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In the region close to the thermodynamic critical point and in the proximity of the
pseudoboiling (Widom) line, strong property variations substantially alter the growth of
modal instabilities, as revealed in Ren et al. [J. Fluid Mech. 871, 831 (2019)]. Here, we
study nonmodal disturbances in the spatial framework using an eigenvector decomposition
of the linearized Navier-Stokes equations under the assumption of locally parallel flow.
To account for nonideality, a new energy norm is derived. Several heat transfer scenarios
at supercritical pressure are investigated, which are of practical relevance in technical
applications. The boundary layers with the fluid at supercritical pressure are heated or
cooled by prescribing the wall and free-stream temperatures so that the temperature profile
is either entirely subcritical (liquidlike), supercritical (gaslike), or transcritical (across the
Widom line). The free-stream Mach number is set to 10−3. In the nontranscritical regimes,
the resulting streamwise-independent streaks originate from the lift-up effect. Wall cooling
enhances the energy amplification for both subcritical and supercritical regimes. When
the temperature profile is increased beyond the Widom line, a strong suboptimal growth
is observed over very short streamwise distances due to the Orr mechanism. Due to the
additional presence of transcritical Mode II, the optimal energy growth at large distances
is found to arise from an interplay between lift-up and Orr mechanism. As a result, optimal
disturbances are streamwise-modulated streaks with strong thermal components and with
a propagation angle inversely proportional to the local Reynolds number. The nonmodal
growth is put in perspective with modal growth by means of an N-factor comparison. In
the nontranscritical regimes, modal stability dominates regardless of a wall-temperature
variation. In contrast, in the transcritical regime, nonmodal N factors are found to resemble
the imposition of an adverse pressure gradient in the ideal-gas regime. When cooling
beyond the Widom line, optimal growth is greatly enhanced, yet strong inviscid instability
prevails. When heating beyond the Widom line, optimal growth could be sufficiently large
to favor transition, particularly with a high free-stream turbulence level.
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I. INTRODUCTION

Supercritical fluids have recently gained interest in many industrial applications to enhance the
thermodynamic efficiency of energy conversion systems. These applications have been thoroughly
investigated for various heat sources, including nuclear energy, solar energy, fuel cell-power cycles,
and industrial waste heat [1]. At supercritical pressures, close to the thermodynamic critical point,
an ideal-gas law is inadequate to model the thermodynamic state. Therefore, higher-order nonideal
equation of states are necessary. Several studies have been conducted to explore how these nonideal
gas effects impact turbulence [2,3], heat transfer [4,5], and more recently, modal instability mecha-
nisms [6–12]. Amongst these studies, Ren et al. [8] conducted linear stability analyses of adiabatic
flat-plate boundary layers with a highly nonideal fluid, namely carbon dioxide at supercritical
pressure. The flow undergoes stabilization for both the subcritical (liquidlike) and supercritical
(gaslike) temperature regimes, specifically when the flow temperature approaches the Widom or
pseudoboiling line. The latter is defined as max{cp(T )}, representing the maximum specific heat
at constant pressure [13]. Crossing the Widom line from a liquidlike free stream, defined hereafter
as transcritical heating temperature regime, induces sharp gradients in thermophysical properties,
leading to the presence of two modal instabilities. The second unstable mode (Mode II) is inviscid
according to the generalized-inflection-point (GIP) criterion and exhibits growth rates an order of
magnitude larger than the other conventional mode (Mode I), linked to Tollmien-Schlichting waves.
Recently, in Ref. [10], the presence of Mode II was associated with the appearance of a minimum of
the kinematic-viscosity base-flow profile at the Widom line. Since all nonpolar fluids at supercritical
pressure and transcritical temperature exhibit such a minimum, their corresponding boundary layers
are inviscidly unstable with a GIP in the proximity of the Widom line. A physical mechanism of
this instability was proposed by Ref. [11], based on the interaction of shear and baroclinic waves.

In the case of compressible boundary-layer flows under the ideal-gas assumption, it is
well-known that various transition scenarios involve instabilities preceding or bypassing the afore-
mentioned exponential modal growth [14]. Nonmodal growth, also known as transient growth,
has emerged as a potential mechanism for explaining transition scenarios over a wide range of
parameter values, such as in the blunt-body paradox [15,16]. Hanifi et al. [17] conducted the first
transient growth analysis in compressible boundary layers in a temporal formulation. Similar to
incompressible flows [18], initial optimal perturbations took the form of local streamwise vorticity
disks, which evolve into linearly growing streamwise streaks driven by the lift-up effect [19,20].
Simultaneously, for compressible flows, density and temperature fluctuations also increase linearly
with time [21]. Analogous conclusions were drawn for a spatial framework [22]. Optimal output
perturbations, in the form of streamwise velocity streaks, were found in supersonic and hypersonic
flows under the ideal-gas assumption [23,24]. Here, wall cooling below the adiabatic temperature
reduces the level of nonmodal energy amplification. Conversely, at low Mach numbers (e.g.,
M∞ = 0.5) and with highly cooled walls (e.g., Tw/T∞ = 0.3, where Tw is the wall temperature),
no modal instabilities are found, and thus, transition to turbulence is likely to be driven only by
transient growth [23].

Another example, where large thermodynamic and transport property gradients play a major
role in flow instability, is in stratified flows [25]. The impact of viscosity stratification on tran-
sient growth has been studied both for both incompressible and compressible Couette [26,27]
and channel [28–30] flows. In the latter, it was discovered that any viscosity stratification does
not significantly affect transient growth, whereas an increase in Prandtl number can lead to a
total-energy amplification rise by over an order of magnitude. Recently, Jose et al. [31] studied the
role of buoyancy on stratified viscosity profiles in water and air. When the bottom layer is denser
than the top one, transient-growth stabilization occurs, and vice versa. The optimal perturbation
energy is found to be constantly localized in low-viscosity regions, leading to the formation of strong
localized streaks. As the Richardson number is increased, these optimal perturbations are no longer
streamwise independent. A similar behavior was found in stably stratified boundary layers [32]
under the Boussinesq assumption, where the optimal energy growth is a combination of the lift-up
and the Orr mechanism. Furthermore, as buoyancy effects become larger than shear production,
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the optimal energy gain and optimal time decrease, while the optimal streamwise wave number
increases, confirming the existence of oblique optimal perturbations. The first study on nonmodal
growth with supercritical carbon dioxide at p = 80 bar was performed in a Poiseuille flow [7].
Regardless of the temperature flow regime (subcritical, supercritical, or transcritical with respect
to the pseudoboiling temperature), nonideality always promoted transient growth at a constant
Tw/Tcenter, where Tcenter is the centerline temperature. The same behavior was discovered when the
level of viscous heating, controlled by the product of the Prandtl Pr∞ and Eckert Ec∞ number, was
increased in contrast to the ideal-gas assumption. Optimal initial perturbations were found to be
streamwise-independent vortices, while optimal output perturbations were represented by velocity
streaks. In the transcritical temperature case, either when Pr∞Ec∞ is sufficiently large or when the
Widom line is crossed, the most nonmodally unstable condition appear, leading to the additional
formation of large thermal streaks in the dense near-wall region close to the Widom line.

The main focus of this work is to investigate the nonmodal growth of two-dimensional zero-
pressure-gradient (ZPG) flat-plate boundary layers with fluids close to the critical point. Specifically,
we aim to elucidate the role of Mode II in transient growth, as first discussed by Ref. [33]. To include
nonideal gas effects in the nonmodal stability analysis, a new energy norm has been derived, dif-
ferently from Ref. [7]. The transient growth calculations reported in this work are conducted in the
spatial framework, enabling the comparison with the spatial exponential amplification of unstable
modes. The competition between modal and nonmodal growth mechanisms remains a fundamental
research question, independently of the gas behavior. For instance, N-factor correlations provide
valuable insights into the classical eN method for transition prediction (see Refs. [34,35]). Moreover,
understanding the conditions under which the increased level of transient growth could be critical
allows for a shift from transition models based solely on linear growth towards amplitude-based
transition prediction. This methodology is applied for the first time to fluids at supercritical pressure,
opening new perspectives in the study of instability and transition mechanisms in nonideal fluids.

The work is organized as follows: In Sec. II, the governing equations for base-flow calculation
and modal/nonmodal stability analysis are unveiled. The derivation of the new energy norm is then
undertaken. In Sec. III, base-flow properties of eight flow cases at a constant supercritical pressure
of 80 bar for carbon dioxide (p∗/p∗

c = 1.084, with p∗
c being the critical pressure) are introduced.

Given a diabatic wall, different temperature profiles are considered, namely below, above, and
crossing the Widom line. These regimes are defined as subcritical, supercritical, and transcritical
(pseudoboiling [13]) with respect to the pseudocritical temperature. Note that critical here refers to
the thermodynamic critical point, not to be confused with subcritical growth below critical Reynolds
numbers in hydrodynamic stability theory [36]. Nonmodal stability analysis results are then reported
in Sec. IV. Optimal amplifications and perturbations are investigated for all regimes. Effects of
initial Reynolds number and wall temperature, with a special focus on the transcritical wall-heating
and -cooling cases, are considered. The final section, Sec. V, is dedicated to the comparison between
transient growth of perturbation energy and exponential growth of unstable discrete eigenvalues by
means of N factor.

II. METHODOLOGY

A. Flow-conservation equations

We consider a single-phase nonreacting flow of a supercritical fluid governed by the fully com-
pressible Navier-Stokes equations (conservation of mass, momentum, and energy) in differential
and dimensionless form as

Dρ

Dt
+ ρ

∂u j

∂x j
= 0, (1a)

ρ
Dui

Dt
= − ∂ p

∂xi
+ 1

ReL

∂τi j

∂x j
, (1b)

ρ
De

Dt
= −Ec∞ p

∂u j

∂x j
+ Ec∞

ReL

∂ (uiτi j )

∂x j
− 1

ReLPr∞

∂q j

∂x j
, (1c)
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where xi = (x, y, z) are the Cartesian coordinates in the streamwise, wall-normal, and spanwise
directions, t is the time, ρ is the fluid density, ui = (u, v,w) are the velocity components, p is the
pressure, and E = e + uiu j/2 is the specific total energy with e as the specific internal energy. Under
the assumption that the fluid is Newtonian, the viscous stress tensor τi j is given as

τi j = λδi j
∂uk

∂xk
+ μ

(
∂ui

∂x j
+ ∂u j

∂xi

)
, λ = μb − 2

3
μ, (2a,b)

where μ is the dynamic viscosity, λ is the second viscosity coefficient, and δi j is the Kronecker δ.
The bulk viscosity μb has proven to have a very limited influence on the stability of Poiseuille flows
at supercritical pressure (see Ref. [7]), and therefore it is set to 0 in agreement with Ref. [8]. An ad-
ditional assumption is that buoyancy effects are not considered here. The convective heat flux vector
q j is modeled according to Fourier’s law as q j = −κ ∂T/∂x j , where κ is the thermal conductivity,
and T the fluid temperature. The above conservation equations have been nondimensionalized by
the following reference values:

t = t∗U ∗
∞

L∗ , xi = x∗
i

L∗ , ui = u∗
i

U ∗∞
, ρ = ρ∗

ρ∗∞
, p = p∗

ρ∗∞U ∗2

∞
, T = T ∗

T ∗∞
, e = e∗

c∗
p,∞T ∗∞

,

μ = μ∗

μ∗∞
, μb = μ∗

b

μ∗∞
, κ = κ∗

κ∗∞
, ν = ν∗

ν∗∞
, (3a–k)

where (·)∗ denotes dimensional quantities, and (·)∞ corresponds to free-stream flow conditions. The
corresponding nondimensional characteristic parameters are defined as

ReL = ρ∗
∞U ∗

∞L∗

μ∗∞
, Ec∞ = U ∗2

∞
c∗

p,∞T ∗∞
, Pr∞ = c∗

p,∞μ∗
∞

κ∗∞
, (4a–c)

where c∗
p,∞ is specific heat at constant pressure, and ReL is the Reynolds number based on a chosen

length scale L∗. We opt for the local Blasius length scale δ∗ such that

ReL = Reδ = ρ∗
∞U ∗

∞δ∗

μ∗∞
=

√
Rex, δ∗ =

√
μ∗

∞x∗

ρ∗∞U ∗∞
. (5a,b)

In Eqs. (4a–c), Ec∞ is the Eckert number, and Pr∞ is the Prandtl number (all based on free-stream
conditions). The Mach number M∞ = U ∗

∞/a∗
∞, with a∗

∞ as the speed of sound, can be obtained
from Ec∞. To close the conservation equations in Eqs. (1), an equation of state (EoS) and transport
properties need to be defined. We choose 80 bar as the reference pressure of supercritical CO2

based on previous studies (see, for instance, Ref. [8]). Its properties are summarized in Table V.
Both thermodynamic and transport properties are obtained from the NIST REFPROP library (see
Ref. [37]), which is transformed into two-dimensional (2D) lookup tables as functions of p and T .
These properties are needed both for the laminar base-flow calculation and the stability analysis.

B. Base-flow calculation

The calculation of the base-flow profiles is based on the compressible boundary-layer equa-
tions for self-similar flow [8], combined with the tabulated NIST REFPROP library and under
the assumption of zero-pressure gradient. After the coordinate transformation based on the Lees-
Dorodnitsyn variables [38], with dξ = ρ∗

∞μ∗
∞U ∗

∞ dx∗ and dη = ρ∗U ∗
∞/

√
2ξ dy∗, the transformed

ordinary differential equations become

(C fηη )η + f fηη = 0,

f gη +
(

C

Pr
gη

)
η

+ C
U ∗2

∞
h∗∞

( fηη )2 = 0,

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(6)
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where (·)η denotes a partial derivative with respect to η and

fη = u∗

U ∗∞
, g = h∗

h∗∞
, C = ρ∗μ∗

ρ∗∞μ∗∞
= ρμ, Pr = c∗

p μ∗

κ∗ . (7a–d)

In Eqs. (6) and (7a–d), f is related to the stream function, g is the dimensionless static specific
enthalpy, C is the Chapman-Rubesin parameter, and Pr is the local Prandtl number. Moreover,
derivatives of the transport and thermodynamic properties are numerically evaluated using a second-
order finite differences method as a function of p and T (see Ref. [7]). In this context, isothermal
boundary conditions (BC) are considered as

f (0) = 0, fη(0) = 0, fη(∞) = 1,

g(0) = gw, g(∞) = 1,

}
(8)

where gw(p, Tw ) denotes the prescribed enthalpy at the wall. The system of boundary-layer
equations is solved numerically with a fourth-order Runge-Kutta scheme, together with the Newton-
Raphson method to iteratively satisfy the BCs at the wall. Grid-independent results are achieved with
a wall-normal resolution of at least 10 000 points to accurately capture the strong property gradients
around the Widom line, and a domain size approximately equal to 10 times the boundary-layer
thickness.

