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Rim dynamics and droplet ejections upon drop impact on star-shaped poles
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When a drop impacts next to the edge of a solid substrate, it may spread beyond this
edge. It then forms a liquid sheet surrounded by a rim from which droplets may be ejected.
This work investigates the influence of the edge shape on the rim dynamics and subsequent
droplet ejections. Experiments of drop impacts on star-shaped poles are reported. Both the
rim and the ejected droplets are tracked. An analytical model is proposed to rationalize
the amplitude of rim deformations induced by the edge shape. Statistical distributions of
position, size, and velocity of ejected droplets are also shaped by the edge geometry.
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I. INTRODUCTION

Vegetation intercepts a significant fraction of rainfalls [1]: Many raindrops impact and splash
at the surface of leaves, stems, flowers, and branches [2]. This interception completely modifies
the raindrop size and momentum distributions. While the size distribution of incoming raindrops is
approximately a truncated exponential [3], the size distribution of release throughfall (i.e., rainwater
ejected from plant surfaces) is bimodal: It comprises large drips from vegetation elements and small
droplets ejected upon splash [4]. Drips may reach the ground with more kinetic energy than any
nonintercepted raindrop, which may considerably enhance erosion [5] and runoff [6]. By contrast,
drips contribute less to the wash-off of plants in the understory than nonintercepted raindrops [7].
Splash droplets represent an efficient way for many fungal spores to travel between parts of a plant
or between neighboring plants [8,9]. The subsequent dispersal of foliar pathogens has dramatic
consequences for many major crops [10].

Both raindrops and drips have a significant chance of impacting at less than about a centimeter
from the edge of a plant leaf. In such a case, the impacting drop spreads beyond this edge and
forms a liquid sheet surrounded by a rim from which droplets are ejected [11,12]. Similar droplet
ejections occur when raindrops impact near or onto other sessile drops or puddles left on the leaves
from previous impacts [9,12,13]. As the impacting drop dissipates its kinetic energy upon spreading
on the leaf surface, the earlier it reaches the edge, the more momentum it may transfer to the rim
and ejected droplets [11]. Nevertheless, leaf edges are often irregular, with lobes or teeth (Fig. 1),
so the distance traveled by the fluid from the impact point to the edge depends on which direction
is considered. Consequently, the edge shape should influence the rim dynamics and the resulting
ejection pattern. This is already suggested by the snapshots of Fig. 1, which show a drop impact
on a leaf of Sorbus aucuparia. The teeth of this leaf are a few millimeters long. It is observed
that the rim and subsequent droplets go farther in the directions corresponding to troughs in the
leaf edge profile. The present paper aims at unveiling this signature of the edge shape. Many
other parameters are known to influence the dynamics of such drop impacts, including substrate
roughness [15], compliance [9], and inclination [12]. These other parameters are highly variable in
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FIG. 1. Time sequence of the impact of a drop on a leaf of Sorbus aucuparia, commonly known as rowan.
There are many teeth at the edge of the leaf blade. The time of impact is at 0 ms. At 1.5625 ms, water reaches
the leaf edge. At 3.125 ms, a noncircular liquid sheet surrounded by a rim is formed beyond the leaf edge. At
4.6875 ms, the sheet and rim have started fragmenting into droplets that are ejected in preferential directions.
The maximum width of the leaf blade is approximately 19 mm. The corresponding movie is available in the
Supplemental Material [14].

plant leaves. Nevertheless, as this paper will show, the edge-induced shaping of the rim and ejections
observed with a plant leaf (Fig. 1) is qualitatively similar to that observed with smooth, rigid, and
horizontal star-shaped poles with teeth of similar dimensions (Fig. 2). For the sake of simplicity
and in a reductionist approach, this paper focuses on the latter configuration and leaves the potential
influence of roughness, compliance, and inclination to future work.

Most studies on droplet ejection from the rim of a sheet focus on axisymmetric configurations,
e.g., a drop impacting the center of the flat, top face of a pole [16]. The main relevant parameters
are the drop diameter D, its impact speed U , the ratio Sa between the pole diameter and the drop
diameter, and the water properties (density ρ, viscosity μ, and surface tension σ ). The sheet first
expands as the rim moves outward beyond the edge. The rim decelerates in response to the pulling
from the sheet (surface tension forces) and it destabilizes into ligaments from which droplets are
emitted. The sheet finally shrinks as the rim moves back inward [16]. The collision of rim segments

12.5 mm12.5 mm

FIG. 2. Image processing. On the left is a snapshot from the raw video. In this picture the substrate
diameter (from peak to peak) is 2Sp = 7.72 (namely, 19.1 mm). The right picture shows items tracked by
image processing on that snapshot: the substrate edge (blue) at radial position S(θ ), the sheet edge (red) at
radial position R(θ, t ), and the droplets (green) at angular position θd. The droplets were ejected at speed vd in
direction θv (relative to θd).
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emits even more droplets, sometimes through the formation of secondary sheets called fines [17].
The sheet and rim dynamics are mainly characterized through the radial position of the rim Ra vs
time t , which has been rationalized with models of increasing complexity, from a harmonic oscillator
[16] or a third-degree polynomial [18] to a full description of mass and momentum balance between
sheet, rim, and droplets [19]. All the models converge on one key point: The time at which the
sheet reaches its maximal extension scales as the capillary time tσ =

