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Electroconvection (EC) turbulence is an important branch of electrohydrodynamics
(EHD). Because the turbulence model for EHD has not been well studied, in this work
we apply the large eddy simulation (LES) to electrohydrodynamic turbulence based on
the lattice Boltzmann method (LBM). The eddy-viscosity methods (the Smagorinsky and
wall-adapting local eddy-viscosity models) are used to model the momentum equation, and
the charge transport equation is modeled with the help of the turbulent Schmidt number.
Three EC cases are chosen to test the reliability of the LBM-LES models, including two-
dimensional (2D) EC turbulence in square and rectangular cells, and three-dimensional
(3D) EC turbulence between two parallel plates. For 2D cases, the LES results are com-
pared to the results of different numerical methods, including direct numerical simulation
and LES. The long-time statistics of maximum velocity, charge current and its probability
distribution, and flow evolution are used to validate the 2D EC turbulence. We also analyze
the flow patterns and average characteristics for 3D cases. The LES results could capture
the main flow features of EC turbulence for all cases, and demonstrate a good agreement
when compared with references. The mentioned LBM-LES models have demonstrated
reliability and high computational speed, making them suitable for further simulations of
electrohydrodynamic turbulence.

DOI: 10.1103/PhysRevFluids.9.083703

I. INTRODUCTION

Turbulence appears in ubiquity and affects the performance of many industrial devices [1].
Turbulent convection can be triggered by driven forces coupled with multiphysical fields, like
heat convection [2–7], magnetohydrodynamic flow [8–11], and electrohydrodynamic flow [12–16].
Among them, numerous engineering applications, for example, electrostatic spraying [17,18], elec-
trohydrodynamic enhancement of phase-change heat transfer [19–21], demineralization [22–25],
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and electrohydrodynamic ion-drag pumps [26–28], are derived from electrohydrodynamic phenom-
ena. Electrohydrodynamics (EHD) is an interdisciplinary subject that involves interaction between
hydrodynamics and electric force at least [20]. The study of EHD encompasses the investigation of
practical applications and the exploration of in-depth physical mechanisms. An important aspect of
the latter is to study the complicated fluid physics in EHD, including flow stability, transition, and
turbulence.

Electroconvection (EC), a classic model of EHD, is employed to investigate the fluid mechanics
in electrodriven flow. The electrodriven convection may be induced when a strong enough bias
electric field is imposed on metal-liquid interfaces [12,29,30]. Free electric charge is generated by
charge injection, and the charge is driven by the electric force and flow convection, causing strong
coupling between multiscale forces [31]. Castellanos [29] reviewed the charge injection EC flow
elaborately in their work, including important results of theoretical analysis and experiment. These
foundational conclusions provide ideas for further studying charge injection EC turbulence.

EC turbulence is an important topic in electrohydrodynamic study. Hopfinger and Gosse [32] and
Lacroix et al. [12] performed related experiments on electrohydrodynamic turbulence in early
studies, deriving several scaling laws and characteristic scales of charge injection turbulence. Zhang
[33] carried out experimental studies to investigate temporal, spatial, spectral, and correlational
electro-optic signatures of turbulent EC. Their study provides some new possibilities in technique
to further study EC turbulence. Tsai et al. [14,15] studied electrohydrodynamic turbulence in annular
film electroconvection, comparing the results with Grossmann-Lohse theory in heat buoyancy-
driven turbulence [34] to construct a unified scaling law. Varshney et al. [35] and Wang et al.
[16,36,37] investigated the velocity power spectrum of turbulence in the electrokinetic flow, finding
an additional length scale in electrohydrodynamic turbulence.

Besides experiments, numerical simulation is a powerful tool in electrohydrodynamic turbulence
study. Kourmatzis and Shrimpton [38] performed a series of numerical works on EC turbulence,
showing the basic phenomena of three-dimensional (3D) turbulence. Traoré and Pérez [39] investi-
gated the influence of charge mobility and electric Rayleigh number on two-dimensional (2D) EC,
which introduces a high-driven parameter study of EC. Recently, Wang et al. [40], Huang et al. [41],
and Zhang et al. [42] studied the 2D EC turbulence in different geometries and boundary conditions,
involving the evolution of power spectrum density, electric Nusselt number, and energy budget in
the EC system. However, we notice that the previous numerical studies of EC turbulence are all
based on direct simulation without the help of any turbulence models, which restricts the study area
of EC simulation.

Although several numerical studies on EHD involve a significant interplay between the electric
field and turbulence, the application of electrohydrodynamic turbulence models is confined to a
few scenarios. Kourmatzis and Shrimpton [43] demonstrated the Reynolds stress method (RSM)
close in free electroconvection, resulting in a reasonable accuracy. To the best of the authors’
knowledge, there are no further related studies. It is well known that there are various turbulence
models after long years of development. The most typical types are, e.g., Reynolds-averaged
Navier–Stokes equations (RANS) and large eddy simulation (LES) [1,44]. The former describes
the average features of turbulence. RANS-like models contribute excellently to industry. However,
for investigating the particular hydrodynamics mechanisms in electrohydrodynamic flow, we need
a more detailed description of the flow. Therefore, it is essential to develop and take advantage of
some kind of LES models in the EHD turbulence study, which could conserve most of the flow
details and keep the numerical cost in an acceptable scope.