C. Stability calculation

The stability analysis is performed under the framework of linear stability theory (LST). Thus,
the flow field q = [p, u, v,w, T ]T is initially decomposed into a steady laminar part q̄, obtained
from the boundary-layer equations, and a fluctuating component q′, infinitesimally small compared
to q̄. This decomposition results in

q(x, y, z, t ) = q̄(y) + εq′(x, y, z, t ), (9)

where ε � 1. The base flow is assumed to be 1D and locally parallel in the streamwise direction.
The fluctuating thermodynamic and transport properties (e.g., ρ ′, μ′, κ ′) are determined as functions
of the two independent thermodynamic properties p and T . For instance, the viscosity perturbation
μ′ is expressed as a first-order Taylor series in terms of the base-flow properties:

μ′ = ∂μ̄

∂ p̄

∣∣∣∣
T̄

p′ + ∂μ̄

∂T̄

∣∣∣∣
p̄

T ′. (10)

The perturbation q′ is assumed to depend solely on the wall-normal direction, and be periodic in all
other directions. Therefore, using the classical Fourier ansatz, q′ is written as

q′(x, y, z, t ) = q̂(y) exp[i(αx + βz − ωt )] + c.c., (11)

where q̂(y) is the perturbation eigenfunction, α is the nondimensional streamwise wave number,
β ≡ βr is the real spanwise wave number, ω ≡ ωr is the real angular frequency, and c.c. stands for
the complex conjugate. In this work, the spatial problem is considered by prescribing βr and ωr .
The streamwise wave number in Eq. (11) is set to be complex (α = αr + iαi), where αi represents
the local spatial growth rate. Hence, modal amplification occurs for αi < 0.

1. Modal analysis

According to LST, Eq. (9) is substituted into Eq. (1), and nonlinear terms of order O(ε2) are
neglected. Subsequently, after subtracting the steady base flow, the linearized stability equations can
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be expressed in a compact matrix form as follows:

Lt
∂q′

∂t
+ Lx

∂q′

∂x
+ Ly

∂q′

∂y
+ Lz

∂q′

∂z
+ Lq′q′ + Vxx

∂2q′

∂x2
+ Vyy

∂2q′

∂y2

+Vzz
∂2q′

∂z2
+ Vxy

∂2q′

∂x∂y
+ Vxz

∂2q′

∂x∂z
+ Vyz

∂2q′

∂y∂z
= 0. (12)

Here, q′ = [p′, u′, v′,w′, T ′]T is the perturbation vector, and matrices Lt, Lx, Ly, Lz, Lq′ , Vxx, Vyy,
Vzz, Vxy, Vxz, and Vyz are functions of the base-flow properties and dimensionless parameters in
Eqs. (11). The expressions for these matrices are documented in Ref. [7] for χ̄ = f (ρ̄, T̄ ), where χ

is an arbitrary thermodynamic or transport property. However, in this study, χ̄ is a function of p̄ and
T̄ . This modification results in new base-flow matrices, detailed in Appendix B. The use of pressure,
instead of density, is motivated by the low Mach number in this study. At M∞ = 10−3 (see Sec. III),
the density ρ ′ is effectively decoupled from pressure p′, as the latter is only of hydrodynamic nature
rather than of acoustic origin [39]. Consequently, we choose p′ and T ′ as the two independent
variables as in Eq. (10). A pseudospectral collocation method based on N-Chebyshev collocation
points is employed with near-wall grid clustering in agreement with Ref. [17]. The boundary
conditions for q̂ are given as

û = v̂ = ŵ = T̂ = 0, at y = 0,

û = v̂ = ŵ = T̂ = 0, at y = ymax.

}
(13)

Additionally, the pressure p̂ is not prescribed at the wall. Finally, the system in Eq. (12) is written
as

A0Q̂ = αAαQ̂ + α2Aα2 Q̂, (14)

where A0, Aα , Aα2 are 5N × 5N and Q̂ = (q̂1, . . . , q̂N )T is a 5N-column vector containing all
discretized perturbations. Equation (14) is a nonlinear eigenvalue problem, which is recast as a
linear eigenvalue problem (Ref. [40]) as[

A0 0

0 I

][
Q̂

αQ̂

]
= α

[
Aα Aα2

I 0

][
Q̂

αQ̂

]
, (15)

where I is the identity matrix. In this procedure, the size of the state vector (hence the size of the
system) is increased. The eigenvalue problem is solved using the LAPACK implementation of the
QZ algorithm.

2. Energy norm

Before addressing transient growth analysis, it is necessary to define an inner product and
an associated energy norm. In Ref. [7], the energy norm for nonideal gas flows was chosen to
ensure convergence with respect to energy amplification. Nevertheless, pressure-related energy
terms persisted. Their contribution to the total disturbance energy must vanish, as compression
work is conservative [17]. Thus, following Mack’s norm for ideal gas in Ref. [17], a rigid definition
of the norm for nonideal gas flows must be formulated. This norm will allow us to consider the
characteristic nonorthogonality of the eigenfunctions and to quantify the magnitude of transient-
growth energy amplification. First, a scalar product based on the energy density, as proposed by
Ref. [22] is defined as

(q̂k, q̂l )E =
∫ ∞

0
q̂H

k Mq̂l dy, (16)
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where the superscript H denotes the complex conjugate transpose, and the matrix M is the energy
matrix. The associated norm is expressed as

2E = ‖q̂‖2
E = (q̂, q̂)E . (17)

For compressible flows under the ideal-gas assumption [17,41,42], Eq. (17) results in

2E =
∫

�

mui u
′
iu

′†
i + mρρ

′ρ ′† + mT T ′T ′† d�, (18)

where (·)† and � denote the complex conjugate and the spatial domain, respectively. The coefficients
mu1,2,3 , mρ , and mT of the symmetric positive-definite matrix M were derived by Ref. [17] and take
the form of

mρ = RgT̄

ρ̄
, mu = ρ̄, mv = ρ̄, mw = ρ̄, mT = ρ̄cv

Ec∞T̄
, (19a–e)

with Rg and cv being the gas constant and the specific heat at constant volume, respectively.
However, for nonideal gas conditions in Ref. [7], the coefficients mρ and mT were assumed to
be unity, revealing a robust convergence behavior for energy amplification. Here, instead, we follow
the same procedure as outlined in Ref. [17]. As will be shown below, the coefficients in Eq. (18) are
modified so that the pressure-related term, appearing in the form ∇ · (p′u′), can be eliminated after
spatial integration. By multiplying each disturbance equation in Eq. (12) with mρρ

′, mui u
′
i, mT T ′,

respectively, and combining the equations, the following result is obtained

∂E

∂t
= 1

2

∂

∂t

(
mρρ

′2 + mui u
′2
i + mT

∂ ē

∂T̄

∣∣∣∣
ρ̄

T ′2 + 2mT
∂ ē

∂ρ̄

∣∣∣∣
T̄

ρ ′T ′
)

= −mρρ̄ρ ′ ∂u′
i

∂xi
− mui

ρ̄
u′

i

∂ p′

∂xi
− mT

Ec∞ p̄

ρ̄
T ′ ∂u′

i

∂xi
− mT

∂ ē

∂ρ̄

∣∣∣∣
T̄

ρ ′ ∂T ′

∂t
+ visc., (20)

where visc. represents the viscous terms. When integrating over the spatial domain, the pressure-
work term in the right-hand side of Eq. (20) disappears, as both of the following properties are
satisfied [23,43]: (1) the disturbances are periodic in space, and (2) the wall-normal velocity is zero.
Consequently, using integration by parts yields∫

�

∇ · (p′u′) d� =
∫

�

mρρ̄ρ ′ ∂u′
i

∂xi
d� −

∫
�

mui

1

ρ̄
p′ ∂u′

i

∂xi
d� +

∫
�

mT
Ec∞ p̄

ρ̄
T ′ ∂u′

i

∂xi
d�. (21)

The left-hand side of Eq. (20) represents the time rate of change of the disturbance energy as

∂E

∂t
= 1

2

∂

∂t

∫
�

(
mρρ

′2 + muu′2
i + mT

∂ ē

∂T̄

∣∣∣∣
ρ̄

T ′2 + 2mT
∂ ē

∂ρ̄

∣∣∣∣
T̄

ρ ′T ′
)

d�. (22)

By choosing mu = ρ̄ similar to the ideal-gas norm [17], and

mρ = 1

ρ̄

∂ p̄

∂ρ̄

∣∣∣∣
T̄

, mT = ρ̄

Ec∞ p̄

∂ p̄

∂T̄

∣∣∣∣
ρ̄

, (23a,b)

the pressure-work term is eliminated. Thus, the resulting energy norm for nonideal gas is written as

2E =
∫

�

1

ρ̄

∂ p̄

∂ρ̄

∣∣∣∣
T̄

ρ ′2 + ρ̄u′2
i + ρ̄

Ec∞ p̄

∂ p̄

∂T̄

∣∣∣∣
ρ̄

∂ ē

∂T̄

∣∣∣∣
ρ̄

T ′2 + 2
ρ̄

Ec∞ p̄

∂ p̄

∂T̄

∣∣∣∣
ρ̄

∂ ē

∂ρ̄

∣∣∣∣
T̄

ρ ′T ′ d�. (24)

The kinetic energy of a perturbation is therefore

2Ekin. =
∫

�

ρ̄u′2
i d�, (25)
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whereas its internal energy is given as

2Eint. = 2(Eρ ′ + ET ′ + Eρ ′T ′ )

=
∫

�

1

ρ̄

∂ p̄

∂ρ̄

∣∣∣∣
T̄

ρ ′2 + ρ̄

Ec∞ p̄

∂ p̄

∂T̄

∣∣∣∣
ρ̄

∂ ē

∂T̄

∣∣∣∣
ρ̄

T ′2 + 2
ρ̄

Ec∞ p̄

∂ p̄

∂T̄

∣∣∣∣
ρ̄

∂ ē

∂ρ̄

∣∣∣∣
T̄

ρ ′T ′d�. (26)

The inner product and the associated norm can then be expressed in symbolic form as in Eqs. (16)
and (17), respectively. The newly proposed energy matrix M for a nonideal gas is then

M =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

1
ρ̄

∂ p̄
∂ρ̄

∣∣
T̄

0 0 0 ρ̄

Ec∞ p̄
∂ p̄
∂T̄

∣∣
ρ̄

∂ ē
∂ρ̄

∣∣
T̄

0 ρ̄ 0 0 0

0 0 ρ̄ 0 0

0 0 0 ρ̄ 0
ρ̄

Ec∞ p̄
∂ p̄
∂T̄

∣∣
ρ̄

∂ ē
∂ρ̄

∣∣
T̄ 0 0 0 ρ̄

Ec∞ p̄
∂ p̄
∂T̄

∣∣
ρ̄

∂ ē
∂T̄

∣∣
ρ̄

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

. (27)

The matrix M is positive definite, meeting the requirement of the energy-norm definition [41]. For
an ideal gas, Eq. (27) simplifies to

M = diag

(
RgT̄

ρ̄
, ρ̄, ρ̄, ρ̄,

ρ̄ cv

Ec∞T̄

)
, (28)

recovering Chu’s [41] and Mack’s norm [17,42].

3. Nonmodal analysis

Once the eigenmode spectrum is obtained, the spatial optimization method of Ref. [22] is applied.
The disturbance vector q′ is projected onto the truncated eigenvector space spanned by the first K
spatial eigenvalues αk and eigenfunctions q̂k . Consequently, the optimal transient growth, or optimal
energy amplification, at the specific downstream coordinate is then calculated as

G = G(ω, β, Reδ, x) = max
q̂(0)

E (q̂(x))

E (q̂(0))
= max

q̂(0)

‖q̂(x)‖2
E

‖q̂(0)‖2
E

, (29)

where E (q̂(x)) is the total perturbation energy defined in Eq. (24), and E (q̂(0)) is its value at the
initial location x = 0. The optimal transient growth can be expressed in terms of the L2-(Euclidean)-
norm as

G = ‖F�F−1‖2
2, (30)

with

� = diag(exp(iα1x), ..., exp(iαK x)), A = FH F, Akl = (q̂k, q̂l ) =
∫ ∞

0
q̂H

k Mq̂l dy, (31a–c)

and M as in Eq. (27). The L2-norm of matrix F�F−1 can be computed by means of singular
value decomposition (SVD). The value of G is obtained by the square of the largest singular value,
whereas its optimal conditions, i.e., optimal perturbations, can be computed via the right singular
eigenvector [44]. Following the notation in Ref. [17], the maximum value of G over all x is denoted
as Gmax, and its maximum over all β and ω, is referred to as Gopt, with the optimal spanwise wave
number βopt, optimal frequency ωopt, and optimal location xopt, respectively. For the purpose of
code validation, transient-growth results in Ref. [22] are reproduced and reported in Appendix C.
Additionally, for the nonideal gas regime, a grid-independence study is performed for a highly
nonideal reference case.
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FIG. 1. Reduced temperature-pressure (Tr-pr ) diagram with isolines of reduced specific volume (υr):
isobar at p∗ = 80 bar for CO2 with the corresponding cases (lines) of Table I. Note that the lines are offset
for a better representation.

III. FLOW CASES

Before conducting the nonmodal stability analysis, base-flow profiles must be known first. A
constant pressure of p∗ = 80 bar, which is for CO2 1.084 times larger than the critical pressure p∗

c , is
selected. Note that the closer the ratio p∗/p∗

c to unity, the stronger the thermodynamic nonideality. To
better assess the thermodynamic states considered in this study, a Tr–pr diagram is shown in Fig. 1
together with isolines of reduced specific volume (υ∗

r = 1/ρ∗
r = υ∗/υ∗

c ). Along the isobar (thick
black line), two different configurations are considered, with four having a subcritical temperature
with respect to free-stream temperature of T ∗

∞/T ∗
pc = 0.90 [marked by a black circle (•) in Fig. 1],

and four with a supercritical free-stream temperature of T ∗
∞/T ∗

pc = 1.10 [marked by a black square
(�) in Fig. 1], where T ∗

pc is the temperature at the Widom line (T ∗
pc/T ∗

c = 1.012 at p∗ = 80 bar). Note
that while the pressure is always supercritical, cases that are subcritical in temperature are referred
to as subcritical hereafter, and the same applies to supercritical. By varying the wall temperature per
case, one can control the nonideal gas effects, which are maximal in the proximity of the Widom
line. Therefore, for both free-stream configurations, one case is considered in which the temperature
within the boundary layer crosses the Widom line (defined as transcritical hereafter). All cases are
listed in Table I and represented in Fig. 1.

In all configurations, a Mach number of 10−3 is chosen to reduce the complexity of the physical
problem, ruling out strong acoustic effects on the flow stability. On the upper third of Table I, cases
with T ∗

∞/T ∗
pc = 0.90 (liquidlike free stream) are presented. The temperature profiles for these cases

remain subcritical, except for case T09w105, which becomes transcritical, i.e., T ∗
∞/T ∗

pc < 1 and
T ∗

w/T ∗
pc > 1. Furthermore, it holds: Ec∞ = 5.27 × 10−7, Pr∞ = 2.11, and a unit Reynolds number

of Reu = 5.317 × 106m−1. Cases with T ∗
∞/T ∗

pc = 1.10 (gaslike free stream) are shown in the lower
third of Table I. By mirroring case T09w105 on the Widom line, while maintaining the same �T ,
case T11w095 results as the transcritical case for a gaslike free stream. Furthermore, it is Ec∞ =
9.92 × 10−8, Pr∞ = 1.22, and a unit Reynolds number of Reu = 2.209 × 106m−1.

The base-flow profiles for all cases in Table I are shown in Fig. 2. Dimensional quantities
are made dimensionless by the corresponding Widom-line quantities, except for the streamwise
velocity u and kinematic viscosity ν [see Eq. (3)]. Temperature, streamwise velocity, density, and
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TABLE I. Flow parameters at p∗ = 80 bar for CO2 and M = 10−3. T ∗
w is the wall temperature, and θ is the

nondimensional compressible momentum thickness, as defined in Ref. [38]. Cases can be found in Fig. 1.