√
ρD3/6σ . The Weber number

We = ρDU 2/σ represents the ratio of kinetic and surface energy of the initial drop. Its square root
corresponds to the ratio between the capillary time and the impact time ti = D/U , which is the
timescale needed for the drop to crush on the pole. A complete transfer of the drop kinetic energy
into surface energy of the sheet would yield a maximum sheet radius equal to D/2

√
We/12. This

scaling law is well verified experimentally, although with an additional factor, less than unity, that
takes into account energy dissipation at the pole surface (boundary layer) and in the rim [18]. The
Ohnesorge number Oh = μ/

√
ρσD represents the influence of viscosity at the sheet timescale tσ .

In the considered impacts that lead to sheet formation, We � 100 and Oh � 1, so the sheet is much
larger than the initial drop and its expansion is moderately influenced by viscosity. Several works
investigated extensions of this configuration to viscoelastic liquids (e.g., [20]) or very small poles
with Sa < 1 [21].

As the rim decelerates, its thickness increases in order to maintain a balance between inertial
and capillary forces [22]. The rim systematically experiences an azimuthal instability in which
it becomes corrugated. This has been explained through a combination of Rayleigh-Taylor and
Rayleigh-Plateau instabilities [23]. The rim corrugations grow to the point where they form lig-
aments [24]. Droplets are mainly ejected from the tip of these ligaments. Nevertheless, smaller,
satellite droplets may also be ejected during ligament pinch-off, and larger droplets may be ejected
when two ligaments merge [25]. The droplet size is inherited from the ligament width [25]. Its
distribution can be approximated, among others, by a � function [18]. The droplet speed is inherited
from the rim speed and it consequently decreases with increasing time of ejection [25]. The
number of ligaments N� increases proportionally to We3/8 and slightly decreases with time [24]. At
We � 950, Oh = 1.8 × 10−3, and Sa = 1.45, N� � 35 [24]. Azimuthal variations of sheet thickness
were observed for similar impact parameter values [26], although the number of periods was about
24, i.e., not coincident with N�. Similar azimuthal instabilities were observed in other drop impact
configurations, e.g., on thin films [27,28] and in crown splash [29].

The ingredient “edge shape” can be introduced into this axisymmetric configuration by consid-
ering noncircular substrate shapes, with a symmetry of order N . Juarez et al. [30] investigated drop
impacts at the center of substrates shaped as regular convex polygons with N ∈ [3, 10] sides. The
cross-sectional area of the polygons was kept constant and equal to πD2/4, which corresponds to
an angle-averaged distance to the edge Sa � 1 (once normalized by drop radius). The study focused
on drops of water-glycerol solutions impacting at relatively low speed (We < 200 and Oh > 0.01).
This regime does not correspond to raindrops of any size at terminal speed. The spreading drop
reaches the polygon edges first in the directions normal to these edges and last in the directions
of the polygon vertices. Consequently, the rim inherits more kinetic energy and goes farther in the
former directions than in the latter. The amplitude of this azimuthal asymmetry grows with time.
At maximum extension, the rim looks like the polygonal pole rotated by π/N . The directions of
maximal rim extension are also those where droplets are preferentially ejected. Since regular convex
polygons approach a circle as N is increased, the polygonal shape cannot be recognized anymore
when N > 7 [30]. Indeed, the azimuthal variations of the rim radius induced by the polygon become
negligible with respect to the intrinsic rim corrugations discussed earlier for circular poles. As a side
note, polygonal spreading and breakup was also observed with drops bouncing on superhydrophobic
star-shaped ridges [31], drops impacting superhydrophobic surfaces covered with a regular lattice
of micropillars [15,32], or jets impacting such surfaces [33]. In all these cases, the mechanism is the
same: The fluid travels farther in directions that were unobstructed by the substrate topography.
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TABLE I. Ten fall heights H of the impact-
ing drop, corresponding impact speed U and
Weber number We, and associated symbol in
subsequent graphs

H [m] U [m/s] We Symbol
0.725 3.51 835 �
0.825 3.74 950 �
0.925 3.96 1065 �
1.025 4.17 1180 �
1.125 4.37 1296 •
1.225 4.56 1411 �
1.325 4.74 1526
1.425 4.92 1641 ∗
1.525 5.09 1756 �
1.625 5.25 1872 �

In this paper we explore the dynamics of drop impacts on star-shaped substrates, in a regime
experienced by raindrops and drips. We aim at quantifying the modifications induced by the
substrate shape on the motion of the rim formed once the fluid spreads beyond the substrate edge
and on the subsequent droplet ejections. Section II comprises the materials and methods. In Sec. III,
several key experimental observations are described. In Sec. IV (Sec. V), quantitative results on the
sheet and rim kinematics (the ejected droplets) are presented and discussed. Section VI provides a
summary.