This work aims to implement an LES model in EC turbulence simulation. We employ the
Smagorinsky subgrid method for the electrohydrodynamic study and investigate the effectiveness
of such an LES model in EC turbulence simulation [45–47]. Moreover, the wall-adapting local
eddy-viscosity (WALE) model [48] is also employed to perform a comparison. In the past decades,
the finite volume method (FVM) and lattice Boltzmann method (LBM) both have been widely used
in electrohydrodynamic research [38,39,49–54]. The LBM is simple and efficient in computation,
and it is easy to implement in parallel, especially on heterogeneous computing platforms [55–59].
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FIG. 1. A sketch of the charge injection convection.

It also has demonstrated versatility and stability in multiphysics and complex fluids [60,61]. In
addition, the LBM is a transient method with low numerical dissipation, making it widely used
in turbulence simulation work [55,62,63]. Rooted in the reasons mentioned above, we decided to
employ the LBM as the numerical solver in this study. And we also compare the result of the LBM
with the FVM in the computational results and speed, for comprehensive studying since they are all
spatial second-order precision numerical methods.

Turbulence simulation based on the LBM has experienced rapid development since the subgrid
model and Reynolds-averaged turbulence models were incorporated into the LBM [45,46]. The
LES-LBM approach is widely employed in numerical simulation of multiphysics turbulence. Chen
et al. [64] performed a numerical study of turbulent double-diffusive natural convection in a square
cavity with the aid of an LBM-LES model. Meanwhile, LBM-LES models were also used for
the simulation of thermal convection turbulence [65–70]. In these studies, the eddy viscosity is
realized by adjusting the lattice relaxation time, and different LES models coupled with a few lattice
Boltzmann (LB) schemes are tested by the researchers. In addition, Flint and Vahala [71] proposed
an LBM-LES model for magnetohydrodynamic simulation. Their work realizes the subgrid vis-
cosity computation by adjusting the equilibrium moment rather than correcting the relaxation time
by nonequilibrium distribution functions, which indicates the flexibility of realization of subgrid
viscosity in the LBM. Recently, Taha et al. [72] used an LES model in a compressible LBM for the
simulation of forced plumes. In summary, the abundant researches reflect the potential of LBM-LES
models for multiphysics electrohydrodynamic turbulence simulation.

We discuss the application of the LBM-LES models in turbulent EC simulation in this work,
including the Smagorinsky model and the WALE model in EC turbulence simulation. And we
consider three kinds of cases, including 2D and 3D flows, to test the LES models. The rest of this
paper is organized as follows. We introduce the EC physical model and governing equations and
then present the numerical method and LES implementation in Sec. II. The numerical results and
discussions are presented in Sec. III. In Sec. IV, we summarize the effect of using the LBM-LES
models in EC turbulence simulation and provide some prospects for EC turbulence simulation.

II. PHYSICAL MODEL AND NUMERICAL REALIZATION

The physical model sketch is shown in Fig. 1. We consider the unipolar charge injection EC
problem between two plate electrodes [30,39,73]. The work medium is incompressible, Newtonian,
and dielectric liquid. The liquid layer is subjected to an external electric field by imposing a high
voltage φ0 on the lower plate and a ground potential φ1 on the upper plates. Complicated electro-
chemical reactions may take place at the electrode-liquid interface, generating electric charges and
causing charge injection towards the bulk from the high-voltage electrode. The liquid motion may
go through a dynamic evolution from hydrostatic to laminar and further develop into chaotic states.
In the study of EC, we examine hydrodynamic phenomena and charge transfer, while omitting the
consideration of the charge generation mechanism. The discharge mechanism of the EC model
is assumed to be homogeneous and autonomous charge injection, and the charge quantity on the
electrode is represented as q0. In addition, the electric double layer effect at walls is also ignored.
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We assume by default that the vertical direction is represented by y, and x (and z, if in the 3D case)
for the horizontal direction.

A. Governing equations of EC

The physical governing equations of the electrohydrodynamic problem consist of the Poisson
equation, the charge transfer equation (or a specific form of the Nernst-Planck equation), and the
incompressible Navier-Stokes (NS) equations, respectively [13,74]. The characteristic scales in the
system are chosen as follows: electric drift time H2/(Kφ0) for time; the height of the liquid layer,
H , for length; the difference of voltage, �φ = (φ0 − φ1), for electric potential; the density of the
dielectric liquid, ρ0, for density; the charge density on the electrode surface, q0, for the charge; and
ρK2(φ0 − φ1)2/H2 for pressure, respectively. Here, K and ρ are ion mobility and dielectric liquid
density. With the above dimensionless scales, the corresponding equations are derived, namely
[13,39,42],

∇ · u = 0, (1)

∂u
∂t

+ u · ∇u = −∇p + M2

T
∇2u + CM2qE, (2)

∇2φ = −Cq, (3)

E = −∇φ, (4)

∂q

∂t
+ ∇ · (qE ) + u∇q = M2

T

1

Sc
∇2q, (5)

where u, E, p, q, t , and φ denote the velocity of liquid, electric field, modified pressure, charge
density, time, and voltage, respectively. There are four nondimensional control parameters: the
electric Rayleigh number T , the charge injection strength C, the mobility parameter M, and the
electric Schmidt number Sc, which are defined by

T = ε�φ

ρ0νK
, C = q0L2

ε�φ
, M = 1

K

(
ε

ρ

)1/2

, Sc = ν

D
, (6)

in which ε, ν, and D represent the permittivity, kinematic viscosity of the dielectric liquid, and
charge-diffusion coefficient, respectively. It is noted that the electric Schmidt number is related
to the dimensionless charge diffusion coefficient α = D/(K �φ) by α = M2/(T Sc). The passing
charge current can be quantified through the charge flux Ie, and the electric Nusselt number Nue is
defined as

Nue = Ie

I0
, Ie = 1

V

∫
V

[
qEy + quy − 1

Sc

M2

T

∂q

∂y

]
dV. (7)

where I0 is the dimensionless charge current at the hydrostatic state under the same electric-driven
parameter. The three components in the right-hand side of Eq. (7) correspond to electric drift IE ,
convection Iv , and diffusion ID mechanisms, which will be used in the discussion.