Regime T ∗
∞/T ∗

pc T ∗
w /T ∗

pc T ∗
w /T ∗

∞ Wall θ Case Line style

0.85 0.944 Cooling 0.7080 T09w085
Subcrit. temp. 0.90 0.90 1.0 Isotherm 0.6641 T09w090

0.95 1.056 Heating 0.6178 T09w095

0.90 1.05 1.167 Heating 0.4608 T09w105Transcrit. temp.
1.10 0.95 0.864 Cooling 0.9779 T11w095

1.05 0.955 Cooling 0.6931 T11w105
Supercrit. temp. 1.10 1.10 1.0 Isotherm 0.6641 T11w110

1.20 1.091 Heating 0.6290 T11w120

FIG. 2. Base-flow profiles for the considered cases: (a) temperature, (b), (c) streamwise velocity, (d) den-
sity, and (e), (f) kinematic viscosity over the dimensionless wall-normal coordinate y. See Table I for line
legend. The red solid line ( ) in (a), (d) indicates the Widom line. The location of the generalized inflection
point is marked by a black circle (◦) symbol in (b)–(d). In panel (c), the location of the inflection point is
marked by a black star (�) symbol. The location of the Widom line is indicated with yWL in (b), (c) and (e), (f).
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FIG. 3. Contour plot of Gmax and growth rate −αi (modally unstable regions) against the angular frequency
ω and spanwise wave number β at Reδ = 300 for the subcritical and supercritical cases: (a) T09w085,
(b) T09w090, (c) T09w095, (d) T11w105, (e) T11w110, (f) T11w120, (g) T09w105, (h) T11w095. Gopt, i.e.,
max{Gmax}, is denoted with a black star ( ) symbol. N-factor isocontours are indicated in gray.

kinematic viscosity are plotted over the wall-normal coordinate y, which is made dimensionless by
the local Blasius length scale δ∗ [see Eqs. (5a,b)]. As the temperature profile crosses the Widom
line [see Fig. 2(a)], regardless of the free-stream temperature, large variations in thermodynamic
and transport properties are noticeable [e.g., density in Fig. 2(d)]. As a result, both transcritical
cases T09w105 and T11w095 exhibit inflectional base-flow profiles according to the definition of
the generalized inflection point, i.e., d (ρ̄ dū/dy)/dy = 0. This GIP is located in the proximity
of the Widom line, as indicated in Figs. 2(b)–2(d) with a black circle (◦) symbol. This leads to a
minimum near the Widom line of kinematic viscosity ν [see Figs. 2(e) and 2(f)], as already observed
in Ref. [10]. Moreover, for case T11w095, an inflectional ū(y) profile, i.e., d2ū/dy2 = 0, is found
above the Widom line [marked by a black star (�) symbol], due to a strong wall cooling similar to
Ref. [12].

IV. NONMODAL ANALYSIS

In this section, we present the nonmodal and modal stability analyses of the boundary-layer
flows. After calculating the maximum and optimal energy amplifications in Sec. IV A, Sec. IV B
provides profiles of the optimal disturbances for selected cases, with special focus on the trans-
critical regime. Subsequently, the influence of Reynolds number and wall temperature on transient
growth is investigated. Finally, in Sec. V, a comparison between nonmodal and modal growth is
provided.

A. Optimal amplifications

Optimal growth has been studied for the subcritical (T09w090, T09w095, T09w085), supercriti-
cal (T11w110, T11w105, T11w120), and transcritical (T09w105, T11w095) cases. An initial local
Reynolds number of Reδ = 300 is chosen, and the optimization process is conducted up to x = 3000
until the maximum value of G(x), i.e., Gmax, is found. Each contour plot in Fig. 3 has been computed
on a grid of �ω = 0.001 × �β = 0.01. The colored contour represents Gmax(ω, β ), and the largest
Gmax, or rather Gopt, is marked with a black star ( ). Secondary contour regions display an unstable
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FIG. 4. Contour plot of xmax and growth rate −αi (modally unstable regions) against the angular frequency
ω and spanwise wave number β at Reδ = 300 for the subcritical and supercritical cases: (a) T09w085,
(b) T09w090, (c) T09w095, (d) T11w105, (e) T11w110, (f) T11w120, (g) T09w105, (h) T11w095. The black
star ( ) symbol refers to Gopt, i.e., max{Gmax}, according to Fig. 3. N-factor isocontours are indicated in gray.

mode of spatial growth rate −αi with contour lines equally spaced between 0 and max{−αi}. Here,
the optimization process is stopped. Furthermore, the integral amplification, e.g., N factor, contours
are indicated. For their calculation, the local growth rate has been integrated from Reδ = 300 to
the optimal transient location at Reδ,opt, given by xopt. A more comprehensive comparison between
nonmodal and modal N factors is later performed in Sec. V.

In the nontranscritical cases, as the wall temperature increases towards to the Widom line, either
through an increase in Tw (subcritical regime) or a reduction in Tw (supercritical regime), modal
amplification is completely damped. The unstable regions in Figs. 3(a) and 3(f) correspond to the
only modal instability present in the subcritical and supercritical regimes, according to Ref. [8].
They are of Tollmien-Schlichting-wave type. Overall, wall cooling in the liquidlike region [see
T09w085 in Fig. 3(a)] shows similar transient growth as wall cooling in the gaslike region [see
T11w105 in Table 3(d)]. Cases T09w090 and T11w110 retain an identical energy amplification,
reproducing the isothermal incompressible limit, which is independent of the considered gas law.
With respect to the transcritical cases in Figs. 3(g) and 3(h), Gopt significantly increases compared to
the nontranscritical cases, especially in the case of cooling across the Widom line (T11w095) with
Gopt = 1750. Note that, while for case T09w105 modal instabilities are not present at Reδ = 300 <

Recr (with Recr being the critical Reynolds number), case T11w095 is highly modally unstable (only
one single mode) already at Reδ = 300. In contrast to the nontranscritical cases and case T11w095,
wall heating across the Widom line (case T09w105) causes a shift of ωopt from 0 to finite values.
For instance, in Fig. 3(g), it is ωopt = 0.013. A similar shift is observed when a temporal analysis
is performed in Appendix D. The physical mechanism responsible for the shift is explained in
Sec. IV B. Differently than in the nontranscritical cases, case T09w105 unveils a weakly decaying
behavior of Gmax for large angular frequency ω around βopt. It is interesting to note that at β =
0, there is a distinct increase in Gmax along the ω axis with a suboptimal amplification peak of
Gmax ≈ 282 at ω ≈ 0.23. A further analysis of the suboptimal energy amplification is performed in
Sec. IV B 5.

Contours of the maximum location xmax are displayed in Fig. 4 for the same �ω × �β of
Fig. 3. The optimum transient growth is always located at large streamwise locations (long-distance
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TABLE II. Summary of spatial transient growth characteristics at Reδ = 300: subcritical, transcritical, and
supercritical cases.

Case Gopt Gkin.opt xopt Reδ,opt ωopt βopt max{−αi}
T09w085 540 476 464 478.7 0.377 0.569 × 10−2

T09w090 437 437 462 478.1 0 0.381 0.238 × 10−3

T09w095 460 397 434 469.2 0.408 –

T09w105 758 490 422 465.4 0.013 0.45 –
T11w095 1750 1.6704 × 104 346 440.2 0 0.46 0.089

T11w105 466 457 447 473.4 0.391 –
T11w110 437 437 462 478.1 0 0.381 0.238 × 10−3

T11w120 434 414 490 486.8 0.364 0.566 × 10−2

amplification) in agreement with the observations of Refs. [45] and [23] for incompressible and
compressible boundary layers. Similarly, for small x (short-distance amplification), Gopt is always
detected at large ω values before shifting to ω = 0 as x increases. This phenomenon is observed for
all nontranscritical cases and case T11w095, except for the nontrivial case T09w105 in Fig. 4(g)
where ωopt is finite.

A summary of transient growth for the subcritical, transcritical, and supercritical regimes is
reported in Table II. Note that the value of Gkin.opt is calculated using the kinetic part and a frozen
internal energy of M in Eq. (27), with M = diag(1, ρ̄, ρ̄, ρ̄, 1) (see Appendix E). Furthermore, the
effect of the energy norm on the optimal growth is analyzed. From Table II, it is evident that, given
the same temperature ratio T ∗

w/T ∗
∞, the optimal energy amplification increases more when the wall is

cooled compared to the incompressible reference case, as density increases for both regimes. In fact,
the largest Gopt is found for case T09w085, with the largest density ratio, i.e., ρ∗

w/ρ∗
∞ = 1.0834,

among all nontranscritical cases of Table I. This confirms the trend encountered in the ideal-gas
results of Ref. [22] at M∞ = 0.5. Regarding the optimal energy amplification with frozen internal
energy Gkin.opt, its greater impact in noticed in the subcritical regime, where Gopt drops by more
than 10%. For case T09w105, Gopt significantly increases due to nonideal gas effects, whereas
Gkin.opt consistently drops (density ratio at the wall: ρ∗

w/ρ∗
∞ ≈ 0.23). When the gaslike free stream

is cooled down at the wall to a liquidlike regime (case T11w095 with ρ∗
w/ρ∗

∞ ≈ 4.61), the optimal
energy amplification is strongly dampened by the nonideal gas effects, i.e., Gopt � Gkin.opt, while
ωopt is found at ω = 0. Concerning the ratio between kinetic Êkin. and total energy Ê , obtained by
evaluating Eqs. (25) and (24), respectively, for q̂ = q̂opt, a value of 32% is found for case T09w105,
whereas of 47% for case T11w095. This demonstrates how optimal thermal fluctuations become
relevant whenever the Widom line is crossed, i.e., for large property variations. An analysis of the
optimal energy amplification and spanwise wave number as a function of the wall temperature is
performed in Sec. IV D.

B. Optimal perturbations

1. Subcritical and supercritical regimes

For all subcritical and supercritical cases in Fig. 3 and Table II, Gopt occurs at ω = 0, indicating
an input streamwise vortex typical of the ideal-gas regime [17,22,23], as shown for case T09w095
in Fig. 5(a). Similar profiles are found for the other nontranscritical cases of Table II (not shown for
brevity), as the initial perturbation energy, i.e., Eq. (24), is entirely of kinetic nature. Figure 5(b)
illustrates the flow response to the streamwise vortex at x = xopt for case T09w095. The output
optimal disturbance mainly consists of streamwise velocity, taking the form of streamwise (high-low
velocity) streaks, with negligible temperature and density disturbances due to small corresponding
mean-flow gradients. Similar streamwise velocity streaks are recovered for all subcritical and
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(a) (b) (c)

FIG. 5. Absolute value of the optimal disturbances at Reδ = 300 over wall-normal distance y for T09w095
of Table II: (a) initial, (b) output, (c) output energy amplitude obtained by Eqs. (25) and (26) with respect to
the total energy. The boundary-layer thickness is indicated by δ99.

supercritical cases in Table II (only T09w095 displayed for brevity). The formation of velocity
streaks has been explained by the lift-up effect [19]. Note that, for case T09w095, the kinetic energy
fraction Êkin./Ê decreases from 99.9% to 86% after amplification, whereas for the subcrtical cases,
this drop is only up to 5%. Figure 3(c) exhibits that the total energy amplitude is predominantly
kinetic (large Êkin./Ê ), while the nondiagonal terms Êρ ′T ′ in matrix M of Eq. (27) contribute less
than 20% due to small base-flow thermodynamic derivatives. This indicates a weak influence
nonideality on the transient growth in the subcritical and supercritical regimes, with optimal
perturbations resembling those in the incompressible ideal-gas regime [18,22].

2. Transcritical regime

Figures 6(a) and 6(b) present the optimal initial and output perturbations for the transcritical case
T09w105, respectively. The initial disturbance at x = 0 takes the form of counter-rotating vortices,
similar to the other two regimes. The resulting velocity streaks at maximum amplification have
strong thermal ρ̂ and T̂ components. A notable strong density disturbance, absent in the nontrans-
critical cases [see, e.g., Fig. 5(b)], peaks at the Widom line due to the abrupt mean density gradient
observed in Fig. 2(d). In Fig. 5(c) the energy amplitude of the disturbance components normalized
by the total energy indicates that Êρ̂T̂ reaches almost unity at the Widom line (largest nonideal
gas effects), with negligible kinetic energy contribution. On the contrary, the kinetic energy peak
occurs in the liquidlike regime (high-viscosity region) around y ≈ 0.35, alongside the maximum

(a) (b) (c)

Normalized Normalized Normalized

FIG. 6. Absolute value of the optimal disturbances at Reδ = 300 over wall-normal distance y for T09w105
of Table II: (a) initial, (b) output, (c) output energy amplitude obtained by Eqs. (25) and (26) with respect to
the total energy amplitude. The boundary-layer thickness and the location of the Widom line are indicated by
δ99 and yWL, respectively.
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(a) (b) (c)

FIG. 7. Absolute value of the optimal disturbances at Reδ = 300 over wall-normal distance y for T11w095
of Table II: (a) initial, (b) output, (c) output energy amplitude obtained by Eqs. (25) and (26) with respect to
the total energy amplitude. The boundary-layer thickness and the location of the Widom line are indicated by
δ99 and yWL, respectively.

temperature disturbance and a secondary peak of Êρ̂T̂ . Similar to the nontranscritical cases in Fig. 5,
the resulting optimal streaks are regions of excess and defect of streamwise momentum in the
streamwise direction.

The optimal perturbations for the transcritical case T11w095, where the temperature profile
is cooled over the Widom line, are examined hereafter. Figure 3(h) reveals that streamwise-
independent streaks (ωopt = 0, βopt = 0.46) are the optimal disturbances, differing from case
T09w105. This is confirmed by the wall-normal profiles of optimal perturbations in Figs. 7(a)
and 7(b), driven by the lift-up effect. Unlike the other cases, thermal streaks, i.e., ρ̂ and T̂ , are even
more significant, with the density disturbance reaching a factor 18 at the Widom line due to a larger
mean density gradient than in case T09w105. Figure 7(c) displays the disturbance energy amplitude,
showing the maximum total energy amount at the Widom line, attributed to the abrupt gradients of
the thermophysical properties (see Fig. 2). Here, nonideality is greatest, while the kinetic energy
amount is almost negligible throughout the boundary layer.

3. Transcritical regime: Vortex tilting

The mechanism of streak generation is best explained by the lift-up effect or vortex tilt-
ing [46,47]. For a more accurate physical interpretation of the Widom line’s effect on the optimal
perturbation profiles, we consider the inviscid compressible vorticity, denoted as ωi, equation as

∂ωi

∂t
+ u j

∂ωi

∂x j
= −ωi

∂u j

∂x j
+ εi jk

ρ2

∂ρ

∂x j

∂ p

∂xk
, (32)

where εi jk is the Levi-Civita symbol, and the second term on the right-hand side is the baroclinic
term. After superposition and linearization of Eq. (32) (see Appendix F), the wall-normal vorticity
perturbation ω′

y component becomes

∂ω′
y

∂t
+ ū

∂ω′
y

∂x
= −∂v′

∂z

∂ ū

∂y
, (33)

where the baroclinic term is zero, ∂ ū/∂y is the spanwise mean-flow vorticity, and ∂v′/∂z is the
perturbation strain rate of the initial vortex [48]. The latter tilts the mean-flow vorticity into the
wall-normal y direction, increasing ω′

y. Thus, the vortex-tilting mechanism depends on the initial
disturbance strain rate ∂v′

in/∂z, which can be assessed via the initial streamwise vorticity ω′
x,in =

∂w′
in/∂y − ∂v′

in/∂z.
Figures 8(a) and 8(b) illustrate the initial streamwise vorticity, perturbation strain rate, and

base-flow streamwise momentum for subcritical case T09w095 and transcritical case T09w105,
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(a) (b) (c)

FIG. 8. Vortex tilting: (a) case T09w095, (b) case T09w105, (c) case T11w095. All disturbance terms (·̂)
are normalized by max{|ω̂x|}. The boundary-layer thickness and the location of the Widom line are indicated
by δ99 and yWL, respectively.

respectively. The streamwise vorticity |ω̂x,in| exhibits two peaks: a lower one due to wall boundary
conditions (v̂ and ŵ are zero at the wall) not corresponding to a streamwise vortex, and an upper
peak, far from the wall, corresponding to the vortex structure responsible for the largest amount of
wall-normal redistribution (∂ v̂in/∂z is largest). Here, ω̂y,out (black line) peaks, consistent across all
the nontranscritical cases of Table I.