II. MATERIALS AND METHODS

A. Experimental setup

Drops of water (density ρ � 1000 kg/m3, viscosity μ � 1 mPa s, and surface tension σ �
0.07 N/m) were released from a nozzle. This nozzle was a male Luer-lock that generated drops
of diameter D � 4.95 mm (volume approximately equal to 63 µl). The corresponding Ohnesorge
number was Oh = 0.0017. The flow in the nozzle was regulated via a syringe pump (World
Precision Instruments, AL-300) operated manually to record one impact at a time (drips were
separated by several seconds). Ten different impact speeds of the drops were experimented by
changing their fall height, i.e., the height of the nozzle relative to the impact point (Table I). The
corresponding Weber number varied in the range [835, 1872], which is significantly higher than
the regime explored in [30]. In the remainder of this work, times are normalized by the capillary
time tσ =

√
ρD3/6σ = 16.7 ms and lengths are normalized by the radius of the impacting drop

D/2 = 2.475 mm.
The considered substrate was a horizontal aluminum disk with N = 10 triangular teeth on the

outer edge. It was fabricated by wire electric discharge machining (accuracy of the order of 5 µm)
and polished afterward. The resulting arithmetic average roughness was 0.4(±0.1) µm (average and
standard deviation of measurements on three substrates in four different directions). The substrate
was mounted on a metal rod of diameter 6 mm fixed vertically on a stage that could be translated
horizontally in order to position the substrate exactly below the nozzle.

The radial position of the substrate edge is denoted by S(θ ), where θ is the polar angle in the
horizontal plane, measured from a trough of the teeth profile. The radial position of the troughs
(peaks) is St (Sp). In all the considered substrates, this trough radius St � 2.52 (i.e., 6.25 mm),
while the peak radius Sp varied between 2.92 and 4.54 (i.e., between 1 mm and 5 mm from troughs
to peaks). This teeth size is comparable to that observed in the plant leaf of Fig. 1. The edge shape
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TABLE II. First four Fourier coefficients of the substrate shape S(θ ) for St =
2.52 and the six considered values of Sp. All these lengths have been normalized by
D/2. The last column indicates the color of symbols corresponding to each substrate
in subsequent graphs.

Substrate # Sp Sa α10 α20/α10 α30/α10 Color
1 2.92 2.69 -0.16 -0.12 0.12 �
2 3.33 2.87 -0.32 -0.06 0.06 �
3 3.74 3.03 -0.48 -0.04 0.04 �
4 3.86 3.07 -0.52 -0.04 0.04 �
5 4.14 3.17 -0.63 -0.03 0.03 �
6 4.54 3.31 -0.78 -0.02 0.02 �

satisfies

S = StSp sin
(

π
N

)
St| sin ϕ| + Sp

[
sin

(
π
N

)
cos ϕ − cos

(
π
N

)| sin ϕ|] , (1)

where ϕ ∈ [−π/N, π/N] is an angle defined by

ϕ + π

N
=

(
θ + π

N

)(
mod

2π

N

)
. (2)

The edge function S(θ ) is even and can be decomposed in a cosine Fourier series

S(θ ) = Sa +
∞∑
j=1

α j cos( jθ ), (3)

where

Sa = 1

2π

∫ 2π

0
S(θ )dθ, α j = 1

π

∫ 2π

0
S(θ ) cos( jθ )dθ. (4)

By rotational symmetry, α j = 0 when j/N /∈ N0. The first four Fourier coefficients corresponding
to the six considered substrates are given in Table II.

The drop impacts were imaged with a high-speed camera (Photron Fastcam Mini UX100) and
a macrolens (Zeiss Milvus 2/100M). Videos were recorded at 6400 frames/s with a resolution of
80 µm/pixel. The camera was mounted above the substrate, providing a top-view with an inclination
less than or equal to 5◦. The exposure time was always less than 10 µs. Consequently, strong
backlighting was required to observe the sheet, rim, and droplet dynamics with sufficient contrast.
A light-diffusing sheet was installed between the light source and the substrate to provide a clear
and sufficiently homogeneous background.

The trajectory of free-falling drops is not a straight vertical line [34]. Consequently, even if the
nozzle was not moved horizontally, the impact point was scattered over an area increasing with
fall height H and reaching a maximum of almost 1 cm2 in the present experiments. Although the
impact point could not be directly seen because the substrate was opaque and backlit, off-centered
impacts generated strongly asymmetric liquid sheets. Only 17 impacts yielding sheets that were
almost perfectly centered were considered for data processing. The impact speed (i.e., the Weber
number) and the teeth length were systematically varied (cf. Tables I and II). Three replicas of
the experiment at We = 1065 with substrate 4 are reported to assess reproducibility. The influence
of viscosity (considering a water-glycerol solution) and off-centering is qualitatively described in
Sec. III, but these variations are not considered in the quantitative analysis.
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TABLE III. List of main variables. The last four entries indicate the indices used for a variable X .