B. The LES models for EC turbulence

The backbone of LES is the introduction of a spatial filtering to decompose a variable
v(u, p, q, φ) into a filtered component v and a residual component v′, that is, v = v − v′, which can
smooth out variable fluctuations on the order of filter width � [1,44]. The filtered equations resemble
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Reynolds-averaged equations but the cross terms of filtered variables remain. We list the filtered
subgrid-scale electrohydrodynamic equations below using the tensor notation,

∂ui

∂xi
= 0, (8)

∂ui

∂t
+ ∂ui u j

∂x j
= − 1

ρ

∂ p̃

∂xi
+ M2

T

∂2ui

∂x j∂x j
+ CM2q Ei + CM2(qEi − q Ei ) − ∂ (uiu j − ui u j )

∂x j
, (9)

∂q

∂t
+ ∂q ui

∂xi
+ ∂q Ei

∂xi
= M2

T

1

Sc

∂2q

∂x j∂x j
−

(
∂ (qui − q ui )

∂xi
+ ∂ (qEi − q Ei )

∂xi

)
, (10)

∂2φ

∂x j∂x j
= −Cq, (11)

Ei = ∂φ

∂xi
, (12)

in which the crucial question is to deal with the nonlinear terms of filtered variables, which are
included in parentheses. These nonlinear terms include the effects of the small-scale eddies that
have been truncated due to coarse graining and are not resolved in LES.

First, the Smagorinsky model is used to evaluate the term of the residual stress of the momentum
equation [44]. An eddy viscosity is introduced to close the equation,

νt = (Cs�)2(|S|2)
1
2 , (13)

where |S| = (2 Si jSi j )1/2 is the characteristic filtered rate of strain, with Si j = 1/2 (∂ui/∂x j +
∂u j/∂xi ), Cs the Smagorinsky coefficient, and � is fixed because the LBM uses a uniform mesh. The
Smagorinsky model can be coupled naturally in the lattice collision step. In addition, we would like
to introduce the WALE model that could decay the dissipation near the walls, to enrich comparison.
The WALE model is expressed as follows:

νt = (Cw�)2

(
Sd

i jS
d
i j

)3/2

(Si jSi j )5/2 + (
Sd

i jS
d
i j

)5/4 , (14)

in which Sd
i j = 1/2(g2

i j + g2
ji ) − 1/3δi jg2

kk is the traceless symmetric part of the square of the
velocity gradient tensor, where Cw is a constant that is adjustable according to practical problems,
gi j = ∂ui/∂x j and g2

i j = gikgk j . For the charge transport equation, we use the turbulent Schmidt
number Sct = νt/Dt [64,75,76], which is defined by the ratio of the eddy viscosity νt to the eddy
diffusivity Dt , to estimate the additional effect of filtered terms. Since the Poisson equation is linear,
we maintain the original formula while replacing the original variables with the filtered ones.

C. Lattice Boltzmann equations

We accomplish the LES model in lattice Boltzmann equations (LBEs) for solving different partial
differential equations in the EC system. To balance numerical stability and calculation efficiency, the
multirelaxation time (MRT) scheme is employed for solving the flow field, and the charge transport
and Poisson equations are solved using the single-relaxation time (SRT) scheme. For convenience,
the LB distribution functions directly represent the filtered variables, and the overline symbols are
omitted.

The MRT LBE for the flow field reads [61]

fi(x + ciδt , t + δt ) = fi(x, t ) − (M−1SM)i j
[

f j (x, t ) − f j
eq(x, t )

] + δt M−1

(
I − S

2

)
MF̃, (15)

where x, δt , fi, f eq
i , and F̃ denote the lattice node position, the LBE evolution time step, the

distribution function, the equilibrium distribution function, and the external force distribution
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function computed by the scheme proposed by Guo et al. [77], respectively. Here the external force
term in the force distribution function is F = CM2q E in Eq. (9). M is the orthogonal transformation
matrix from the LB velocity space to moment space, and S is the relaxation matrix [61,73,78,79].
The equilibrium distribution function f eq

i reads

f eq
i = wiρ

(
1 + ci · u

c2
s

+ (ci · u)2

2c4
s

− u · u
2c2

s

)
, (16)

where ci is the lattice discrete velocity for the flow field LBE, and cs = c/
√

3 is the speed of sound
in lattice units. The macroscopic density and velocity are defined by the first second-order moments
of the distribution function, namely, ρ = ∑

i fi and u = (
∑

i ci fi + δt
2 F )/ρ.