In the transcritical case T09w105, as shown in Fig. 8(b), the Widom line affects the streamwise
vorticity ω̂x,in, peaking due to the large y gradient of spanwise perturbation velocity ŵin (not
displayed). However, in this region, the low wall-normal displacement [see v̂in in Fig. 6(a)] of a
larger streamwise momentum (see blue dotted line at y = yWL in comparison to case T09w095)
reduces the contribution of the ŵin peak to the lift-up effect. Additionally, the perturbation strain
rate resembles the subcritical case shown in Fig. 8(a), but the Widom line significantly enhances
the base-flow shear near the wall [see red dash-dotted line in Fig. 8(b)], considerably affecting,
in turn, the vortex-tilting term (|∂ ū/∂y × ∂ v̂in/∂z|). As a result, ω̂y,out is substantially altered at
the Widom line, exhibiting a secondary peak [inset of Fig. 8(b)], which corresponds to the ûout

peak in Fig. 6(b). Thus, the streamwise-velocity streaks have two distinct peaks, the larger near
the maximum perturbation strain rate and a smaller at the Widom line. However, it is important to
note that the ûout peak at the Widom line in Fig. 6(b) minimally affects the energy amplification, as
internal energy dominates the G-increase in this transcritical case, and not the kinetic energy (see
Gopt versus Gkin.opt in Table II).

Similar to the transcritical wall-heating case depicted in Fig. 8(b), the vortex tilting of the
transcritical wall-cooling case is examined in Fig. 8(c). As with case T09w105, the perturbation
strain rate ∂ v̂in/∂z [Fig. 8(c)] remains unaffected by the Widom line. Instead, its influence is evident
in ω̂x,in, causing a substantial reduction in the lower peak near the wall. Below the Widom line,
in the liquidlike regime [see the large ρ̄w in Fig. 2(d)], we observe a considerable increase in the
horizontal momentum near y = yWL [blue dotted line, Fig. 8(c)]. This suggests a stronger lift up
in this region. Indeed, the resulting peak in ω̂y,out occurs just above the Widom line, where the
vortex-tilting term |∂ ū/∂y × ∂ v̂in/∂z| is largest. Unlike Fig. 8(b), there is no secondary ûout peak
at the Widom line in this case, as the mean-flow vorticity ∂ ū/∂y near the wall is small. These
observations suggest that the resulting streaks have higher amplitude than those in case T09w105,
attributed to a stronger vortex-tilting term |∂ ū/∂y × ∂ v̂in/∂z|. This behavior is supported by the
greater optimal energy amplification of case T11w095 compared to case T09w105: from Table II,
Gopt,T11w095 > Gopt,T09w105.

4. Transcritical regime: Lift-up effect and Orr mechanism

For both transcritical cases, a detailed analysis of spatial evolution of the optimal amplifica-
tion is conducted to comprehend its structure. Beginning with case T09w105, Fig. 9(a) presents
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FIG. 9. Case T09w105 (Reδ = 300, ωopt = 0.013, βopt = 0.45): (a) envelope of the optimal transient
growth G(x) ( ) and transient growth g(x) of the optimal perturbation ( ) over the streamwise direction
x, the red dotted line indicates the location of the optimal perturbation [g(xopt ) = G(xopt )]; (b) isocontours of
the streamwise velocity perturbations [�(u′

out ) = ±4.0] for β = βopt corresponding to their transient growth g;
(c) isocontours of the streamwise velocity perturbations [�(u′

out ) = ±4.0] for β = −βopt; (d) superposition of
isocontours [�(u′

out ) = ±8.0] with ±βopt. The red dashed line indicates the optimal growth location (x = xopt).
Planes: A, B, C, and D of Fig. 10.

the transient growth G(x) at ωopt and βopt, obtained from Eq. (30). This represents the optimal
gain envelope over all possible initial conditions. To calculate the disturbance profiles over the
streamwise distance x, we assume the same initial condition at x = 0 for the optimal perturbation
and perform space marching up to x = xopt, following g(x) (red dashed line). At this location,
the energy amplification g(x) is equal to the maximum value of the G envelope (solid blue line),
while remaining lower for x �= xopt. For the calculation of g(x), Eq. (30) utilizes F associated with
the right singular eigenvector at x = xopt. Figure 9(b) provides a three-dimensional (3D) snapshot
of the streamwise velocity perturbations, revealing oblique elongated structures. These results are
computed based on the optimal perturbation chosen from g(x) of Fig. 9(a).

The physical mechanism of the lift-up effect is evident in the cross-stream slices (y-z plane) of
Figs. 10(a)–10(c), where contours of the output streamwise velocity perturbation u′

out are super-
imposed over the velocity vectors of the cross-stream perturbation velocity | V ′

out| =
√

v′2
out + w′2

out
at three different streamwise locations. Resulting high-velocity streaks (�(u′

out ) > 0) form where
counter-rotating vortices pull high momentum fluid downward, and vice versa for low-velocity
streaks [�(u′

out ) < 0]. This behavior extends to the density and temperature streaks, where stream-
wise vortices act with the mean-density and against the mean-temperature profile, respectively.
At x = xopt = 425, the lift-up mechanism maximizes streak amplification. The crossing of the
Widom line introduces secondary u′

out peaks, notably in the near-wall region, especially at early
x, as demonstrated by the vortex-tilting mechanism in Fig. 8(b). Despite the 2D parallel flow
assumption, vortices in Figs. 10(a)–10(c) are not symmetrical with respect to the wall-normal axis
but inclined in the spanwise direction. Within a very short distance (x ≈ 50), they are first erected
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FIG. 10. Case T09w105. Contours of the optimal streamwise velocity perturbation u′
out and velocity vectors

of the resulting cross-stream perturbation velocity | V ′
out| =

√
v′2

out + w′2
out on an z-y plane: (a) x = 0, (b) x = 50,

(c) x = xopt = 425. Contours of the optimal perturbation on an x-y plane at z = 0: (d) streamwise velocity u′
out,

(e) Reynolds stress u′
outv

′
out. Note that δ99 and yWL are constant due to the parallel mean-flow assumption used

in the transient-growth analysis. Capital A, B, C, and D correspond to planes in Fig. 9.

before being tilted in the other direction farther downstream. This observation suggests the presence
of another mechanism, contributing to additional energy amplification in the cross-plane spanwise
component [49]. Notably, the shift of the optimal amplification Gopt to finite frequencies, visible in
Fig. 3(d), implies that the Orr mechanism [50] enhances the optimal amplification.

Examining a wall-normal slice (x-y plane) in Figs. 10(d) and 10(e) reveals the presence of this
additional mechanism. Initially misaligned with the mean shear, the output streamwise velocity
perturbations in Fig. 10(d) gradually incline in the direction of shear as they move downstream.
During this process, the disturbance extracts energy from the mean-shear energy through the action
of the Reynolds stress u′

outv
′
out [Fig. 10(e)], which increases due to conservation of circulation in

an x-y plane [32]. Subsequently, disturbance energy is returned to the mean flow, with viscosity
effects becoming relevant at large x. The largest absolute value of u′

outv
′
out occurs at x ≈ 240,

farther upstream than xopt = 425. The Orr mechanism enhances cross-stream velocity, leading
to an additional rise of the streamwise velocity perturbations [48], which peak at x = xopt. This
positive interplay between Orr mechanism, originally located at β = 0 and ω > 0, and lift-up effect,
originally located at β > 0 and ω = 0, results in optimal transient growth at finite frequencies and
spanwise wave numbers, e.g., ωopt > 0, βopt > 0. Such interaction was previously discovered in
constant shear flows [46,48] and more recently in strongly stratified flows [27] under the Boussinesq
assumption [32].

When observing the oblique perturbations in Fig. 9(b), one may question why the optimal streaks
exhibit such an orientation with a propagation angle �, with tan(�) = β/α. In the context of the
two-dimensional spanwise-periodic underlying base flow, achieving the same optimal growth is
possible with a spanwise wave number β as well as with −β (see Ref. [46]). This implies that
identical 3D structures are obtained with opposite inclination to the wall-normal axis [Fig. 9(c)].
In addition, the Reynolds stress mechanism observed in Figs. 10(d) and 10(e) is exactly replicated.
Since we are considering eigenvalues and eigenvectors of a linear amplification problem [20], a
superposition of the two oblique waves can be calculated. As depicted in Fig. 9(d), this results in

083901-18



TRANSIENT GROWTH IN DIABATIC BOUNDARY LAYERS …

FIG. 11. Case T09w105 (Reδ = 300, ωopt = 0.013, βopt = 0.45). Slices of 3D contours of optimal distur-
bances: (a) density, (b) x momentum.

a checkered wave pattern, arising from multiple standing waves in the spanwise direction with a
resultant zero propagation angle. These streamwise and spanwise alternating structures resemble
the initial stage of an oblique transition (see, for instance, Ref. [51]). In fact, the (nonlinear) gener-
ation of a streamwise vortex by two least-damped Orr-Sommerfeld oblique waves with (ω,±β )
is followed by the transient growth of vortex-generated streaks. An analysis of the superposed
cross-stream slices in Figs. 10(a)–10(c) unveils symmetrical structures in the spanwise direction,
featuring zero cross-stream velocity.

Oblique elongated structures are evident not only for the dynamic streaks but also for the thermal
streaks, as previously observed in Fig. 6. Thus, slices of 3D density perturbations are shown in
Fig. 11(a). Note that a phase difference of π exists between high-low-density and -temperature
streaks, akin to observations in three-dimensional compressible ideal-gas boundary layers [35].
Similar perturbation shapes are observed for the x momentum in Fig. 11(b), where regions of high
and low density correspond to regions of low and high streamwise velocity, respectively.

In the transcritical wall-cooling case T11w095, optimal perturbations correspond to velocity
streaks, alongside strong density and temperature streaks, which are streamwise-independent as
indicated by Gopt at ωopt = 0 and βopt = 0 in Fig. 3(h). These structures resemble those in the
subcritical and supercritical regimes, albeit with significantly larger thermal streaks amplitudes.

5. Suboptimal growth

As previously pointed out, optimal transient growth is found at xopt � 1 due to a combined
Orr and lift-up mechanism. However, in case T09w105, as shown in Fig. 3(g), strong suboptimal
growth is evident at short distances from the initial location. This nontrivial phenomenon is further
investigated hereafter.

In Fig. 12, we reconsider the maximum energy amplification Gmax in the ω-β space for the
wall-heating cases T09w090 (isothermal incompressible limit), T09w095, and T09w105, with black
dash-dotted isolines denoting Gmax/Gopt = 2/3 and Gmax/Gopt = 1/3. Notably, the region between
Gmax/Gopt = 1/3 and 2/3 is significantly larger when the base-flow temperature crosses the Widom
line, as seen in case T09w105. Energy amplifications exceeding Gopt/3 are observed along the ω axis
for spanwise-uniform disturbances, demonstrating the Orr mechanism’s substantial contribution to
the energy amplification for the transcritical wall-heating case. In fact, max{Gmax(ω, β = 0)} (black
square (�) symbol) in case T09w105 exceeds those of cases T09w095 and T09w090 by a factor
of 7.8 and 12.3, respectively. Simultaneously, in Fig. 12(c), the nonnegligible suboptimal growth
peaks much earlier in space than the global optimal [black star ( ) symbol] at large ω and low
β. Gray dashed isolines indicate a ratio of xmax to xopt of about 1/8, with xopt = 422 according
to Table II. This confirms the observations of Refs. [45,46] in the temporal framework, where
suboptimal disturbances, associated with short timescales, are no longer streamwise uniform but
reach their maximum amplitude more rapidly. Moreover, tracking the streamwise evolution of Gmax

(gray stars) in Fig. 12(c) reveals highly oblique disturbances at small x given the large ωmax, with
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FIG. 12. Contour plot of Gmax in the ω–β space at Reδ = 300 for cases: (a) T09w090, (b) T09w095,
and (c) T09w105. Gopt, i.e., max{Gmax}, is denoted with a black star ( ) symbol. The black dash-dotted
lines represent Gmax/Gopt = 2/3 and Gmax/Gopt = 1/3, whereas the gray dashed lines represent xmax/xopt =
1/3, xmax/xopt = 1/5, and xmax/xopt = 1/8. The black square (�) symbols denote max{Gmax(ω, β = 0)},
whereas the gray star ( ) symbols denote max{Gmax(xmax/xopt = 1/3)}, max{Gmax(xmax/xopt = 1/5)}, and
max{Gmax(xmax/xopt = 1/8)}.

the initial disturbance no longer resembling a streamwise vortex. At large x, similar disturbance
shapes as in Fig. 6 are recovered. This behavior aligns with previous findings for ideal gas at
M∞ = 5.0 [23].

In Fig. 13(a), a comparison of optimal and suboptimal energy amplification over the stream-
wise distance is presented. The global optimal transient growth, marked by a black star symbol
in Fig. 12(c), is considered alongside the largest suboptimal transient growths, peaking at x =
[xopt/3, xopt/5, xopt/8] [gray star symbols in Fig. 12(c)]. Notably, at x ≈ 52 from the initial loca-
tion, the local maximum energy amplification Gmax(xmax/xopt = 1/8) exceeds the optimal energy
amplification at xopt by a factor. This signifies a near-optimal amplification of Gmax/Gopt ≈ 0.43
at a distance eight times shorter than xopt, highlighting the relevance of suboptimal energy growth.
Recalling the analysis of the oblique perturbations in Sec. IV B 4, an analysis of the initial condition
yielding maximum suboptimal gain at xmax/xopt = 1/8, denoted as g(xmax/xopt = 1/8) in Fig. 13(a),
is performed. At this location, the suboptimal spanwise wave number and frequency are β = 0.38

FIG. 13. Case T09w105. (a) Over the streamwise direction x: envelope of the largest suboptimal tran-
sient growth at xmax/xopt = 1/8 ( ), xmax/xopt = 1/5 ( ), xmax/xopt = 1/3 ( ), suboptimal transient growth
g(xmax/xopt = 1/8) of the optimal perturbation ( ), and envelope of the (global) optimal transient growth at
ωopt = 0.013 and β = 0.45 ( , black star indicates the global maximum as in Fig. 12(c)]; the gray dotted
line indicates the location of the maximum energy growth [gray star as in Fig. 12(c)]. (b) Contours of the
output streamwise velocity perturbations corresponding to the black dotted line g(xmax/xopt = 1/8) (x-y plane
at z = 0).
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(a) (b)

FIG. 14. Streamwise-independent disturbances. Energy amplification G(x)/Re2
δ over the streamwise dis-

tance x/Reδ at β = βopt (Reδ = 300) and ω = 0. Lines in (a): T09w095, T09w105, T09w090, T11w120. Lines
in (b): T11w105, T11w095, T11w110, T09w085. Symbols: circle (◦) (Reδ = 300), asterisk (� ) (Reδ = 1000),
triangle (�) (Reδ = 3000). Cases T09w090, T11w120, T11w110, T09w085 are displayed without symbols for
better representation, but they also obey the scaling. In the insets, Gmax/Re2

δ is marked by a colored star ( )
symbol.

and ω = 0.204, respectively. In Fig. 13(b), a strong tilting of the flow structures characteristic of
the Orr mechanism is noticeable, resulting in larger spanwise velocity components compared to
those in Fig. 10. This leads to oblique structures with a propagation angle � of approximately 42◦,
in contrast to the nearly streamwise-independent global optimal structures in Figs. 9(b) and 9(c)
with � ≈ 2◦. This result confirms the observation of Ref. [45], where larger local optima can be
achieved at x � xopt via efficient energy extraction from the mean flow through the Orr mechanism.
As x increases and ωopt → 0, the lift-up mechanism becomes dominant, and (nearly) streamwise-
independent structures are recovered.