Variable Definition Expressed as normalized by

θ polar angle
ϕ polar angle, modulo 2π/N
θv direction of droplet ejection, relative to the position of ejection
t time from impact tσ
τ t − tae tσ
We Weber number
N number of teeth of the substrate
S(θ ) radial position of substrate edge D/2
Sp substrate radius at peaks D/2
St substrate radius at troughs D/2
R(t, θ ) radial position of the sheet edge, i.e., the inner side of the rim D/2
Rs(t ) radial position of the rim on the substrate D/2
α j jth coefficient in the Fourier series of S(θ ) D/2
Aj jth cosine coefficient in the Fourier series of R(t, θ ) D/2
Bj jth sine coefficient in the Fourier series of R(t, θ ) D/2
χ residue of the Fourier series D/2
RsM, maximum radius of the rim on an unbounded substrate D/2
tsM time at which RsM is reached tσ
T t/tsM

vd speed of ejected droplets U
�d volume of ejected droplets πD3/6
Xa average of X (θ ) along θ

Xe(θ ) when the rim reaches the edge of the substrate at angular position θ

Xae when the angle-averaged rim reaches the edge of the substrate
Xd relative to the droplets at the time of their ejection

B. Data processing

In each video, the substrate edge, the liquid sheet, and the ejected droplets were segmented due to
elementary image processing. We checked with side view movies that the sheet and droplets remain
in the horizontal plane of the substrate. This happens because the substrate is sufficiently large to
fully deflect the impacting drop (Sa > 1.5), as already observed in [11]. Moreover, gravity has no
time to significantly bend the sheet downward during its expansion. This is in sharp contrast with
the substrates at Sa � 1 studied in [30], for which the sheet was then always strongly inclined. In
our experiments, the sheet could only be tracked properly once the rim was fully detached from
the substrate. Its tracking also failed at some point during retraction. These two limits defined the
time range in which the positions of the sheet edge (i.e., the inner side of the rim) and the droplets
were recorded. The radial position of both the substrate edge S(θ ) and the sheet edge R(θ, t ) were
recorded at each time (Fig. 2). Droplets were only kept if they were detected on at least five different
frames, at a position that corresponded to a trajectory at constant velocity. For each droplet, the time
of ejection td (i.e., the first time at which the droplet was detected), the corresponding angular
position θd, and the droplet speed vd and its direction θv (relative to θd) were recorded (Fig. 2). All
the variables and their meaning are listed in Table III.

The sheet edge profile is also decomposed in a Fourier series that now includes both cosine and
sine terms in θ ,

R(θ, t ) = Ra(t ) +
∞∑
j=1

Aj (t ) cos( jθ ) +
∞∑
j=1

Bj (t ) sin( jθ ), (5)
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with

Ra(t ) = 1

2π

∫ 2π

0
R(θ, t )dθ,

Aj (t ) = 1

π

∫ 2π

0
R(θ, t ) cos( jθ )dθ,

Bj (t ) = 1

π

∫ 2π

0
R(θ, t ) sin( jθ )dθ. (6)

Although the impact point was not visible on the videos, its position could be inferred from the
first harmonics of R(θ, t ), i.e., j = 1 in the sums of Eq. (5), at the earliest time where the sheet
could be detected. All the processed impacts were taken at a distance

√
A2

1 + B2
1 < 1.5 mm from

the symmetry center of the substrate.
In order to evaluate the extent to which the substrate edge shapes the rim and sheet, we focus

on the harmonic of coefficient AN (t ). The residue χ is defined as the standard deviation of the
remainder, namely,

χ (t ) =
√

1

2π

∫ 2π

0
[R(θ, t ) − Ra(t ) − AN cos(Nθ ) − A1 cos θ − B1 sin θ ]2dθ

= 1√
2

√√√√ N∑
j=2

(
A2

j + B2
j

) − A2
N . (7)

In this definition of the residue, the modes of coefficients A1 and B1 are also removed, as they mostly
result from the offset of the impact point.

III. PHENOMENOLOGY

Figure 3 illustrates the time evolution of the liquid rim from the moment where it reaches the
peaks of the substrate edge. At that time, the rim is still approximately circular. As it moves radially
outward, it is progressively shaped in a way reminiscent of the substrate edge (time 1.5625 ms in
Fig. 3): It goes farther in the directions corresponding to edge troughs and less far in directions
corresponding to edge peaks, similarly to what was observed for polygonal substrates [30]. As the
rim decelerates, it becomes corrugated and it is destabilized. At time 3.125 ms in Fig. 3, ligaments
are formed [24]. They subsequently break up into droplets that are ejected outward as they largely
inherit the speed of the rim [25]. Impacts at two different Weber numbers are compared in Fig. 3.
Both yield rims that are visibly shaped by the substrate geometry. At equivalent times, the rim goes
farther at higher We and the ejected droplets are smaller [18].

