), we collect the zeroth-order [O(k0)] equations:

D4φ0(y) = 0, D2T0(y) = 0, D2cb0(y) = 0, 0 � y � 1, (A39)

φ0(y) = 0, T0(y) = 0, Dφ0(y) = 0, Dcb0(y) = 0, at y = 0, (A40)

D2φ0(y) + D2Ū (y)η0 = 0, D3φ0(y) = 0, at y = 1, (A41)

DT0(y) + Bi T0(y) + Bi DT̄ (y)η0 = 0, at y = 1, (A42)

Dcb0(y) + PeB ks[ξs(1 − �E )cb0(y) − (1 + ξsc̄b)�0] = 0, at y = 1, (A43)

ks[ξs(1 − �E )cb0(y) − (1 + ξsc̄b)�0] = 0, at y = 1, (A44)

φ0(y) + (Ū (y) − c0)η0 = 0, at y = 1. (A45)

Solving the zeroth-order equations (A39)–(A44), we can write the solution in the following form:

φ0(y) = 3η0 y2

2
, T0(y) = Bi2η0 y

(1 + Bi)2
, and cb0 = (1 + ξscE )�0

ξs(1 − �E )
. (A46)

Finally, plugging the zeroth-order solution into the kinematic boundary condition (A45), one can
get the phase speed of the surface mode

c0 = c0s = (3 + τ ), (A47)

provided η0 	= 0. In the long-wave calculation, we are concerned only with the surface mode. Next,
we collect the first-order [O(k1)] equations, which are given below:

D4φ1(y) + i Re{D2Ū (y)φ0(y) + [c0 − Ū (y)]D2φ0(y)} = 0, 0 � y � 1, (A48)

D2T1(y) + i PeT{DT̄ (y)φ0(y) + [c0 − Ū (y)]T0(y)} = 0, 0 � y � 1, (A49)

D2cb1(y) + i PeB[c0 − Ū (y)] cb0 = 0, 0 � y � 1, (A50)

φ1(y) = 0, T1(y) = 0, Dφ1(y) = 0, Dcb1(y) = 0, at y = 0, (A51)

D2φ1(y) + i Re M2[T0(y) + DT̄ (y)η0] + i Re M1�0 + D2Ū (y)η1 = 0, at y = 1, (A52)

D3φ1(y) + iRe{[c0 − Ū (y)]Dφ0(y) + DŪ (y)φ0(y) + DP̄(y)η0} = 0, at y = 1, (A53)

DT1(y) + Bi[T1(y) + DT̄ (y)η1] = 0, at y = 1, (A54)

Dcb1(y) + PeB ks[ξs(1 − �E )cb1(y) − (1 + ξsc̄b)�1] = 0, at y = 1, (A55)

i[Ū (y) − c0]�0 + i�E [Dφ0(y) + DŪ (y)η0] − ks[ξs(1 − �E )cb1 − (1 + ξsc̄b)�1] = 0, at y = 1,

(A56)

φ1(y) − [c0 − Ū (y)]η1 − c1η0 = 0, at y = 1. (A57)

First, we have solved the convection-diffusion equation (A50) for soluble surfactant in the bulk,
which leads to

�0 = 2(3 + τ )�E ξs(1 − �E )2η0

4 + 3ξs(1 − �E )2 + τ
. (A58)
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Next, solving the equations for stream function and temperature and substituting their solution in
the kinematic boundary condition (A59), we get

c1s = iRe

[
6

5
− cot θ

Re
+ M2Bi

2(1 + Bi)2
− M1(3 + τ )�E ξs(1 − �E )2

4 + 3ξs(1 − �E )2 + τ
+ 2

5
τ

]
. (A59)

Clearly, Eq. (A59) coincides with the expression of D’Alessio et al. [27] if the imposed shear stress
is absent. As discussed by D’Alessio et al. [27], the result of surface mode for the thermocapillary
instability in the presence of insoluble surface surfactant is recovered if ξs(1 − �E ) → ∞ and τ →
0. In this limit, the expression (A59) becomes

c1s = iRe

[
6

5
− cot θ

Re
+ M2Bi

2(1 + Bi)2
− M1�E

]
. (A60)

Equation (A60) reveals that the temporal growth rate, kcis ∝ |c1s| (k → 0), intensifies if the thermal
Marangoni number M2 increases, while the temporal growth rate reduces if the surfactant Marangoni
number M1 increases. Hence, the long-wave analysis predicts similar results for the surface mode,
as observed in the case of the heated film flow with an insoluble surfactant and without shear stress
acting at the film surface.
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