C. Effect of initial Reynolds number

In Sec. IV B, all investigations were performed at a constant initial Reynolds number of
Reδ = 300. For both incompressible and compressible boundary-layer flows under the ideal-gas
assumption, streamwise-independent modes scale according to Refs. [21,22,52]: for the spatial
theory, G varies quadratically with the local Reynolds number, and x scales linearly with Reδ .
Thus, a similar analysis is performed for the nonideal gas cases in Table I. The optimal energy
amplification is calculated for initial Reynolds numbers Reδ = 300, 1000, and 3000, using the same
βopt at Reδ = 300 and ω = 0. Figs. 14(a) and 14(b) illustrate the scaling relations for cases with
wall heating from a liquidlike free stream and wall cooling from a gaslike free stream, respectively.
Curves at different Reδ collapse for the same temperature difference, confirming the scaling law’s
validity not only at subcritical and supercritical temperatures but also with the presence of strong
nonideality across the Widom line.

1. Transcritical wall heating: Scaling laws

The transcritical case T09w105, previously identified with streamwise-modulated streaks at
Reδ = 300, is further examined. In Figs. 15(a) and 15(b), the optimal frequency ωopt and optimal
location topt are plotted against the initial Reynolds number for the optimal amplification Gopt shown
in Fig. 15(c). As Reδ increases, the optimal energy amplification shifts to lower frequencies, while
the spanwise wave number remains nearly unaltered (not displayed here for the sake of brevity). This
shift can be interpreted as a reduction in the Orr mechanism, with the mere lift-up effect becoming
dominant as ω → 0. The decrease in ωopt can be well approximated by ωopt ∝ Ren

δ , with n = −1,
similar to the relation ωopt ∝ Re−0.8

δ obtained by Ref. [49] when including nonparallel effects. This
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(a) (b) (c)

FIG. 15. Case T09w105: (a) optimal frequency, (b) optimal location, (c) optimal energy amplification. The
dashed black lines indicate the power-law approximations with corresponding exponent n.

trend suggests that optimal perturbations have zero frequency in the inviscid limit of Re → ∞ [49].
Moreover, power laws for Gopt and xopt, akin to those for streamwise-independent perturbations
(see Fig. 14), hold even when the Orr mechanism is at play. Hence, the relations xopt ∝ Reδ and
Gopt ∝ Re2

δ are valid regardless of the underlying physical mechanism. At Reδ = 50 and 1000, the
optimal perturbations are presented in Figs. 16(a), 16(b) and 16(c), 16(d) respectively. As expected,
the spanwise and wall-normal velocity components are most pronounced initially. However, a
notable input streamwise velocity amplitude at Reδ = 50, especially near the Widom line, highlights
the influence of the Orr mechanism at low Reynolds numbers. In contrast, at Reδ = 1000, the
lift-up effect predominates, with ûin ≈ 0. Additionally, examining the output spanwise velocity
perturbation ŵout reveals that at Reδ = 50 with ωopt � 0, the Orr mechanism significantly amplifies
the spanwise velocity, consistent with Ref. [53].

Recalling the streaks’ shape in Fig. 11 and the evolution of the optimal frequency in Fig. 15,
the propagation angle of the oblique streaks likely depends on the initial Reynolds number. To
explore this, snapshots of the resulting optimal streak tangential velocity | V ′

res| = √
u′2 + w′2 on an

x-z plane are illustrated in Figs. 17(a), 17(e) 17(h), Figs. 17(b), 17(f) 17(i), and Figs. 17(c), 17(g)
17(j) at Reδ = 50, 300, and 1000, respectively. Optimal perturbations are obtained with β = βopt in
Figs. 17(a)–17(c), with β = −βopt in Figs. 17(e)–17(g), and with β = ±βopt in Figs. 17(h)–17(j).
To calculate the streaks’ propagation angle tan(�) = βopt/α, the optimal spanwise wave number is
derived from Gopt (βopt, ωopt ). The streamwise wave number α is extracted as follows: the spatial
evolution of the wall-normal maximum of the streamwise perturbation velocity is evaluated at at
z = 0 [see plane D in Fig. 9(b)], determining the streamwise wavelength λx from the wave period of
the oscillating streamwise velocity, and thus α = 2π/λx. This method achieves a good agreement

(a) (b) (c) (d)

FIG. 16. Case T09w105. Wall-normal profiles of optimal input (a), (c) and output (b), (d) disturbances
(real part) at two different input Reynolds numbers: (a), (b) Reδ = 50, (c), (d) Reδ = 1000. The boundary-layer
thickness and the location of the Widom line are indicated by δ99 and yWL, respectively.
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FIG. 17. Case T09w105. In panels (a)–(c) and (e)–(j), contour plots in the x-z plane (y = 0.77) of the
resulting streaks’ tangential velocity | V ′

res|: (a), (e), (h) Reδ = 50, (b), (f), (i) Reδ = 300, and (c), (g), (j) Reδ =
1000; (a)–(c) β = βopt, (e)–(g) β = −βopt, and (h)–(j) β = ±βopt . The arrow represents the velocity vector
with propagation angle �. In panel (d), development of the streaks’ propagation angle � as a function of the
initial Reynolds number. The dashed black line indicates the power-law approximation with exponent n = −1.

between the calculated � and the actual streaks’ orientation. Repeating the procedure at different
Reδ , the dependence of � on the Reynolds number is displayed on a logarithmic axis in Fig. 17(d).
As the optimization proceeds downstream, streaks progressively evolve into 2D structures due to the
frequency shift of their optimal transient growth. Since βopt remains nearly unchanged while ωopt

scales as Re−1
δ , the propagation angle � follows the same power law, approaching zero as Reδ →

∞. Note that this analysis uses a locally parallel spatial optimization procedure, so generalizing the
actual streak structure to the entire flat-plate distance requires advanced nonlocal methods, such as
a PSE-based formulation [24,35]. As highlighted in Fig. 9(c), oblique streaks can have both positive
and negative propagation angles, owning the same patterns, with their superposition in Figs. 17(i)–
17(k) depending on the initial Reynolds number. When moving downstream, the checkerboard wave
pattern stretches due to a larger streamwise wave number.

2. Transcritical wall heating: Role of Mode II

To understand the frequency shift in the optimal energy amplification for the transcritical wall-
heating case T09w105, we analyze the underlying eigenspectrum, forming the eigenvector basis for
matrix F (see Sec. II C 3), used in calculating the energy growth G in Eq. (30). Figures 18(a)–18(c)
show the eigenspectra at Reδ = 50, 300, and 104 with the corresponding ω = ωopt, obtained by
solving the eigenvalue problem in Eq. (14). As identified by Ref. [8], two discrete modes (Mode
I and II), here damped, appear when the base-flow temperature crosses the Widom line from a
liquidlike free-stream to a gaslike wall. Mode I, resembling the Tollmien-Schlichting mode, always
exists, regardless of the thermodynamic regime. In Figs. 18(a)–18(c), the only continuous branches
at M∞ = 10−3 belong to the vorticity and entropy modes (indicated by the vertical dash-dotted line
with α = ω). For 3D disturbances, i.e., β = βopt > 0, two vorticity modes and one entropy mode
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FIG. 18. Case T09w105. Eigenspectrum at (a) Reδ = 50, (b) Reδ = 300, and (c) Reδ = 104 (higher mesh
resolution needed), ω = ωopt. Blue and red dots represent Mode I and II, respectively. The two modes with
the largest contribution to the optimal growth are circled in purple. The black dash-dotted line refers to the
continuous spectra according to Ref. [54]. In panel (d), the optimal energy amplification is plotted over the
local Reynolds number for the full spectrum (blue line); note that G for the full spectrum without Mode II (red
line) and full spectrum without Mode I and II (yellow line) is not anymore Gopt for these cases. In panel (e), the
maximum energy amplification is plotted over the frequency for the full spectrum (blue line with Gopt marked
by a blue ( ) symbol), full spectrum w.o. Mode II (red line), and full spectrum w.o. Mode I and II (yellow
line). Gopt of case T09w095 (marked by a black (�) symbol.

are found in agreement with Ref. [54]. When moving downstream, the continuous branches become
more distinct, and the two discrete modes approach the vorticity/entropy modes. At Reδ = 104, in
fact, both Mode I and II nearly synchronize with the continuous spectrum at a phase velocity of
cr ≈ 1. As synchronization progresses from Reδ = 50 to 104, the two eigenmodes contributing to
the largest optimal amplification are tracked [see purple circles in Figs. 18(a)–18(c)], which are
computed via the right singular eigenvector associated to the largest singular value of F�F−1 in
Eq. (30). The modes with the highest transient-growth contribution are consistently Mode I and
II, indicating that, regardless of the initial Reynolds number, these two slowly decaying modes are
the main contributors to energy amplification, while the other modes in the continuous spectrum
decay rapidly and play a minor role. For ideal gas at M∞ = 5.0, a similar process for discrete
modes was witnessed by Ref. [23], where optimal disturbances were oblique for x < xopt, unlike
the continuous-spectrum interaction in Ref. [14]. However, in Ref. [23], the least-damped discrete

083901-24



TRANSIENT GROWTH IN DIABATIC BOUNDARY LAYERS …

mode corresponds to Mack’s second mode, which differs from the current Mode II in supercritical
fluids [8].

Since transient growth is mathematically linked to the nonorthogonality of the eigenvectors in
the initial value problem, analyzing the underlying eigenspectrum is essential for our study [45].
Reference [52] notes that the individual and least-damped Orr-Sommerfeld mode can interfere with
the continuous branches, leading to the largest energy amplification. Therefore, we investigate how
the two discrete least-damped modes contribute to transient growth and energy amplification in a
spatial framework. First, Gopt at finite βopt and ωopt, based on the full spectrum of Figs. 18(a)–18(c),
is shown by a blue line in Fig. 18(d), coinciding with Fig. 15(c). Next, Mode II is excluded from
the optimization, producing a modified eigenspectrum similar to the nontranscritical cases. With
the same optimal frequency and spanwise wave number, the modified optimal amplification Gw.o.II

[red line in Fig. 18(d)] is calculated. Excluding Mode II results in a significant drop in G, with
Gopt/Gw.o.II ≈ 5. Discarding both Mode I and II yields the energy amplification Gw.o.I+II [yellow
line in Fig. 18(d)], which experiences a slight decrease compared to Gw.o.II. Hence, the substantial
drop in G is primarily due to the increase in nonideality when crossing the Widom line, and conse-
quently, the presence of Mode II. Figure 18(e) displays the maximum energy amplification over the
frequency at a constant spanwise wave number of β = βopt. Omitting Mode II from the initial value
problem shifts the peak optimal growth [blue star ( ) symbol] from finite frequency values (blue
line) to ω = 0 (red line), resembling nontranscritical cases in Fig. 3, where streamwise-independent
disturbances were found. Comparing Gopt,w.o.II at ω = 0 with Gopt of case T09w095 (black (�)
symbol) reveals similar values, reflecting the spectra similarity.

Physically, considering the results from Secs. IV A and IV B in relation to Mode II, one
might infer that the Orr mechanism disappears once Mode II is omitted from the eigenspectrum.
Nevertheless, even in the nontranscritical cases where Gopt is at ω = 0, the Orr mechanism is
present at ω > 0 [48], though it results in suboptimal energy growth (see Fig. 12). This is typical of
wall-bounded shear flows, where the dominant energy growth is associated with 2D streaks [46]. In
unbounded infinite-shear flows, the combination of Orr and lift-up mechanism has been revealed to
be optimal, as transient growth is inherently three-dimensional relying on the interplay of these two
mechanisms [55]. In terms of modal analysis, with the appearance of Mode II and its high contribu-
tion to transient growth, an additional degree of nonorthogonality is introduced [14], enhancing
the interaction, already for suboptimal energy growth (see Fig. 12), between the lift-up effect
and Orr mechanism. The latter significantly amplifies the spanwise velocity [53], as observed in
Figs. 10(a)–10(c) with inclined structures in the spanwise direction and in Figs. 16(b) and 16(d) with
larger ŵout at lower Reynolds numbers. This behavior is supported by the cases in Table II, where
only one discrete least-damped mode is present, and the interplay of lift-up and Orr mechanism only
produces suboptimal energy growth (see Fig. 12).

D. Effect of wall temperature

The influence of wall temperature on transient growth is examined. For the nontranscritical
cases in Table II, a preliminary trend was evident in Fig. 3. In the subcritical and supercritical
regimes, wall cooling exhibits higher amplification rates than wall heating. Here, consistent with
Corbett and Bottaro [45], the influence of the nondimensional compressible momentum thickness
θ = ∫ ∞

0 ρu(1 − u) dy (see Ref. [38]) is considered, with its value given in Table I. Figs. 19(a), 19(c)
and Figs. 19(b), 19(d) plot the maximum energy amplification Gmax/Re2

θ and its distance xmax/Reθ

over the rescaled spanwise wave number βθ = βθ , respectively. Streamwise-independent modes are
considered, as they are the most nonmodally amplified perturbations in Fig. 3. The wall temperature
is varied for subcritical free-stream conditions with T ∗

∞/T ∗
pc = 0.90, as shown in Fig. 3(a), and for

supercritical free-stream conditions with T ∗
∞/T ∗

pc = 1.10, as shown in Fig. 3(b). The impact of a
diabatic wall is more pronounced in the subcritical regime [Fig. 19(a)], where both wall cooling
and wall heating cause a greater increase in G than in the supercritical regime of Fig. 19(c). As θ

decreases with increasing T ∗
w/T ∗

∞ in both regimes, the highest Gmax/Re2
θ occurs with wall heating.
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(a) (b)

(c) (d)

FIG. 19. Subcritical and supercritical regime. Maximum energy amplification Gmax/Re2
θ and its distance

xmax/Reθ at different T ∗
w /T ∗

pc: (a), (b) T ∗
∞/T ∗

pc = 0.90, (c), (d) T ∗
∞/T ∗

pc = 1.10. The optimal amplification Gopt is
indicated with a colored star (� ) symbol.