Figure 4 shows a snapshot sequence of the impact of a drop made of a water-glycerol solution
(mixing ratio 10:13). The corresponding viscosity is μ � 10 cP, i.e., 10 times higher than in other
experiments (with plain water). The corresponding Ohnesorge number is Oh = 0.017. This increase
of viscosity certainly translates into an increased viscous dissipation in the boundary layer formed
as the drop spreads on the substrate [35]. Consequently, the angle-averaged maximum extension
of the sheet and rim is decreased. Rim variations induced by the substrate geometry appear more
pronounced, especially since the rim is observed to remain pinned at the tip of the substrate teeth
(cf. second and third snapshots of Fig. 4). Ligaments only grow in the direction of edge troughs,
resulting in highly defined directions of droplet ejection (snapshot 4 of Fig. 4).

Figure 5 shows the spreading of a drop that impacted a few millimeters from the center of
substrate 5. In such a case, the radial growth of the rim is strongly asymmetric, showing a much
larger extension in the direction corresponding to the shortest path from impact point to substrate
edge. In the opposite direction, the rim barely surpasses the edge teeth, owing to the large travel

083602-7



TOBIAS BAUER AND TRISTAN GILET

FIG. 3. Snapshots showing the evolution with time of two drop impacts on substrate 4, at We = 835 (top
row) and We = 1872 (bottom row), respectively. The time is measured from the moment the rim crosses the
peaks of the substrate edge. The substrate diameter (from peak to peak) is 2Sp = 7.72 mm. The corresponding
movies are available in the Supplemental Material [14].

FIG. 4. Snapshots showing the evolution with time of a drop impact on substrate 4, at We = 1411. The time
is measured from the moment the rim crosses the peaks of the substrate edge. The substrate diameter (from
peak to peak) is 2Sp = 7.72 mm. By contrast with the other snapshots, the drop here is made of a water-glycerol
mixture of viscosity μ = 10 cP. Pinning of the rim at the teeth peaks is observed. The corresponding movie is
available in the Supplemental Material [14].

FIG. 5. Snapshots showing the evolution with time of a strongly off-centered drop impact on substrate
5, at We = 1065. The time is measured from the moment the rim crosses the peaks of the substrate edge.
The substrate diameter (from peak to peak) is 2Sp = 8.28 mm. The corresponding movie is available in the
Supplemental Material [14].
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FIG. 6. Angle-averaged distance between sheet and substrate edges Ra (t ) − Sa as a function of time t
(shifted by the time tae at which Ra = Sa). The black solid lines correspond to the second-degree polynomial
approximations of Eq. (8). Symbols (colors) correspond to different We (αN ), as described in Table I (II).

distance on the substrate and subsequent dissipation. The rim tips, where large ligaments develop,
are still aligned with the troughs of the substrate edge but their orientation is not radial anymore.

IV. SHEET AND RIM KINEMATICS

The time evolution of the angular average of the sheet edge Ra(t ) is shown in Fig. 6 for all
processed experiments. The sheet expands outward, decelerates, and then retracts inward. The
axisymmetric evolution of the rim resulting from centered impacts on circular poles has been
observed and explained in several papers with models of variable complexity [16,18,19,26]. The
angle-averaged component of R(θ, t ), namely Ra(t ), would also likely be captured by these axisym-
metric models. Nevertheless, we take a different approach [11,12]. We check that, empirically, the
increasing part of Ra(t ) (expanding sheet) is very-well approximated by a second-degree polynomial
in t through linear least-squares fitting. The time tae at which the average sheet edge Ra would reach
the average substrate edge Sa is determined from this polynomial, which can then be rewritten as

Ra(t ) � Sa + Ṙae(t − tae ) + R̈ae
(t − tae )2

2
, (8)

where the initial rim speed Ṙae = Ṙa(tae ) and constant acceleration R̈ae = R̈a(tae ) correspond to the
two other degrees of freedom of the fit. The time τ = t − tae is defined as the average time of the
rim off the substrate. The second-degree polynomial approximating Ra(t ) can be rewritten

Ra(τ ) � Sa + ṘaeG(τ ), G(τ ) = τ

(
1 − τ

2τM

)
, τM = − Ṙae

R̈ae
. (9)

The function G(τ ) contains the description of the sheet and rim dynamics, and although it was
empirically chosen as a second-degree polynomial, any more complex and realistic model of this
dynamics could be incorporated in G(τ ).