The LES model is used to handle the residual nonlinear terms CM2(qEi − q Ei ) and
(∂uiu j − ui u j )/∂x j in the filtered NS equation. The effect of these terms is substituted by an
effective eddy viscosity, as shown in Eq. (13) or Eq. (14). For the Smagorinsky model, to determine
the strain rate tensor Si j , we evaluate the second-order moment of the nonequilibrium distribution
function in the LBM rather than computing the gradient of the filtered velocity directly [45,47],
which reads

Si j = − 1

2ρc2
s τδt

∑
α

cαicα j
[

fα (x, t ) − f eq
α (x, t )

]

= − 1

2ρc2
s δt

∑
α

cαicα j

∑
β

(M−1SM)αβ

[
fβ (x, t ) − f eq

β (x, t )
]
, (17)

where τ is the relaxation time of the LBE. We could get the stress tensor through the distribution
function or distribution moment, which depends on the programming realization. If we use the
WALE mode, the corresponding tensors are computed after the LB collision steps. It consumes ad-
ditional finite difference to compute the velocity gradient, and handles several tensor computations.
After getting the effective eddy viscosity, we can obtain the turbulence viscosity. Then the term ων

in the relaxation matrix is determined, and the viscosity-related term satisfies

τ = 1

ων

= M2/T + νt

c2
s δt

+ 1

2
, (18)

in which M2/T + νt is the effective viscosity of the subgrid method.
The evolution equation of the charge density is based on the advection-diffusion equation (ADE)

LBE, which is written as

gi(x + ciδt , t + δt ) = gi(x, t ) − 1

τg

[
g j (x, t ) − geq

j (x, t )
]
, (19)

where gi, geq
i , and τg are the distribution function, the equilibrium distribution function, and the

relaxation time, respectively. Here, geq
i reads

geq
i = wiq

(
1 + ei · u

c2
s,q

)
, (20)

where ei is the lattice discrete velocity for the charge transport and Poisson LBE. The macroscopic
charge density q is obtained by taking the zero-order moment of the distribution function q = ∑

i gi.
The relaxation time τg is related to the dimensionless charge diffusivity M2/(T Sct ) and the

turbulence diffusivity Dt . The turbulent Schmidt number Sct is used to evaluate the turbulent
diffusivity of the charge transport equation, that is, Dt = νt/Sct . Therefore, the relaxation time of
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the charge transport equation LBE is

τg = M2/(T Sc) + Dt

c2
s,gδt

+ 1

2
, (21)

where cs,g is the lattice sound speed of the ADE LBE. The macroscopic charge density q in Eq. (11)
is obtained by taking the zero-order moment of the function q = ∑

i gi.
Compared to the charge density field, the potential field is more stable and smooth. Here, the

Possion LBE proposed by Chai and Shi [80] is employed to solve Eq.(10), which reads

ϕi(x + eiδt , t + δt ) − ϕi(x, t ) = − 1

τφ

[
ϕi(x, t ) − ϕ

eq
i (x, t )

] + δt�iRDφ, (22)

where τφ is the relaxation time, R is the right-hand term in Eq. (10), Dφ = αc2( 1
2 − τφ )δt is the

artificial diffusion coefficient, and �i is the weight factor for the source term discretization which
satisfies

∑
i �i = 1. The equlibrium distribution function is defined by

ϕ
eq
i =

{
(ω0 − 1)ϕ(x, t ), i = 0
ωiϕ(x, t ), i �= 0.

(23)

The voltage is evaluated by φ = 1
1−w0

∑
i ϕi, in which wi is the weight factor of the equilibrium

distribution function. We do not need to deal with the Poisson equation by using any subgrid model
because the potential is related to the charge density directly. The electric field can be evaluated
by E = −∇φ = 1/(τφδtα)

∑
i eiϕi. So far, we have briefly introduced our LBM-LES model and

implementation for electrohydrodynamic simulation.

D. Numerical implementation

The LBM-LES model for EHD is developed based on the open-source platform Palabos [78],
which has helped fulfill several simulation studies on EHD [21,73,79]. In this paper, we perform
both 2D and 3D EC simulations through the current LBM-LES model. The LBE of the NS
equations is solved using the D2Q9 and D3Q19 models, respectively. And the charge transport
equation and the Poisson equation are implemented with the aid of the D2Q5 and D3Q7 models.
The Smagorinsky coefficient Cs is set as 0.17, and the WALE model constant Cw is 0.5 [81,82].
Involvingthe turbulent Schmidt number of the charge transport equation, we analogized the choice
of simulating thermal convection [65,67–69] and did a series of numerical tests about Sct . Finally,
we found the statistics of EC turbulence are not sensitive to Sct . We set the turbulence Schmidt
number to 0.4, slightly underestimating it to ensure the numerical stability. Because there is a large
difference in value between the viscosity and charge diffusivity while the relaxation time of LBEs is
coupled strongly with these two variables, we set the LB evolution time step of the NS equation to
be smaller than that of the charge transport equation, that is, δt,D = kδt,ν . This could stabilize the
LBE iteration and reduce the computational time. After massive numerical tests, we advise to set
k as ∼5–10. The resolutions are set based on experience tests and compared with the Kolmogorov
and Batchelor length scales [38], η and ηB, ensuring the LES numerical grids could not resolve the
smallest scale well. In EC, the two scales can be computed through η/l ∼ (2700/M )3/8(MR)−3/4

[29] and ηB = (η/Sc1/2) [83,84], in which l is the length of a characteristic large-scale EC eddy.
Furthermore, we conducted a posteriori validation about the root mean square horizontal velocity
of all results, confirming that there is no need to introduce a wall function model in this work.

III. RESULTS AND DISCUSSION

This work selects several examples fulfilled by previous numerical works as comparisons. In
this section, we present three numerical cases, namely, the 2D EC flow in a square domain and
a rectangular region with an aspect ratio of 0.614, and the 3D EC turbulence between two plate
domains. The Smagorinsky model is used for all cases while the WALE model is employed in the
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TABLE I. The grid resolution of results computed by different numerical models, and the comparison
between the grid scale and turbulent smallest scale. The computations based on the Smagorinsky and WALE
models (including the comparison with FVM) share the same resolution. Here the characteristic length of
a large-scale eddy in 2D EC turbulence is assumed to be the same as the cavity height [42].