Notably, in the supercritical regime, the lowest Gopt/Re2
θ is found not with T ∗

w/T ∗
∞ = 1.0 but with

a slightly negative wall-temperature gradient. Reference [45] noted the universal behavior of the
momentum thickness scaling for a Falkner-Skan boundary layer. In fact, with a θ scaling, the optimal
spanwise wave number βθ,opt was independent of the mean-flow pressure gradient, a behavior
nearly replicated in Fig. 19(a) for a liquidlike free-stream, where βθ,opt ranges from 0.25 to 0.29.
Even more noteworthy, tmax/Reθ exhibits nearly exact scaling with βθ in both regimes [Figs. 19(b)
and 19(d)]. A similar investigation is conducted for the transcritical wall-heating case T09w105,
previously shown in Fig. 3(d). Here, the free-stream temperature is constant at T ∗

∞/T ∗
pc = 0.90,

while the wall temperature increases from T ∗
w/T ∗

pc = 1.01 to T ∗
w/T ∗

pc = 1.10 in the gaslike regime.
Consequently, the momentum thickness θ decreases from 0.533 to 0.403, and the height of the
Widom-line crossing relative to the boundary-layer thickness, i.e., yWL/δ99, rises. Figures 20(a)
and 20(b) present results at four different wall temperatures. Note that optimal growth shifts to
finite frequencies just after the Widom is crossed, with streamwise-modulated streaks observed
up to T ∗

w/T ∗
pc = 1.10. Beyond this ratio, energy amplification at very low frequencies dominates

before Gopt is found at ω = 0. Hence, optimal streamwise-independent streaks with � = 0◦ occur
for a wall-heating factor T ∗

w/T ∗
∞ greater than 1.22. In Figs. 20(a) and 20(b), a wall-temperature

increase above T ∗
pc no longer follows the θ scaling as in Figs. 19(a) and 19(b). A even larger shift

of βθ,opt is observed in Figs. 20(c) and 20(d), despite good overlap in xmax/Reθ for large βθ . Here,
the free-stream temperature is constant at T ∗

∞/T ∗
pc = 1.10, while the wall temperature varies from

T ∗
w/T ∗

pc = 0.99 to T ∗
w/T ∗

pc = 0.90 in the liquidlike regime. The momentum thickness θ increases
from 0.803 to 1.173, with the height of the Widom-line crossing increasing due to wall cooling.
Note also that the boundary-layer thickness grows with stronger transcritical wall cooling, achieving
a similar growth of the Widom-line crossing with the same �T = |T ∗

∞ − T ∗
w | for both transcritical

wall heating and cooling. However, wall-normal gradients of base-flow properties at the Widom
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(a) (b)

(c) (d)

FIG. 20. Transcritical regime. Maximum energy amplification Gmax/Re2
θ and its distance xmax/Reθ at

different T ∗
w /T ∗

pc: (a), (b) T ∗
∞/T ∗

pc = 0.90, (c), (d) T ∗
∞/T ∗

pc = 1.10. The optimal amplification Gopt is indicated
with a colored star (� ) symbol.

line, e.g., |∂ρ̄/∂y|WL, are larger for the transcritical wall-cooling case for the same �T , leading
to larger Gopt, scaled with Re2

δ . Overall, it is evident that with strong nonideality the momentum
thickness is no longer the universal scaling parameter in transient growth.

To highlight the influence of transcritical wall heating on the optimal perturbations, the wall-
normal profiles of optimal input and output disturbances at T ∗

w/T ∗
pc = 1.01 and T ∗

w/T ∗
pc = 1.15 are

displayed in Figs. 21(a), 21(b) and 21(c), 21(d), respectively. The Reynolds number is Reδ = 300. At
T ∗

w/T ∗
pc = 1.01, with Gopt at ωopt ≈ 0.01, the Orr mechanism results in small but nonzero streamwise

velocity and larger spanwise velocity for the input perturbations, causing cross-stream inclination
of the perturbation structures [Figs. 10(a)–10(c)]. At T ∗

w/T ∗
pc = 1.15, optimal amplifications are

(a) (b) (c) (d)

FIG. 21. Transcritical wall heating at Reδ = 300. Wall-normal profiles of optimal input (a), (c) and output
(b), (d) disturbance at two different wall temperatures: (a), (b) T ∗

w /T ∗
pc = 1.01, (c), (d) T ∗

w /T ∗
pc = 1.15. The

boundary-layer thickness and the location of the Widom line are indicated by δ99 and yWL, respectively.
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FIG. 22. Transcritical wall heating at Reδ = 300. Isocontours of the optimal density perturbations
(�(ρ ′

out ) = ±8.0): (a) T ∗
w /T ∗

pc = 1.01 (superposition), (b) T ∗
w /T ∗

pc = 1.10 (superposition), (c) T ∗
w /T ∗

pc = 1.15.
The red dashed line indicates the optimal growth location (x = xopt).

found at zero frequency with ûin = 0 and a smaller ŵin than in Fig. 21(a). Despite the Widom
line moving away from the wall, the input disturbances’ shape remains nearly identical, as seen
in Ref. [56] for compressible ideal-gas boundary layers. However, the output profiles are greatly
affected by different transcritical wall heating. The amplitude of the density perturbation (purple
dash-dotted line) at the Widom line increases with its local base-flow gradient, with ∂ρ̄/∂y|WL at
T ∗

w/T ∗
pc = 1.15 being 1.5 times larger than at T ∗

w/T ∗
pc = 1.01, resulting in stronger density streaks.

Regarding the output streamwise velocity perturbation (yellow dotted line), its peak shifts from
the middle of the boundary layer in Fig. 21(b) to the Widom line in Fig. 21(d), due to a stronger
vortex-tilting term (|∂ ū/∂y × ∂ v̂in/∂z|) around the Widom line, driven by larger perturbation strain
rate away from the wall. Thus, the highest increase in ω̂y occurs around the Widom line, with
the secondary peak of ûout in the boundary layer’s center being less amplified compared to case
T ∗

w/T ∗
pc = 1.01. For the transcritical wall-cooling cases [Figs. 20(c) and 20(d)], similar features to

the transcritical wall-heating cases are found (not shown here for the sake of brevity). However, due
to a larger ∂ρ̄/∂y|WL, the output density perturbations exhibit significantly larger amplitudes than
the output velocity perturbations. The vortex-tilting term |∂ ū/∂y × ∂ v̂in/∂z| is greatly enhanced by
wall cooling, increasing both mean-flow vorticity and perturbation strain rate. This term peaks above
yWL, which rises as T ∗

w/T ∗
pc decreases. As a result, the wall-normal vorticity perturbation ω̂y,out shows

a similar profile to Fig. 8(c), but more pronounced around the Widom line.
Figure 22 visualizes the 3D optimal density perturbation structures for T ∗

w/T ∗
pc =

1.01, 1.10, 1.15. For the first two cases, perturbations with β = ±βopt are superimposed, while
for T ∗

w/T ∗
pc = 1.15 optimal disturbances are streamwise-independent. As T ∗

w/T ∗
pc increases to 1.10,

ωopt also increases, causing oblique structures to have a larger propagation angle and a shorter
streamwise wavelength, resulting in a strong alternate checkered wave pattern. Additionally, at
T ∗

w/T ∗
pc = 1.01, the largest density structures are confined to the Widom-line region. As the wall

temperature increases to T ∗
w/T ∗

pc = 1.10, these structures extend into the mid-section of the bound-
ary layer, exhibiting significant amplitudes. At T ∗

w/T ∗
pc = 1.15 [Fig. 22(c)], even stronger density

perturbations are present, yet they remain predominantly located around the Widom-line region.

V. COMPARISON BETWEEN MODAL AND NONMODAL GROWTH

In this study, energy amplification has been maximized at xopt, yet these locations may be too
large to justify the locally parallel assumption, as x is nondimensionalized by the Blasius length
scale δ. For every case in Table I xopt is proportional to Reδ,0, the initial local Reynolds number.
This suggests that the optimal disturbance requires O(Reδ,0 × δ) to grow from the initial location x0.
As δ ∝ √

x ∝ Reδ , the growth of the boundary-layer thickness, which is proportional to the Blasius
length scale [38], corresponds to a factor

√
xopt/

√
x0 or Reδ,opt/Reδ,0 from x0 to xopt. Consequently,

a shorter x near the leading edge is required for the same increase in δ, where the locally parallel
and boundary-layer assumption are more likely to fail. Yet, previous studies on the nonparallel
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TABLE III. Summary of the N-factor comparison between modal and nonmodal growth for subcritical
and supercritical cases. Reδ,0,N , Reδ,N , and βN indicate the initial optimal Reynolds number, the local Reynolds
number at which Nmodal exceeds Nopt, and the optimal spanwise wave number at Reδ,N , respectively. N (Reδ,N ) is
the N factor at this position, with its corresponding energy amplification Gopt (Reδ,N ) = exp{N (Reδ,N )}2. Cases
T09w090 and T11w110 are identical.

Case Reδ,0,N Reδ,N βN N (Reδ,N ) Gopt (Reδ,N )

T09w085 440 605 0.45 3.4 947
T09w090 760 1040 0.46 3.9 2314
T09w095 1470 2010 0.49 4.6 9725
T11w105 1240 1705 0.47 4.4 6966
T11w120 425 595 0.44 3.3 739

assumption [18,56] have revealed similar optimal distances to those of this study, to Ref. [46] for
incompressible flows, and to Ref. [23] for hypersonic flows. For this reason, further investigations
are not undertaken hereafter.

With large xopt, transient growth might be irrelevant for transition to turbulence due to a earlier
exponential growth of modal instabilities. Thus, it is necessary to assess which mechanism is more
likely to lead to nonlinear breakdown. To properly compare nonmodal with modal calculations,
the integral amplification N is evaluated, as G in Eq. (30) is optimized over a prescribed space
interval [14]. Hence, the integral spatial amplification rate, namely the N factor, is used. The N
factor for modal instabilities is calculated as

N =
∫ x

x0

−αi(ω/Reδ, β ) dx, Nmodal(x) = max
ω/Reδ ,β

{N (x, ω/Reδ, β )}, (34a,b)

where x0 is the streamwise location for neutral instability (branch I), and Nmodal(x) represents the
envelope of all possible modal N factors over all frequencies and spanwise wave numbers. An
analysis of the modal growth of 3D disturbances for cases in Table I is reported in Appendix G. In
summary, for all cases, the maximum growth rate at a constant frequency, i.e., maxω=const.{−αi}, is
dependent on β, and thus 2D modes are not always the most unstable. Yet, the maximum integral
amplification N is always found for 2D modes, i.e., Nmodal(x) = max∀ω{N (β = 0)}.

Contrary to modal growth, the N factor for nonmodal (optimal) growth aligns with
Refs. [23,34,35] and is expressed as

Nopt (x, Reδ,0) = 0.5 ln (G), (35)

where Nopt depends on the initial Reynolds number Reδ,0 and G is chosen as the optimal ampli-
fication Gopt. Note that, while short-distance energy amplification can be larger than Gopt (Reδ,0)
at x � xopt, Gopt is the global maximum for each varying Reδ,0. In both nontranscritical and
transcritical wall-cooling cases, ωopt is zero. However, in the transcritical wall-heating case, ωopt

varies with Reδ,0 due to a nonconstant streaks’ propagation angle [see Fig. 15(a)], so G must
be adapted in the streamwise direction. Moreover, βopt remains almost constant with respect to
the chosen Reδ,0 and is initially selected as the optimal one at Reδ,0 = 300 (see Table II) before
optimization at different Reδ,0,N (initial optimal location). For a strict comparison with integral
amplifications, the calculation of Nopt excludes modal growth, ensuring that only finite Gopt from
stable eigenmodes are considered. The envelope of Nopt, Nopt,env., represents the maximum transient
growth at each streamwise location. Despite the boundary-layer growth, nonmodal calculations
are performed under the locally parallel assumption. Nonparallel results of Ref. [56] indicate a
difference in Nopt of only 0.4–0.5 [23], which is deemed acceptable for comparing to modal growth.

Table III summarizes the comparison between nonmodal and modal growth for the non-
transcritical cases. Transient growth, present in the subcritical flow region below the critical
Reynolds number, achieves a maximum N factor of 4.6 up to Reδ = 2000, corresponding to energy
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(a) (b)

FIG. 23. N-factor calculation: Nmodal ( ) and ( ) are the N factors obtained from Mode I and II,
respectively, according to the modal stability analysis; Nopt ( ) is the N factor corresponding to transient
growth, and Nopt,env. ( ) is the envelope of Nopt. (a) T09w105, (b) T11w095. The optimal growth originating
from the optimal initial position x0,N is indicated with a dashed blue line. The location xN at which Nmodal = Nopt

is denoted with a black star ( ). In the inset, the optimal growth is varied over the spanwise wave number (black
arrow); black dashed line illustrates the maximum optimal growth at βN .

amplifications of about 104 [i.e., G = exp(N )2]. This occurs only when the wall is heated in the
liquidlike regime or cooled in the gaslike regime towards the Widom line. Conversely, modal growth
dominates the transition to turbulence once the wall is cooled in the subcritical regime or heated in
the supercritical regime. Accurate transition predictions require knowledge of the initial disturbance
energy and the underlying receptivity process. N values for nonlinear breakdown or transition
to turbulence depend on various factors, such as disturbance sources [23]. For instance, transient
growth can be significant in noisy environments with high free-stream turbulence levels, defined as
Tu [34], or discrete wall roughness elements [57]. While the disturbance structures here are similar
to those in ideal-gas studies, accurate analogies are limited due to a lack of transition experiments
and unknown receptivity mechanisms in boundary layers at supercritical pressure. Hence, it remains
uncertain whether transient growth is critical for the cases in this study.

The analysis in Table III is also applied to the transcritical cases in Fig. 23. For case T09w105,
Nopt calculations involve the modification of ωopt as a function of Reδ,0, as illustrated in Fig. 15(a).
Overall, the transcritical cases exhibit significantly stronger modal growth than the nontranscritical
cases. With transcritical wall heating (case T09w105), the highly unstable Mode II, resulting from
inviscid instability [see GIP in Fig. 2(b), despite the fuller velocity profile], is present (yellow line).
Mode I (red line) is also more unstable than its counterpart in the liquidlike regime, given the same
wall-to-free-stream temperature ratio T ∗

w/T ∗
∞ = 1.167. For case T09w105, larger growth rates of

Mode II compared to Mode I and the low nonmodal energy amplification let the modal instabil-
ity dominate further downstream around Reδ ≈ 590. This suggests that at these thermodynamic
transcritical conditions, growth occurs below the critical Reynolds number (also called subcritical
growth in hydrodynamic stability theory), but with modest amplification rates. As noted for the
nontranscritical cases, transient growth might be critical only if a trivial analogy is drawn with the
other ideal-gas transient-growth studies.

When the wall temperature is cooled over the Widom line (case T11w095), an even stronger
modal instability, also of inviscid nature, is found. In this transcritical wall-cooling case, only
one mode is unstable regardless of frequency and Reynolds number. The GIP moves away from
the wall, due the immense viscosity gradient at the wall [12], while the ū(y) profile becomes
inflectional above the Widom line, leading to a strong inviscid instability. As shown in Fig. 23(b),
the exponential growth (yellow line) surpasses the algebraic growth near the flat-plate leading edge
due to this inviscid instability. Thus, subcritical disturbance growth is irrelevant here. Note that
the boundary-layer assumption may be inadequate here due to leading-edge effects. Regarding the
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TABLE IV. Summary of the N-factor comparison between modal and nonmodal growth for transcritical
cases. Reδ,0,N , Reδ,N , and βN indicate the initial optimal Reynolds number, the local Reynolds number at which
Nmodal exceeds Nopt, and the optimal spanwise wave number at Reδ,N , respectively. N (Reδ,N ) is the N factor at
this position, with its corresponding energy amplification Gopt (Reδ,N ) = exp{N (Reδ,N )}2.