The measured angle-averaged initial rim speed Ṙae should somehow be inherited from the
dynamics of earlier spreading on the substrate. Again, several models capture this dynamics, each
in a specific range of impact and substrate parameters [36–40]. Therefore, we keep the formulation
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FIG. 7. Initial radial speed of the sheet edge Ṙae, obtained by extrapolation of its radial position to Ra (tae ) =
Sa, vs speed Ṙs(tae ) of the rim on an unbounded substrate predicted by Eq. (12). The solid line corresponds to
Eq. (13). Symbols (colors) correspond to different We (αN ), as described in Table I (II).

as general as possible. On a horizontal and unbounded solid, the rim radius Rs(t ) obeys

Rs(t ) = RsMF (T ), (10)

where RsM is the maximum spreading radius on the solid, T = t/tsM is a normalized time, tsM is the
time at which this radius would be reached, and F (T ) is a function to be determined. This function
must satisfy F ′ > 0 and F ′′ < 0 for T ∈ [0, 1] and F ′ = 0 in T = 1. Measurements of the spreading
dynamics on a large aluminum plate, i.e., where the spreading drop does not reach the plate edges,
are provided in the Appendix together with an empirical expression for F (T ) and scaling laws for
RsM and tsM vs We and Oh. According to Eq. (10), the time tae at which the rim reaches the substrate
edge is the solution of

Sa = RsMF (Tae ), Tae = tae/tsM. (11)

The corresponding rim speed would then be

Ṙs(tae ) = RsM

tsM
F ′(Tae ). (12)

The rim speed on the substrate Ṙs(tae ) is predicted from the expressions of RsM and tsM determined in
the Appendix. Then, in Fig. 7, it is compared to the rim speed once off the substrate as extrapolated
from measurements of Ra(t ). In a good approximation,

Ṙae � 0.88Ṙs(tae ), (13)

which confirms that the initial speed of sheet expansion is largely inherited from the rim speed on
the substrate.

The normalized time at which the sheet reaches a maximum of average extension Ra is measured
as τM � 0.30 ± 0.02 (mean plus or minus the standard deviation over all experiments) so it may
be considered as constant in the present experimental data set. Nevertheless, this time increases
slightly with We (coefficient of correlation 0.5 and coefficient of determination 0.25 for a linear fit)
and decreases with increasing Sm (coefficient of correlation −0.9 and coefficient of determination
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FIG. 8. Evolution of the component AN mainly excited by the substrate edge shape (closed squares) and
the residue χ (open squares) with time τ . The solid (dashed) line corresponds to the prediction of Eq. (21)
for AN (χ ). The dash-dotted line indicates the time at which the first droplets are ejected from the rim. In this
experiment, We = 1411 and αN = −0.52.

0.82 for a linear fit). The latter dependence was already noted for drop impacts next to a straight
substrate edge [12].

An example of time evolution of the sheet edge coefficient AN and the residue χ is shown in
Fig. 8. In all experiments, the coefficient AN remained significantly larger than the residue χ as
long as the sheet expanded (τ < 0.3). This confirms that the shape of the expanding sheet is mostly
influenced by the substrate shape. The growth of coefficient AN always ends earlier than the average
sheet expansion. In Fig. 8, AN reaches a maximum around 0.4 in τ � τM/2. This maximum is
comparable to −αN , which suggests that the angular variations of the sheet radius are of the same
order as those of the substrate edge. In every experiment, χ increased monotonically with time and
became comparable to AN by the time the sheet reached its maximum extension.

The variation of AN at early times may be rationalized as follows. We first hypothesize that
Eq. (9), describing the evolution of the angle-averaged sheet radius Ra(τ ), can be generalized to
predict the sheet radius at any angle R(τ, θ ),

R(τ, θ ) = S(θ ) + 0.88Ṙs(te )G(τ − τe ), τe(θ ) = te(θ ) − tae, (14)

where te(θ ) is the time at which the rim reaches the substrate edge in direction θ . This time can be
obtained by solving

RsMF [Te(θ )] = S(θ ), (15)

with Te(θ ) = te(θ )/tsM. Assuming that the substrate edge is only slightly corrugated, i.e., |S(θ ) −
Sa| � Sa, Te can be estimated through a Taylor approximation of Eq. (15),

Te(θ ) = Tae + S(θ )/RsM − Fae

F ′
ae

, (16)

where Fae = F (Tae ) and F ′
ae = F ′(Tae ). With a second Taylor approximation now on F ′(Tae ), we

estimate the rim speed once it locally reaches the substrate edge:

Ṙs(te) = RsM

tsM
F ′(Te ) � RsM

tsM
[F ′

ae + F ′′
ae(Te(θ ) − Tae )], F ′′

ae = F ′′(Tae ). (17)
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Finally, a Taylor approximation of the angular dependence of G(τ ) is considered:

G(τ − τe ) = G(τ ) − G′(τ )τe. (18)

Consequently,

R(τ, θ ) � S(θ ) + 0.88
RsM

tsM
[F ′

ae + F ′′
ae(Te − Tae )][G(τ ) − G′(τ )τe]. (19)

Under the same hypothesis of a slightly corrugated substrate, |Te − Tae| � Tae and

R(τ, θ ) � S(θ ) + 0.88
RsM

tsM
F ′

aeG(τ ) + 0.88[S(θ ) − Sa]

(
F ′′

ae

F ′
aetsM

G(τ ) − G′(τ )

)
. (20)

Equation (9) is recovered by averaging this equation along θ . The other Fourier coefficients of
R(τ, θ ) are given by

Aj (τ ) = α j

[
1 + 0.88

(
F ′′

ae

F ′
aetsM

G(τ ) − G′(τ )

)]
,

Bj (τ ) = 0.