T LES(LB,FV) η/� ηB/� LBM+DNS SEM+DNS

5000 2012 0.065 0.648 5132 40×48(82)
10 000 3212 0.068 0.681 7692 60×64(82)
20 000 4012 0.092 0.916 10252 80×84(82)
30 000 5012 0.099 0.993 13372 90×96(82)
40 000 7692 0.080 0.802 20492 100×112(82)

first case. The side wall boundary conditions for 2D cases are all no slip, and the lateral boundary
conditions of 3D cases are periodic. All of the showing results are collected in statistically steady
conditions.

A. 2D EC turbulence in a square cavity

In this section, we show the numerical results for the 2D EC flow in a square cavity with
the Rayleigh number ranging from 5000 to 40 000, and other parameters are M = 10, C = 10,
and Sc = 100, respectively. The study adopts both LBM-LES (based on the Smagorinsky and the
WALE models) and direct numerical simulation (DNS) to simulate this case, where the DNS is
fulfilled through the LBM and the continuous Galerkin spectral element method (CG-SEM), which
is performed in the free software Nek5000 [42,85–88]. The computation of the FVM is performed
in the platform OpenFOAM-9 [89,90], and the WALE model parameters are the same as those in
the LBM simulation. The total variation diminishing (TVD) schemes [39,49] and Euler backward
time discretization are employed to maintain numerical stability and computational speed.

Table I shows the resolutions of all of the computations. To compare the ability to capture
different charge transfer mechanisms for the five methods, Fig. 2 presents the temporal averages
of charge current, which are divided into three mechanisms of diffusion ID, electric drift IE , and
convection Iv . Figure 3 illustrates the temporal averages of the electric Nusselt number and the

FIG. 2. The comparison of time averages of each component of current, i.e., diffusion ID, electric drift IE ,
and convection Iv . The error bars represent the standard deviation.
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FIG. 3. Evolution of the maximum velocity and electric Nusselt number versus electric Rayleigh number
T . The error bars represent the standard deviation.

maximum velocity. It is shown that the values of the five series of charge currents show a relatively
good agreement, in particular for the diffusion and electric drift components. The Nue initially
increases and then decreases as the electric Rayleigh number T rises. The LBM-LES models capture
this trend clearly, with deviations all falling within the standard deviation range. The maximum
velocity shows an increasing trend as T increases. And the difference of Vmax between the LES and
DNS results is smaller than that of Nue. It indicates that the two LES models can acquire reasonable
convection intensity. However, there are a few aspects to improve to get a better feature of the
electric Nusselt number, especially for the Smagorinsky model.

Although Fig. 2 indicates that the diffusion and electric drift components agree well with the
DNS results, the convection components of the Smagorinsky model show a certain discrepancy at
T = 30 000. The biggest differences of Nue and Vmax when T = 30 000 also appear in Fig. 3. To
qualitatively compare the simulation results, we plot typical instantaneous snapshots of the results
computed by the LBM-LES (Smagorinsky) and LBM-DNS models for T = 20 000, 30 000, and
40 000 cases, as shown in Fig. 4. We observe slim mushroomlike charge plumes that are injected
from the electrode below. The primary plumes move toward the upper plate by floating from the
sidewalls and the central part of the plate below. Some more delicate plumes rotate with the EC
vortices and dissipate in the bulk area of the cavity. For T = 30 000, a single main roll occupies
most of the space for both of the two results, as shown in Figs. 4(b) and 4(e). In Ref. [42], we
proved that the single main cell mode appears more frequently after the T value exceeds 20 000.
So in Figs. 4(c) and 4(f), we present the typical characters of a single cell mode at T = 40 000 for
both LES and DNS results, which indicates that the LES model can capture the large-scale rolls of
EC correctly. However, we can find that the dissipating plumes occupy less area in the LES results
than in the DNS results; that is, more plume oscillations in the bulk are smeared by eddy viscosity.
The phenomenon may be caused by the subgrid viscosity, providing additional dissipation under the
insufficient mesh resolution.

Several time series and their probability density functions (PDFs) are shown in Fig. 5. The flow
of the cases shown is fully turbulent and the time series exhibits high-frequency oscillations. And
there is some intermittency, manifesting as quasiregular bursts and the obvious skewness of the PDF,
especially for T = 20 000. The previous work demonstrates that the intermittency is caused by the
change of large-scale structure; for example, the two-main-cell pattern converts to a single-main-cell
pattern, and the former has a higher energy utilization and charge transfer efficiency [42]. The case at
T = 20 000 is dominated by electric force and behaves as the two-main-cell pattern. In contrast, the
case T = 40 000 is dominated more by inertial force and has a higher proportion of the single-main-
cell pattern. It should have a gradual transition of dominant flow mode in the parameter range T =
20 000–40 000. Adopting the subgrid viscosity somewhat puts off the inertial force development
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FIG. 4. Typical instantaneous snapshots of charge density and streamline at T = 20 000, 30 000,
and 40 000 (from left to right). [(a)–(c)] LBM-LES (by the Smagorinsky model) results; [(d)–(f)] LBM-DNS
results.