Case Reδ,0,N Reδ,N βN N (Reδ,N ) Gopt (Reδ,N )

T09w105 420 590 0.53 3.5 1097
T11w095 30 52 0.40 1.7 30

optimal spanwise wave number in the insets of Fig. 23, one can recognize that the optimal N factor
is not affected by a β change. A summary of the N-factor analysis is provided in Table IV.

Figure 24 presents a final comparison of all supercritical cases, with Fig. 24(a) for a liquid-
like free stream (cases T09w090, T09w085, T09w095, T09w105) and Fig. 24(b) for a gaslike
free stream (cases T11w110, T11w105, T11w120, T11w095). Nonmodal growth is represented
as straight line on a logarithmic scale. Nontranscritical cases exhibit Nopt,env. factors that are
unaffected by minor wall-to-free-stream temperature variation near the Widom line. For the tran-
scritical cases, cooling over the Widom line in Fig. 24(b) significantly increases Nopt,env., with
Nopt,env.,T11w095/Nopt,env.,T11w110 ≈ 1.34. Nevertheless, this rise is even more pronounced for modal
growth (see dashed lines). When examining the N factors in Fig. 24 for a Falkner-Skan boundary
layer with adverse (APG, Hartree parameter βH = −0.1) and zero pressure (ZPG) gradient as in
Ref. [34], three main conclusions arise. First, an increase in the APG has a similar effect on transient
growth as heating or cooling over the Widom line in a ZPG boundary layer at supercritical pressure,
with transcritical wall cooling revealing a larger amplification. In case T11w095, exponential growth
with a strong inviscid instability dominates from the leading edge. Second, Ref. [34] predicts that
with increased APG, the required level of free-stream turbulence for bypass transition decreases.
In fact, when Tu > 3, Rex,tr was seen to shift to values below 105. If confirmed for a nonideal
boundary-layer flow at supercritical pressure, then transient growth could be critical for transition
in case T09w095, as nonmodal growth in Fig. 24(a) dominates over modal growth below Rex ≈
3 × 105. Last, comparing the ZPG case from Ref. [34] with case T09w090 reveals a difference of
N ≈ 0.4–0.5, demonstrating the robustness of the locally parallel assumption used in this study for
nonmodal optimization against an adjoint-based optimization algorithm with parabolized stability
equations.

(a) (b)

FIG. 24. Envelope curves of optimal nonmodal and modal growth: (a) liquidlike free-stream cases with
T ∗

∞/T ∗
pc = 0.90, (b) gaslike free-stream cases with T ∗

∞/T ∗
pc = 1.10. Nopt,env.: continuous line, Nmodal: dashed

line. For case T09w105, one common modal N factor is calculated for Mode I and II. The black circle (◦) and
square (�) symbols refer to the adverse and zero pressure gradient cases of Ref. [34], respectively.
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VI. CONCLUSION

Transient growth of diabatic flat-plate boundary layers is examined at supercritical pressure. Su-
percritical carbon dioxide (CO2) at a constant pressure of 80 bar (with a critical pressure of 73.9 bar)
is selected as a representative nonideal fluid in the proximity of the Widom line. Optimal energy
amplifications and disturbances are calculated in the spatial framework by means of a singular
value decomposition of the locally parallel, linearized compressible Navier-Stokes equations. To
account for nonideality and strong thermo-physical property variations around the Widom line, a
novel nonideal energy norm is derived in Sec. II such that pressure work is eliminated. The new
norm is equal to Chu’s [41] and Mack’s [17,42] norms under the ideal-gas assumption.

This study explores the subcritical, supercritical, and transcritical regimes (relative to the
pseudoboiling temperature of CO2, T ∗

pc = 307.7 K), determined by prescribing free-stream and
wall temperatures at a fixed Mach number of 10−3 (see Sec. III). In the subcritical (liquidlike:
T ∗

∞/T ∗
pc = 0.90 with T ∗

w < T ∗
pc) and supercritical (gaslike: T ∗

∞/T ∗
pc = 1.10 with T ∗

w > T ∗
pc) regimes,

wall cooling enhances transient growth. For the subcritical cases, the optimal streamwise distance
xopt decreases, while the optimal spanwise wave number βopt increases as the wall temperature
approaches the Widom line. Conversely, in the supercritical regime, the opposite trend is observed.
In these two weakly nonideal regimes, the maximal energy amplification and its distance scale best
with the compressible momentum thickness, in agreement with the Falkner-Skan boundary layer
of Ref. [45] under the ideal-gas assumption. The optimal energy amplification is detected at finite
spanwise wave numbers, yet the optimal frequency is zero, indicating that the optimal disturbances
correspond to counter-rotating vortices, which evolve into streamwise-independent streaks. This
corresponds to the well-known lift-up mechanism, in agreement with ideal-gas results. Moreover,
scaling laws, e.g., G ∝ Re2

δ and xmax ∝ Reδ , consistently hold.
When the wall temperature crosses the Widom line (transcritical wall-heating: T ∗

∞/T ∗
pc = 0.90

with T ∗
w > T ∗

pc; transcritical wall-cooling: T ∗
∞/T ∗

pc = 1.10 with T ∗
w < T ∗

pc), optimal structures are
no longer exclusively streamwise independent. In the transcritical wall-heating regime, a finite
optimal frequency suggests the involvement of the Orr mechanism. In fact, analysis of the Reynolds
stress reveals that optimal disturbance structures are initially tilted against the mean shear before
being reoriented to it. A strong contribution of the Orr mechanism is observed for suboptimal
transient growth, where larger local energy-amplification peaks than the global optimal one can be
achieved for x � xopt. This leads to highly oblique suboptimal disturbance structures, which do not
originate from a streamwise vortex. The Orr mechanism exists also for perturbations with a negative
spanwise wave number. Thus, the resulting superposition forms a checkerboard pattern, analogous
to the oblique-transition mechanism in Ref. [51]. Moreover, streamwise-modulated streaks in the
transcritical wall-heating regime exhibit significant streamwise velocity disturbances and strong
thermal components (ρ̂ and T̂ ) around the Widom line. While similar large density streaks are
also observed in the transcritical wall-cooling regime, they are not oblique. Despite comparable
|T ∗

w − T ∗
∞|, transcritical wall-cooling yields higher optimal energy amplification rates Gopt/Re2

δ .
This increase can be explained by the vortex-tilting mechanism, which highlights the alignment
of the output wall-normal vorticity with the highest wall-normal displacement above the Widom
line. Conversely, a misalignment between the two in the transcritical wall-heating regime results in
a smaller G, albeit with a secondary peak of the optimal streamwise velocity at the Widom line.

When considering the effect of initial Reynolds number, scaling laws hold for both optimal
streamwise-independent and -modulated disturbances. Particularly, in the case of optimal oblique
streaks in transcritical wall-heating, we observe a dependency of the optimal frequency ωopt on
Re−1

δ , while the optimal energy Gopt scales with Re2
δ . This implies that as Reδ → ∞, the Orr mech-

anism is not active, leading to the recovery of streamwise-independent structures. Consequently,
the streaks’ propagation angle � becomes proportional to Re−1

δ . Investigating the underlying
eigenspectrum in the transcritical wall-heating regime reveals the influence of the nonorthogonal
eigenfunctions on optimal growth. Specifically, the stable transcritical Mode II is found to actively
participate in the interplay between lift-up and Orr mechanism. If this mode is intentionally excluded
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from the optimization procedure, then both mechanisms yield a significantly reduced suboptimal
growth only, resulting in modified optimal transient growth solely associated with streamwise-
independent disturbances, growing via the lift-up mechanism.

In relation to the effect of wall temperature on transient growth, we note that the momentum-
thickness scaling is ineffective in the transcritical regime, in contrast to the nontranscritical regimes.
In the transcritical wall-heating regime, increasing the wall temperature initially shifts optimal
frequencies to higher values. However, once the Widom line moves away from the near-wall layer,
optimal energy growth is found at ω = 0. Stronger wall heating leads to a rise in the density
perturbation amplitudes around the Widom line due to greater mean-flow density gradients. In
contrast, in the transcritical wall-cooling regime, Gopt remains at ωopt = 0, while βopt slightly
increases. Notably, a 5% increase only in wall temperature can result in a 30% to 70% gain in Gopt.
Furthermore, similar optimal disturbance structures are detected when, in the transcritical regime,
the optimal perturbations are streamwise independent.

A comparison between modal and nonmodal growth across all regimes is presented in Sec. V.
Initially, the modal instability of oblique perturbations is studied for both nontranscritical and
transcritical cases. At the low Mach number of 10−3 employed in this study, 2D modes exhibit
the highest amplifications, both locally (across most of the frequency spectrum) and integrally. This
suggests that, as shown in the oblique modal stability analysis at finite Mach numbers in Ref. [8],
decreasing the Mach number (compressibility effects) shifts the largest possible local and integral
amplification from a 3D to a 2D mode, regardless of the considered thermodynamic regime at su-
percritical pressure. Notably, no critical N factors of transition have been experimentally measured
for flows at supercritical pressure so far, hence transition-prediction analogies can only be drawn
in relation to ideal-gas transient-growth results. In the nontranscritical regimes, transient growth is
marginally affected by the nonideal thermodynamic regime. Within their best-case scenarios (sub-
critical wall-heating and supercritical wall-cooling), modal growth prevails over transient growth at
amplification levels around N ≈ 4. However, in the transcritical regime, characterized by a highly
inflectional base flow (inviscid instability), modal instability dominates, especially for transcritical
wall-cooling, where no subcritical transition below the critical Reynolds number is likely to occur.
In this scenario, the increase in the nonmodal N factor, i.e., Nopt, is significant compared to the
nontranscritical wall-cooling cases, similar to the effect of an adverse pressure gradient in ideal-gas
transient-growth calculations. A similar analogy applies to transcritical wall-heating, albeit with
lower transient-growth amplifications, reaching up to N ≈ 3.5 before a strong modal amplification
emerges. Nevertheless, a critical Reynolds number of approximately 3 × 105 could be sufficiently
large to favor transition via transient growth, particularly when the level of free-stream turbulence
is high.

Discussions on the influence of an increasing reduced pressure on the N-factor comparison
indicate that, for transcritical wall-heating, transient growth is likely to be the prevailing route to
turbulence. Conversely, for transcritical wall-cooling, modal growth consistently dominates.
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APPENDIX A: SUPERCRITICAL CO2

The material-dependent parameters of CO2 are provided in Table V. The evolution of the
pseudoboiling temperature as a function of pressure and temperature is plotted in Fig. 25 along
with contours of c∗

p.
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TABLE V. Thermodynamic properties of CO2: gas constant (R∗
g), critical pres-

sure (p∗
c), and critical temperature (T ∗

c ).

R∗
g ( J/kg/K) p∗

c ( bar) T ∗
c ( K)

188.9 73.9 304.1

APPENDIX B: MODAL STABILITY: BASE-FLOW MATRICES

The base-flow matrices of Ref. [7] are adjusted for χ̄ as a function of p̄ and T̄ . Only the modified
terms in the stability equations [see Eq. (12)] are reported hereafter. For simplicity, the derivative of
a thermodynamic quantity with respect to p̄ at constant T̄ , and vice versa, is denoted as ∂/∂ p̄ instead
of ∂/∂ p̄|T̄ and as ∂/∂T̄ instead of ∂/∂T̄ | p̄, respectively. Furthermore, any occurrence of ∂/∂ρ̄ in the
matrices of Ref. [7] changes to ∂/∂ p̄ and will not be reported hereafter. The modified elements are:

Lt(1, 1) = ∂ρ̄

∂ p̄
, Lt(1, 5) = ∂T̄

∂ p̄
,

}
(B1)

Lx(1, 1) = ū
∂ρ̄

∂ p̄
, Lx(1, 5) = ū

∂T̄

∂ p̄
,

Lx(2, 1) = 1, Lx(2, 5) = 0,

Lx(5, 2) = Ec∞ p̄, Lx(5, 3) = −2Ec∞μ̄

Reδ

∂ ū

∂y
,

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

(B2)

Ly(3, 1) = 1, Ly(3, 5) = 0,

Ly(5, 1) = − 1

ReδPr∞

∂κ̄

∂ p̄

∂T̄

∂y
, Ly(5, 2) = −2Ec∞μ̄

Reδ

∂ ū

∂y
,

Ly(5, 3) = Ec∞ p̄, Ly(5, 5) = − 1

ReδPr∞

(
∂κ̄

∂y
+ ∂κ̄

∂T̄

∂T̄

∂y

)
,

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

(B3)

FIG. 25. Evolution of the pseudoboiling temperature T ∗
pc ( ) over p∗ with contours of c∗

p. Three iso-
bars ( ) are drawn: (a) T ∗

pc(p∗
c = 80 bar) = 307.7 K, (b) T ∗

pc(p∗
c = 81.15 bar) = 308.3 K, and (c) T ∗

pc(p∗
c =

84.8 bar) = 310.4 K.
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(a) (b) (c)

FIG. 26. (a) ideal gas, comparison of maximum energy amplification: M∞ = 0.5 ( ), M∞ = 1.0 ( ),
M∞ = 2.0 ( ), M∞ = 3.0 ( ), Ref. [22] marked by a colored circle ( ); (b) nonideal gas, influence of mesh
size N on the energy amplification G(x): N = 200 ( ), N = 300 ( ), N = 400 ( ); (c) nonideal gas,
influence of mesh height ymax on the energy amplification G(x): ymax = 75 ( ), ymax = 100 ( ), ymax = 150
( ).

Lz(4, 1) = 1, Lz(4, 5) = 0,

Lz(5, 4) = Ec∞ p̄,

}
(B4)

Lq′ (2, 1) = − 1

Reδ

(
∂μ̄

∂ p̄

∂2ū

∂y2
+ ∂2μ̄

∂ p̄ ∂T̄

∂T̄

∂y

∂ ū

∂y

)
, Lq′ (2, 5) = − 1

Reδ

(
∂μ̄

∂T̄

∂2ū

∂y2
+ ∂2μ̄

∂T̄ 2

∂T̄

∂y

∂ ū

∂y

)
,

Lq′ (3, 1) = 0, Lq′ (3, 5) = 0,

Lq′ (5, 1) = −Ec∞
Reδ

[
∂μ̄

∂ p̄

(∂ ū

∂y

)2 + 1

Ec∞Pr∞

∂2κ̄

∂ p̄ ∂T̄

(
∂T̄

∂y

)2

+ 1
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∂κ̄

∂ p̄

∂2T̄

∂y2

]
,

Lq′ (5, 5) = −Ec∞
Reδ

[
∂μ̄

∂T̄

(
∂ ū

∂y

)2

+ 1

Ec∞Pr∞

∂2κ̄

∂T̄ 2

(
∂T̄

∂y

)2

+ 1

Ec∞Pr∞

∂κ̄

∂T̄

∂2T̄

∂y2

]
,

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(B5)

Vxx(5, 5) = Vyy(5, 5) = Vzz(5, 5) = − κ̄

ReδPr∞
.

}
(B6)

APPENDIX C: VALIDATION: TRANSIENT GROWTH

The transient-growth analysis presented in this work is validated by reproducing the spatial
results of Ref. [22] for an ideal gas (adiabatic wall, T ∗

tot = 333 K, Pr∞ = 0.70, c∗
p/c∗

v = 1.40, ω = 0,
Reδ = 300). A good agreement is observed in Fig. 26(a) at different Mach numbers. To obtain
a grid-independent solution when using a nonideal gas, the influence of mesh size N and mesh
height ymax is investigated. A transcritical wall-heating reference case at constant supercritical
pressure is chosen: p∗

∞ = 80 bar, T ∗
∞/T ∗

pc = 0.90, isothermal wall with T ∗
w/T ∗

pc = 1.05, M∞ = 10−3,
Pr∞ = 2.11, ω = 0.013, β = 0.45, and Reδ = 300. The results, shown in Fig. 26(b) for N and
Fig. 26(c) for ymax, respectively, reveal that a value of N = 300 and ymax = 75 is necessary for mesh
independence. Hence, this numerical setup is retained throughout the nonmodal calculations in this
study.