(21)

The prediction made by Eq. (21) for AN (τ ) is shown in Fig. 8. At the first instants of the sheet
expansion, the prediction looks very good, especially since there is no additional fitting parameter
once Ra(τ ) is prescribed.

In Fig. 8 the model prediction fails at τ � 0.11. Although this time limit varies from one
experiment to another, it always remains close to the time at which the first droplets are ejected
from the rim. We indeed expect that the dynamical behavior of the rim changes once it starts losing
mass through droplet ejections.

According to Eq. (21), all the modes j would obey to the same time evolution, and so would the
residue χ . This is disproved by Fig. 8, in which χ is not proportional to AN . Moreover, Eq. (21)
systematically underestimates χ (t ). This disagreement certainly originates from the two strong
hypotheses inherent to this model: the fact that the rim and sheet would evolve independently in
each direction as specified by Eq. (14) and the fact that the substrate would be slightly corrugated
(cf. Taylor approximations).

The aforementioned shortcomings suggest that the model should only be appropriate to ratio-
nalize the initial growth of AN (τ ). The parity plot of Fig. 9 compares the prediction of Eq. (21) to
measurements taken at most 0.042, i.e., 0.7 ms, after the rim fully detached from the substrate
edge. The agreement is remarkably good (coefficient of determination 0.92), again considering
that there is no fitting parameter once the angle-averaged rim evolution is given. In particular, the
coefficient AN is always positive at the considered times (Figs. 8 and 9), while αN < 0 (Table II),
which corroborates the fact that the rim expands faster in directions corresponding to edge troughs.

V. EJECTED DROPLETS

The angular position ϕd at which the droplets are ejected is calculated modulo 2π/N according
to Eq. (2) to take the substrate symmetry into account. The distribution of ϕd in which droplets
from all experiments are pooled is represented in Fig. 10. Evidently, droplets are preferentially
ejected at positions ϕd = 0 aligned with the troughs of the substrate edge. A secondary maximum
of occurrence is observed in ϕd = ±π/N , i.e., at positions aligned with the peaks of the substrate
edge. Nevertheless, fewer droplets are ejected at φd � ±π/N than at φd � 0.

The velocity direction in which the droplets are ejected is represented by θv, namely, the relative
angle between the velocity vector and the radial direction at the position of ejection. The swarm
chart of Fig. 11 indicates that most droplets ejected during the rim expansion (τd < 0.3) are ejected
radially, i.e., close to |θv| = 0. Starting from τd � 0.2, a growing number of droplets are ejected in
other, random directions.
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FIG. 9. Parity plot of AN , predicted by Eq. (21) vs measured in every experiment during 0.042 (expressed
in tσ , so corresponding to 0.7 ms) after the rim detached from the substrate edge. The black line corresponds
to AN (Theor.) = AN (Expt.). Symbols (colors) correspond to different We (αN ), as described in Table I (II).

As seen in Fig. 12, the average droplet ejection speed vd decreases with increasing time of
ejection τd, as already observed for drop impacts on poles [25] and straight edges [11]. Interestingly,
vd is slightly larger for substrates with larger teeth, e.g., substrates 5 and 6 in Table II.

Finally, Fig. 13 shows a swarm chart of the droplet volume �d as a function of the ejection
position ϕd. It proves that the largest droplets, corresponding to a volume higher than 0.5% of the
impacting drop, are mostly ejected in directions aligned with troughs of the substrate edge.

-0.3 -0.2 -0.1 0 0.1 0.2 0.3

0

50

100
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200

250

FIG. 10. Probability distribution function of the angular position ϕd of droplets at the moment of their
ejection. The angle ϕd corresponds to θd calculated modulo 2π/N according to Eq. (2), thereby taking the
substrate symmetry into account. Droplets from all experiments are pooled in this distribution.

083602-13



TOBIAS BAUER AND TRISTAN GILET

0 0.1 0.2 0.3 0.4 0.5 0.6

0

0.5

1

1.5

2

2.5

3

FIG. 11. Swarm chart of the angle |θv| between the droplet velocity at ejection and the radial direction at
angular position θd, as a function of ejection time τd. The swarm chart is a plot where data are binned (here at
τd = 0.05, 0.15, 0.25, etc.) and then randomly scattered along the abscissa with an amplitude proportional to
the density of data points around each value of |θv|. The envelope of the data points therefore corresponds to
the probability distribution of |θv| in a given bin of τd, similarly to a violin plot. Droplets from every experiment
are pooled in this distribution, with colors corresponding to different αN , according to Table II.