(increases the effective viscosity). The phenomenon is especially evident in the Smagorinsky model;
we think the reason is the eddy-viscosity effect near the walls. Thus, the result of the LBM-LES
shows a higher charge transport efficiency and maximum velocity at T = 30 000. Since the wall
eddy viscosity is absent in the WALE model, the statistical results and PDFs seem closer to those
of DNS. In addition, the ranges of PDFs of the FVM-WALE approach are narrower than the other
results in most of the cases, that is, the smaller skewness. The FVM spatial discretization scheme has
a bigger numerical diffusion compared to the LBM, which may decrease the exhibition of extreme
situations, as shown in Figs. 5(a) and 5(b) obviously. Thus, our LBM-LES models may have a better
performance for the electrohydrodynamic turbulence of a relatively low electric Rayleigh number.
However, as turbulent models, the two series of LBM-LES result in this part all showing acceptable
abilities to capture the overall flow and charge transport character.

At last, we want to talk about the computational efficiency of the LBM-LES model. The
discussion only involves the computational efficiency for the LBM-DNS case, the LBM-LES
models, and the FVM-WALE model, because the SEM model has a different numerical precision
which makes it unrealistic to compare the computational speed quantitatively. The introduction
of subgrid viscosity can decrease at least half of the resolution of DNS in a single direction. In
addition, the computational time step is also at least twice the DNS time step. It is noted that the
computation of the stress tensor in the LBM is straightforward by utilizing the nonequilibrium LB
distribution functions. Thus, the theoretical speedup ratio of the Smagorinsky model compared to
the LBM-DNS model is nearly eightfold. In practical simulations, we also find the speedup ratio
is at least six- to eightfold compared with the DNS model for 2D cases, which depends on the
computational core performance and number. Such a speedup ratio is crucial for the large-scale
simulation of electrohydrodynamic flow. However, the computational efficiency of the WALE model
is a little lower since the velocity gradient cannot be finished inside the LB collision step. After
numerical tests, it would consume about an additional 3% of computational resource in the current
cases because of some calculations of the tensor product in the WALE model. We also tested the
computational times of the FVM-WALE model. If we set the same mesh resolution and time step,
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FIG. 5. Time series of electric Nusselt number and the maximum velocity and their PDFs at [(a)–(d)]
T = 10 000–40 000 for all five methods.

the computational time is 6 to 19 times slower than that of the LBM-WALE model. And even though
we set adaptive time for the FVM, the computational efficiency is also two to eight times slower.
For larger-scale computation, like higher Rayleigh number EC which needs higher resolution, the
advantage of the LBM in computational time can be more significant. In addition, to ensure the
subgrid viscosity is necessary for the electrohydrodynamic turbulence simulation in a coarse grid,
we tried to run the same case through the LBM-DNS model with half of the original grids; the
numerical cases are easy to crush when the flow enters the turbulence-developing stage. This is
because of the extremely low physical viscosity and diffusivity in the electrohydrodynamic model.
It means the subgrid model stabilizes the numerical computation, which is essential for industrial
computation.

B. 2D EC turbulence in an enclosed rectangular cell

Then we simulate the electrohydrodynamic flow using the Smagorinsky model in an enclosed
cell with an aspect ratio of 0.614. Similar cases were also tested by Traoré and Pérez [39] using
the FVM. In our test, the electric Rayleigh number ranges from 10 000 to 50 000 in order to ensure
the flow is sufficiently turbulent. In addition, the dimensionless mobility scope is ∼10−100. And
this test adopts the no-slip boundary for all the walls. The mesh resolutions range from 241 to 1025
in the height direction depending on the driven parameters. The charge injection strength is 10 to
represent the strong injection case. The electric Schmidt number Sc also changes from 100 to 1000,
changing with charge mobility M; i.e., for a small-M cases, the electric Re is large, and we decrease
Sc to 100 to balance the computational cost. The mentioned numerical setting can maintain the
convection and electric drift as the dominant charge transport mechanisms for all of the numerical
scenarios, which is essential for unipolar charge injection EC.

Figure 6 illustrates the evolution trends of maximum and electric Nusselt number with respect
to electric Rayleigh number T . It can be seen that the maximum velocity always increases with the
increase of T . In addition, the overall trend in velocity shows an increase with M. For the M = 10
case, however, the velocity is notably lower than that of other instances. When M is larger than 30,
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FIG. 6. Evolution of the maximum velocity and electric Nusselt number versus electric Rayleigh number
T ; the results are computed at different M values.

the maximum velocity increases monotonously to the increase of M. The Nue also shows an increas-
ing trend with respect to the rising T under the fixed M value, approaching saturation after T is large
enough. However, there are a few abnormal cases, such as M = 10 and 30, presenting increasing
trends of Nue with respect to T increasing. Traoré and Pérez [39] also gave similar results about the
change of Nue with respect to M and T . Our results agree well with their results when M is larger
than 30, all showing a saturated state with T increasing. Referring to the previous study about cavity
electrohydrodynamic flow [42], it is possible to see an unstable change of Nue at a small M value.
The reason is that the EC flow is more easily dominated by the inertial effect in these cases, resulting
in a large range of fluctuation of charge flux. Nevertheless, our results also indicate that the 2D sim-
ulation result does not agree well with the Nue ∼ M1/2 scaling law, which corroborates the previous
study [39].