APPENDIX D: TEMPORAL VERSUS SPATIAL TRANSIENT GROWTH

So far, spatial optimal growth has been analyzed for its simpler interpretation in experimental
facilities [22]. However, it is noteworthy to investigate whether similar nonmodal behavior is
obtained regardless of the considered optimization procedure. For the temporal analysis, initial
disturbances are optimized at t = 0 to achieve the maximum temporal energy growth at a later
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FIG. 27. Transcritical case T09w105: (a) contour plots of Gmax(ω, β ), (b) contour plots of Gmax(α, β ),
(c) contour plots of xmax(ω, β ), and (d) contour plots of tmax(α, β ). Gopt is denoted with a black star ( ) symbol.

time tmax over β and streamwise wave number α [17]. The case selected for the comparison
is the transcritical case T09w105, where oblique disturbances are optimal. Figures 27(a), 27(b)
and 27(c), 27(d) display the maximum energy amplification Gmax and the maximum location xmax

and time tmax, respectively, for both the spatial and temporal analysis of case T09w105. The
qualitative behavior of Gmax is nearly identical for low values of ω and α for both Figs. 27(a)
and 27(b). At large ω and α, the spatial framework reveals a larger suboptimal growth near the
ω axis, which is negligible in the temporal framework. In the latter, the location of Gopt, defined
as max{Gmax(α, β )}, is found at βopt = 0.48 and αopt = 0.014. This confirms the observation of
Ref. [23], in which most of the modes contributing to the optimal growth belong to the vorticity and
entropy branches of the eigenspectrum. In fact, the phase speed cph,opt, obtained as ratio between ωopt

and αopt, is nearly 1. With respect to the value of Gopt for both frameworks, a difference of about
15% is found. In conclusion, the same physical mechanisms can be observed for both temporal and
spatial analysis.

APPENDIX E: THE CHOICE OF ENERGY NORM

All nonmodal optimizations presented in Sec. IV are performed with the new energy norm
introduced in Sec. II C 2. This norm considers both the kinetic and internal energy of a per-
turbation in a nonideal gas flow. One can now question whether the energy amplification is
dependent on the choice of the norm. To answer this question and analyze the sensitivity of the
results in Sec. IV, the energy norm in Eq. (24) is modified. When choosing only the kinetic
energy, i.e., M = diag(0, ρ̄, ρ̄, ρ̄, 0), an infinite, and thus unphysical, energy amplification is
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FIG. 28. Effect of the energy norm on the energy amplification: nonideal energy norm, ideal-gas energy
norm (2), frozen internal energy norm (1), rescaled nonideal energy norm by an kinetic energy norm (3).
(a) T09w105, as a function of ω for β = βopt; (b) T11w095, as a function of β for ω = 0. The maximum
energy amplification is indicated with a colored star ( ) symbol.

achieved. Instead, the internal energy content is intentionally altered by considering: (1) frozen
internal energy, i.e., M = diag(1, ρ̄, ρ̄, ρ̄, 1), (2) internal energy according to ideal gas, e.g.,
M = diag(RgT̄ /ρ̄, ρ̄, ρ̄, ρ̄, ρ̄ cv/(Ec∞T̄ )). Another alternative, hereafter (3), is to take the nonideal
optimal perturbations obtained in Sec. II C 3 and rescale them by the kinetic energy norm. Thus,
following Eq. (30), the new optimal amplification for (3) is

G(3) = max
‖F(3)�κ(0)‖2

2

‖Fκ(0)‖2
2

, κ(0) = F−1r, (E1)

where F, �, F−1, r (right singular eigenvector) are obtained with M as in Eq. (27), whereas F(3)

is the Cholesky decomposition of A(3) = FH
(3)F(3) (with A(3),kl = ∫ ∞

0 q̂H
k M(3)q̂l dy) as a function

of the kinetic energy norm matrix M(3) = diag(0, ρ̄, ρ̄, ρ̄, 0). Energy norms based on (1) and (2)
were previously used in Ref. [7]. To account for the largest nonideal effects on the norm, the
two transcritical cases of Table I, with their optimal growth reported in Table II, are examined.
In Fig. 28(a), the maximum energy amplification Gmax(ω) at constant β = βopt, i.e., βopt = 0.45, is
shown for case T09w105. The optimal energy amplification is found, independently of the energy
norm adopted, around ω = 0.013 [marked by a colored star ( ) symbol]. The nonideal energy
norm yields the largest transient growth (blue dash-dotted line). The shape of optimal perturbations
displayed in Fig. 6 is not affected by the energy-norm modifications (not presented here for the sake
of brevity). In Fig. 28(b), the maximum energy amplification Gmax(β ) at constant ω = ωopt, i.e.,
ωopt = 0, is presented for case T11w095. Here, we notice a greater dependence on the energy norm,
especially when the internal energy is kept constant [case (1), yellow continuous line]. In this case,
there is an actual increase in the internal energy compared to the other norms. Moreover, a shift of
the maximum energy amplification is notable. Similar to the transcritical T09w105 case, the shape
of the optimal perturbations remains intact except for the density perturbations, where a smaller
ρ̂-amplitude in case (1) is witnessed. Overall, energy amplifications with the rescaled energy norm
[case (3), purple dotted line] show an analogous transient growth as the ideal-gas norm cases [case
(2), red dashed line].

APPENDIX F: INVISCID VORTICITY PERTURBATION EQUATION

The equation for the wall-normal vorticity perturbation ω′
y is obtained hereafter. The wall-

normal vorticity is split as ωy = ω̄y + ω′
y and inserted into Eq. (32). Subsequently, the following

assumptions, in agreement with Sec. II C, are drawn: (1) 2D base flow and locally parallel flow, i.e.,
ω̄y = v̄ = w̄ = 0, ∂ (·̄)/∂x = 0, ∂ (·̄)/∂z = 0, (2) base-flow wall-normal pressure gradient ∂ p̄/∂y is
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(a)

(c) (d)

(b)

FIG. 29. Slices of −αi-contours in the Reδ–ω–β (a), (b) and neutral stability curves in the Reδ–ω (c), (d)
space: (a), (c) T09w085, (b), (d) T11w105. Arrows in (c), (d) indicate a β-increase (�β = 0.05) of branch I
and II (from solid blue to solid black line). Maximum N factors are indicated in blue and are located always at
β = βmax = 0.

0, (3) linearization, i.e., q2
i = qiq j = 0. After subtraction of the base flow, the baroclinic term in

Eq. (32) becomes

1

ρ2

(
∂ρ

∂z

∂ p

∂x
− ∂ρ

∂x

∂ p

∂z

)
�⇒ 1

ρ̄2

(
∂ρ ′

∂z

∂ p̄

∂x
+ ∂ρ̄

∂z

∂ p′

∂x
− ∂ρ̄

∂x

∂ p′

∂z
− ∂ρ ′

∂x

∂ p̄

∂z

)
= 0. (F1)

Thus, the final expression of the wall-normal vorticity perturbation equation is

∂ω′
y

∂t
+ ū

∂ω′
y

∂x
= −∂v′

∂z

∂ ū

∂y
, (F2)

with absent baroclinic influence.

APPENDIX G: MODAL STABILITY ANALYSIS: OBLIQUE PERTURBATIONS

The influence of 3D perturbations on modal growth needs to be investigated for the N-factor com-
parison in Sec. V. In Ref. [8], the maximum local growth ratio, defined as max∀ω{αi,β=βmax/αi,β=0},
was calculated for an adiabatic wall at finite Eckert numbers. 2D perturbations were found to be
most unstable in the subcritical regime, whereas a maximum local-growth ratio larger than one was
obtained for oblique disturbances in the supercritical regime. In the transcritical regime, Mode I and
II were most locally amplified in 3D and 2D, respectively. In this study, a similar investigation is
undertaken with a special focus on the integral amplification rather than the local one. Stability
diagrams are first obtained in the Reδ–ω–β space up to Reδ = 2000. Cuts of Reδ–ω are then
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FIG. 30. Case T09w105. Slices of −αi-contours in the Reδ–ω–β (a), (b) and neutral stability curves in
the Reδ–ω (c), (d) space: (a), (c) Mode I, (b), (d) Mode II. Arrows in panels (c), (d) indicate a β-increase
(�β = 0.05) of branch I and II [from solid blue to dashed line in panel (c) and to dash-dotted line in panel
(d)]. Maximum N factors are indicated in blue and are located always at β = βmax = 0.

showcased at different β with isocontours of the largest N factor over all spanwise wave numbers.
Figures 29(a), 29(c) and 29(b), 29(d) exemplify nontranscritical cases T09w085 and T11w105,
respectively. Their largest growth rate in the stability diagram and their largest integral amplifi-
cation are detected at β = βmax = 0, with larger values for the subcritical wall-cooling regime.
For instance, the largest eigenvalues correspond to (cr, αi, Reδ, β ) = (0.301,−0.010, 1400, 0) and
(cr, αi, Reδ, β ) = (0.252,−0.0053, 2200, 0) for T09w085 and T110w105, respectively. The real
part of the phase velocity cr is computed as ω/αr . Note that, as illustrated in Figs. 29(c) and 29(d),
there are spanwise wave numbers at which 3D modes are locally more amplified than 2D modes.
Differently than at finite Eckert numbers [8], all nontranscritical cases at M∞ = 10−3 have their
maximum local-growth ratio and largest integral amplification for 2D perturbations. The effect of
an increasing spanwise wave number is displayed in Fig. 30 for the transcritical case T09w105.
Mode II exhibits its largest growth rate over all frequencies at β = βm = 0, while Mode I can
also be most unstable for 3D disturbances. The largest eigenvalues are found at (cr, αi, Reδ, β ) =
(0.457,−0.011, 2000, 0) and (cr, αi, Reδ, β ) = (0.312,−0.072, 2060, 0) for Mode I and II, respec-
tively. Nevertheless, Mode II is almost unaffected by a β-increase, being extremely unstable in the
considered parameter space. Hence, N factors up to 90 are achieved at Reδ = 2000. For Mode I, an
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FIG. 31. Case T11w095. Slices of −αi-contours in the Reδ–ω–β (a) and neutral stability curves in the
Reδ–ω (b) space. Arrows in (b) indicate a β-increase (�β = 0.05) of branch I (from solid blue to dash-dotted
line). Maximum N factors are indicated in blue and are located always at β = βmax = 0.

increase in β leads to a stabilization analogous to the nontranscritical cases. For case T11w095,
in Fig. 31, only one highly unstable mode is detected in agreement with Ref. [12]. It is inviscid,
given the GIP in Fig. 2(c). Similar to Mode II in the transcritical wall-heating case, this mode is
barely unaffected by a β-increase. Yet, it extends up to the flat-plate leading edge and to relatively
high frequencies. Interestingly, the largest growth rate, i.e., αi,max = −0.0946, is found at a very
low local Reynolds number of Reδ = 220 with a phase speed of cr = 0.217. With respect to the
integral amplification, we observe an N factor of 15 already at Reδ = 200. We can conclude that,
for all cases in Table I, the current modal analysis has revealed the “dominance” of 2D disturbances
at M = 10−3. Both the local amplification (over most of the frequency spectrum) as well as the
maximum local-growth ratio, and the N factor are found largest for 2D modes. Thus, these results
clearly indicate that reducing the Mach number has the effect of shifting the maximum (local and
integral) amplification from a 3D to a 2D mode independently of the considered thermodynamic
regime at supercritical pressure.

APPENDIX H: INFLUENCE OF THE REDUCED PRESSURE ON THE TRANSIENT GROWTH

The influence of the reduced pressure, pr = p∗/p∗
c , on transient growth is investigated. As one

approaches the critical point, the gradients of thermophysical properties are more pronounced near
the Widom line (e.g., c∗

p in Fig. 25), making the base flow becomes more inflectional and enhancing
modal growth [8], thus reducing the likelihood of transition below the critical Reynolds number. To
assess whether transient growth could be the critical transition mechanism, the supercritical pressure
is increased from a constant pressure of p∗ = 80 bar (i.e., pr = 1.083) to 81.15 bar (pr = 1.10) and
84.84 bar (pr = 1.15) for cases T09w105 and T11w095. Other base-flow parameters in Table I
are marginally influenced by this pressure variation due to the Mach number of M∞ = 10−3. In
Fig. 32, the base-flow profiles of d (ρ̄ dū/dy)dy decrease with increasing reduced pressure for both
transcritical cases. In this regard, the location of the generalized IP is barely modified. For case
T11w095 in Fig. 32(b) the IP location [colored star (�) symbol] shifts slightly away both from the
wall and the Widom line, where yWL ≈ yGIP. For each reduced pressure, the same analysis conducted
in Fig. 24 is performed and displayed in Fig. 33. First, regardless of the selected supercritical
pressure, the same optimal growth mechanisms for the transcritical regime previously analyzed
in Sec. IV B are observed: lift-up and Orr mechanism for T09w105, and only lift-up effect for
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FIG. 32. Generalized inflection point of the boundary-layer profile at different reduced pressures (pr =
1.083, 1.10, 1.15): (a) case T09w105, (b) case T11w095. Note that δ99 is not altered by a pressure change.

T11w095. Figure 33(a) presents the envelope curves for modal and nonmodal growth, verifying the
robustness of transient growth with respect to a thermodynamic variation. Nopt,env is slightly affected
by the pressure change, negligible for the transcritical wall-heating case T09w105. Regarding modal
growth in case T09w105 [Fig. 32(a)], the base-flow profile becomes less inflectional with increased
reduced pressure, stabilizing Mode II, while Mode I remains nearly unchanged. At pr = 1.15, Mode
I dominates until Rex ≈ 2.2 × 106, marked by a kink in the N-factor curve [colored (�) symbol].
Subsequently, the Reynolds number Rex,N at which Nmodal = Nopt is displayed in in Fig. 33(b).
Rex,N grows linearly by a factor of 3 from pr = 1.084 to 1.15 (red line), but nonmodal amplification
remains moderate. In case T11w095, a similar behavior is witnessed [Fig. 32(b)]. The increase
of the inflectional location, i.e., d2ū/dy2 = 0, weakly stabilizes modal instability, while nonmodal
amplification is almost unaffected by the pressure change. Hence, Rex,N more than doubles from

FIG. 33. Effect of pr-increase on the envelope curves of optimal non-modal and modal growth: case
T09w105 ( ), case T11w095 ( ). In (a), pr = 1.083: continuous lines, pr = 1.10: dashed lines, and
pr = 1.15: dash-dotted lines. In (a), black arrows indicate an increase in reduced pressure. The black circle
( ) symbol refers to the adverse pressure case of Ref. [34]. In (b), N-factors are indicated at the Reynolds
number Rex,N where Nmodal = Nopt.
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pr = 1.083 to 1.15 (blue line), but near the flat-plate leading edge, Nopt remains still too low
for transition below the critical Reynolds number. In conclusion, for a transcritical wall-cooled
boundary layer, modal growth dominates near the critical point. For transcritical wall-heating, with
large free-stream disturbances as in Ref. [34], bypassing the exponential growth of Mode I and II is
more likely when the gradients of thermophysical properties are no longer abrupt.
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