VI. CONCLUSION

This work investigated the dynamics of the sheet, rim, and droplets formed when an impacting
drop spreads beyond the edge of a solid substrate. It focused on the possible influence of the edge
shape on this dynamics. In all the regimes explored in these experiments, the rim significantly

0 0.1 0.2 0.3 0.4 0.5 0.6

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

FIG. 12. Average speed vd (normalized by impact speed U ) of droplets ejected at a given time τd (bins of
±0.05), for the six experiments at We = 1065 and different values of αN (colors according to Table II).
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FIG. 13. Swarm chart of the volume �d of ejected droplets (normalized by the volume of the impacting
drop), as a function of the angular position of ejection ϕd as defined in Eq. (2). The working principle of the
swarm chart is recalled in the caption of Fig. 11. Droplets from every experiment are pooled in this distribution,
with colors corresponding to different αN , according to Table II.

deviated from axisymmetry during sheet expansion. It showed troughs (peaks) in directions cor-
responding to edge peaks (troughs). This corroborates previous observations on convex polygonal
substrates [30]. It is intuitively explained by the fact that in edge peak directions, the liquid must
spread longer on the substrate before reaching its edge, which comes with additional viscous
dissipation and a reduced initial rim speed. Consistently, the shaping of the rim was marked more at
larger viscosity.

We developed an analytical model of the rim deformation based on the hypothesis that in
each direction, the rim expands independently of the other directions. The model provides a good
prediction of the rim deformation at early times and correctly reproduces variations with the Weber
number and the amplitude of edge teeth. As predicted, larger teeth result in a stronger shaping of the
rim. A model that provides a prediction at later times would need to consider azimuthal interactions
of the rim and sheet, and it is left to future work.

The ejection of droplets from the rim responds to this modification of rim shape and dynamics.
During the rim expansion (τd < 0.3), droplets are preferentially ejected in the directions correspond-
ing to rim peaks (or equivalently edge troughs, ϕd � 0). They are mostly ejected radially (θv � 0)
and they are larger than droplets emitted in other directions. On average, droplets go slightly faster
when edge teeth are present. It can therefore be concluded that the shape of a substrate edge may
significantly influence the ejection of droplets emitted upon drop impact close to this edge. Droplets
emitted during sheet and rim expansion are larger, faster, and ejected in preferential directions. As
far as plant leaves are concerned, this mechanism certainly shapes, to some extent, the dispersal
pattern of anything, from leached ions to spores, that could be transported in these droplets.
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FIG. 14. Time evolution of the rim radius Rs(t ) on an unbounded substrate. The rim radius is normalized
by its maximum value RsM and the time is normalized by the time tsM that it takes to reach this radius. Black
dots correspond to experimental data for drops made of various water-glycerol mixtures, impacting at different
speeds. The red curve represents Eq. (A1).
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APPENDIX: SPREADING ON AN UNBOUNDED SUBSTRATE

Drops with the same diameter D as in the main experiments impacted a square horizontal plate
of length 7.5 cm, i.e., significantly larger than the maximum spreading diameter of the drops.
The spreading kinematics was recorded at a frame rate of 10 000 frames/s, with a resolution of
62 µm/pixel. Six different release heights (from 23 to 173 cm) were considered, which corresponded
to impact velocities between 2 and 5.4 m/s. Four mixtures of water and glycerol were considered
too, with respective percentage of glycerol (in volume) of 0%, 25%, 40%, and 55%. Densities and
viscosities were obtained from an online calculator [41] and surface tension was obtained from [42].
The initial drop diameter D, the impact speed U , and the time evolution of the rim radius Rs(t ) were
measured by image processing.

As seen in Fig. 14, the time evolution of the rim radius Rs(t ), once normalized, satisfies Eq. (10)
with a unique function F (T ) which is very well approximated by

F (T ) =
√

T (2 − T ), (A1)

as already shown for pure water drops in [12]. The factor involved in Eq. (21) is therefore

F ′′
ae

F ′
ae

= −1

Tae(1 − Tae )(2 − Tae )
. (A2)

The maximum spreading radius RsM is a function of We and Oh. Several approximations of this
function were proposed in various works [36,37,39,40]. As these approximations are only valid in
specific ranges of We and Oh and possibly dependent on the wetting properties and roughness of
the substrate, we determined our own approximation, valid in the range explored with our main data
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FIG. 15. Maximum radius RsM of the rim of a drop spreading on an unbounded substrate, as a function of
We/Oh. Symbols with different colors correspond to experiments with different water-glycerol mixtures. The
power law (black line) is given by Eq. (A3).

set:

RsM � 0.39

(
We

Oh

)1/5

. (A3)

As seen in Fig. 15, this equation is in very good agreement with the measurements of this maximum
radius.
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FIG. 16. Time after impact tsM at which the maximum radius RsM of the rim is reached, as a function of
RsMWe−1/2. Symbols with different colors correspond to experiments with different water-glycerol mixtures.
The black line represents Eq. (A4).
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Figure 16 indicates that

tsM � 1.9RsMWe−1/2, (A4)

in agreement with the prediction of [40].
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