To further investigate the correctness of our LES model, we gather a series of DNS results
computed by SEM at T = 50 000 for different M values, as shown in Fig. 7. Both sets of results
are accompanied by their respective averages and standard errors. The average values are nearly
identical and the errors overlap well, especially for M values larger than 30. In addition, the trends

FIG. 7. The average values of maximum velocity and electric Nusselt number with the change of di-
mensionless ion mobility M, computed by LBM-LES and SEM models. The error bars represent standard
deviations.
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TABLE II. Simulation parameters for all cases with 1×5×5 numerical domain. The four cases (S1–S3 and
S4) correspond to the setups of Kourmatzis and Shrimpton (S1–S3 and Sp) [38]. The characteristic large-scale
length is computed through l ∼ √

M/300H [29] for computing the Kolmogorov scale. The resolution is the
lattice number in vertical and two horizontal directions.

Case T M C Re Resolution η/δx ηB/δx

S1 500 22.3607 10 1 65×3202 0.0975 0.9751
S2 500 2.8868 10 6 73×3612 0.5198 5.1979
S3 500 2.0412 10 120 97×4812 0.5280 5.2796
S4 1780 9.6791 4.6 19 73×3612 0.4674 4.6739

in the changes of Vmax and Nue also agree closely between the two sets of results. Because the SEM
has a better accuracy whose result could be treated as a benchmark here, the result computed using
LES is considerably effective in this context.

C. 3D EC turbulence in the periodic domain

In this test, we simulate a series of 3D EC turbulence. The simulation parameters correspond
to the work studied by Kourmatzis and Shrimpton [38], while all of the numerical domains are
set as 1×5×5. We list the control parameters and simulation resolution in Table II. To balance the
simulation stability and computational cost, we set the electric Schmidt number as 100 for all cases.

Figure 8 shows the instantaneous velocity magnitude viewed on isosurfaces of charge density
as well as vortex structures of EC. Figure 9 presents 2D slices of charge density at the midplane
of the vertical direction. It is evident that all cases have entered at least chaotic or weak turbulence
regimes. The charge density isosurfaces behave as irregular polygons and the vortices distribute
along the charge isosurface. The polygonal charge cell boundaries of case S1 are nearly straight,
while those of the other cases are more curved. The corresponding vortices of case S1 are coherent
and large scale while the others are more dispersed and fragmented. Intuitively, it is apparent that
the S1 and S4 cases exhibit higher convection intensity, so as the vorticity. Among them, the flow in
case S4 is the most turbulent one, whereas case S1 displays a more orderly organization. Previous

FIG. 8. [(a)–(d)] Velocity magnitude viewed on isosurfaces of the instantaneous charge density field of the
four cases, where the isosurface charge density value is chosen as q = 0.15. [(e)–(f)] The vorticity Q-criterion
field colored by vorticity magnitude at the same snapshots.
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FIG. 9. Charge density distribution on the middle plate of the vertical direction.

works have revealed that for the 3D steady EC, the flow is more likely to develop as hexagonal
structures [12,91,92]. Now, we can envision the flow patterns evolving with increasing electric
Rayleigh numbers in 3D EC: initially, the flow patterns transition from relatively regular hexagons
to polygons, and subsequently the structures become unordered, chaotic, and up to turbulent. In
cases S1 and S4, the charge plumes have the capability to penetrate the bulk region, allowing them
to easily float from the injection plate to the upper plate. Conversely, in cases S2 and S3, the plumes
dissipate within the bulk region. Furthermore, we notice that the vortex distributions all follow the
plumes’ motion. Some plumes dissipate inside the charge void cells as the isolated vortices present
here, too. This phenomenon can also be recognized from the charge density slice in the middle plate.
The charge density of the plume area at this middle height is the highest in the S4 case while that
becomes lower in cases S2 and S3. In previous 2D simulations, we could only see that the charge
plumes float from the below plate. However, the current snapshots of charge density reveal that
horizontal plumes can also split from upward plumes, as particularly evident in Figs. 9(b) and 9(c).
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FIG. 10. Bivariate distributions of nondimensional vertical velocity fluctuations uy
′ and charge fluctuations

q′ for all four cases.

Then we continue to analyze the bivariate probability distributions of charge fluctuation q′
versus vertical direction velocity fluctuation u′

y calculated at y = 0.5d , using the notation (·)′ =
(·) − 〈(·)〉s,t , in which (·)′ is the fluctuation, and 〈(·)〉s,t is the spatial and temporal average of (·)
taken along the 2D plane over a series of realizations under statistically stationary conditions. As
shown in Fig. 10, the bivariate distributions of the cases are not rigorously symmetric. The bivariate
probability distribution of case S1 exhibits a single peak mode with a long tail, indicating high
skewness. Similarly, the S4 case has a comparable trend but a broader charge fluctuation scope.
This suggests that most charges are transported downwards, coinciding with the findings in Fig. 9.
The area of peak probability of case S1 is more concentrated, which demonstrates that the flow
in the case is more stable. The skewness is lower in cases S2 and S3, which show bimodality
modes, reflecting that more upward flow appears in the conditions. Because these two cases show
that the penetrability of the charge plumes is not as strong as in the S1 and S4 cases, the flow and
charge density mixing at the middle plate could be more uniform. However, the downward flow
is still dominant because of the existence of the electrical field. The findings in our results are in
good agreement with those of Kourmatzis and Shrimpton [38]. Since cases S2 and S3 have higher
electric Reynolds numbers, the flow mixing in the bulk area is better than in the other two cases.
This is because cases S2 and S3 have lower dimensionless mobilities, and the electric field has less
effect on charge transport, contributing less to the upward flow. Conversely, with larger mobilities,
upward charge transfer is predominantly influenced by electric migration, and enhances the flow
structures of higher charge transport efficiency. This is beneficial to form the charge void region as
more charge plumes pass across the entire domain.
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FIG. 11. The spatial and temporal averages of the horizontal direction of charge density.

Figure 11 illustrates the temporal average charge density across the entire horizontal direction. It
is noticeable that the average charge density distributions in the S2 and S3 cases exhibit similarities,
characterized by a sharply defined charge boundary layer and a flat bulk density profile. The charge
boundary layer of case S1 is wider than the two mentioned cases, while the middle area charge
density is nearly identical. In addition, case S1 has an additional increase in charge density close
to the upper plate. Actually, the average feature of case S1 is more likely to appear in previous 2D
results which have typical charge void cells. Because the injection strength of case S4 is smaller,
the bulk charge density is higher and the charge density boundary layer is the widest among all
cases. The average charge density computed in this work closely resembles that of Kourmatzis and
Shrimpton [38], supporting the reliability of our LES model.

Figure 12 illustrates the kinetic energy spectrum in the middle-height plane. The turbulent kinetic
energy is taken to be attributed to k. The spectrum is determined by taking the Fourier transform of
velocity components ux and uz in the horizontal direction, multiplying by the complex conjugate,

FIG. 12. Turbulent kinetic spectrum of horizontal velocity on the log-log scale at the mid-height slice. The
k−5/3 spectrum is used to compare the inertial subrange of the EC turbulence.
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and taking the sum of energy contribution E (k) from each discrete node in the horizontal direction,
where k is the wavenumber. The peak values of the energy spectrum of the cases are all in a similar
scale, which indicates the general EC vortex scale distributions in the four cases are nearly identical.
Furthermore, we observe a segment with a − 5

3 slope in all energy spectra, which is the character
of 3D turbulence in the inertial subrange. It means that the electric force provides energy to the
electrohydrodynamic flow and forms the large-scale EC vortices, which feed energy to the electrical
turbulence, and the kinetic energy dissipates in the small scale eventually. Despite the relatively low
Reynolds number in the S1 case, it exhibits a narrow − 5

3 slope spectrum, showing a feature of
weak turbulence. The other three cases have a wider inertial subrange, suggesting the electric force
generates stronger turbulence. The amplitude of the energy spectrum also reflects the horizontal
fluctuation intensity. In the four sets of spectra, case S4 has a stronger horizontal mixing effect
albeit the S2 and S3 cases have larger Re. Additionally, cases S3 and S2 display similar spectra
although their Re difference is twice that of case S4. These indicate the Re may not be the only
critical parameter in determining the EC turbulence.

At last, we discuss the influence of dimensionless parameters on the electrohydrodynamic
turbulence. There is no doubt that Re, which is the combination of electric Rayleigh number T and
dimensionless mobility M, is one of the decisive factors, the EC turbulence is more likely to happen
at a high value of Re or T . The EC flow with a larger M number has a stronger electric migration
ability. The electric force tends to form a charge void region in EC with a large M value. The
parameter C determines the bulk charge density and the gradient of the charge boundary layer. Here
we only give a primary discussion. To comprehensively compare the influence of dimensionless
parameters, it needs a more systematic and in-depth study.

IV. CONCLUSION

Turbulent electric-driven flow is an important branch of EHD. This work attempts to adopt
an LES turbulence model for numerical simulation of EC. In this paper, the LES eddy-viscosity
method, including the Smagorinsky and WALE models, is incorporated into the LBM solver for
simulating electrohydrodynamic flow. We simulate three cases of EC turbulence, including 2D
turbulence in enclosed cells, and 3D large-scale EC between two parallel plates. For the 2D EC
turbulence simulation, we compare the results obtained by various numerical methods. For the 2D
EC turbulence simulation, we compare the results obtained by various numerical methods, including
LBM-LES, LBM-DNS, SEM-DNS, and FVM-LES models. We find that the two LBM-LES models
show reliable abilities to acquire the evolution of flow intensity and electric Nusselt number, and
can capture the main flow patterns in 2D EC turbulence. The LES model can improve computing
efficiency for electrohydrodynamic turbulence at least six- to eightfold compared to the LBM-DNS
model. The LBM model can get at least sixfold speedup in computation compared to FVM using
the same time step. Even using the adaptive time step in the FVM, the speedup of the LBM is still
significant. And the computational efficiency of the LBM is higher in a larger scale of computation.
Since the Smagorinsky model can be implemented in the LB collision step, the computational cost
is a little lower than that of the WALE model. However, the WALE model has better accuracy
because of the absence of wall eddy viscosity, simulating the transition stage from electric force
dominant to inertial dominant regions better. Since the LBM method has a smaller numerical
dissipation, it is possible to acquire more flow detail, which is slightly better than the performance
of the FVM model with the same turbulence model. For 3D cases, the Smagorinsky model shows
good reliability, including describing the flow states, probability density, average characteristics,
and energy spectrum. Moreover, the 3D simulation also shows that EC turbulence not only has the
general characteristics of hydrodynamic turbulence (− 5

3 slope kinetic energy spectrum) but also has
similar flow scale distributions under different driven parameters.

This work may pave the way for electrohydrodynamic turbulence simulation with insufficient
resolution. Developing reliable turbulence models for EHD and implementing them across mul-
tiple numerical methods are meaningful directions in the study of EC turbulence. Additionally,

083703-17



ZHANG, LUO, YI, LIU, AND WU

some other advanced LES models and higher-order numerical methods, accumulating sufficient
experimental results and implementing comparison, are also of great significance in the further
investigation of EHD. Future work can focus on these aspects mentioned above.
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