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Circular objects do not melt the slowest in water
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We report on the melting dynamics of ice suspended in fresh water and subject to
natural convective flows. Using direct numerical simulations we investigate the melt rate of
ellipsoidal objects for 2.32 × 104 � Ra � 7.61 × 108, where Ra is the Rayleigh number
defined with the temperature difference between the ice and the surrounding water. We
reveal that the system exhibits nonmonotonic behavior in three control parameters. As a
function of the aspect ratio of the ellipsoid, the melting time shows a distinct minimum
that is different from a disk which has the minimum perimeter. Furthermore, also with
Ra the system shows a nonmonotonic trend, since for large Ra and large aspect ratio the
flow separates, leading to distinctly different dynamics. Lastly, since the density of water
is nonmonotonic with temperature, the melt rate depends nonmonotonically also on the
ambient temperature, as for intermediate temperatures (4 ◦C – 7 ◦C) the flow is (partially)
reversed. In general, the shape which melts the slowest is quite distinct from that of a disk.
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I. INTRODUCTION

Melting plays a significant role in various natural phenomena, including oceanography, geo-
physics, and astrophysics, and in engineering applications like in process technology and thermal
energy storage. As an example of the classical Stefan problem [1], melting phenomena can ex-
hibit quite some complexities [2,3], particularly in their interaction with buoyant flows. These
complexities are evident in scenarios involving intricate multiscale geological morphologies and
accelerated melt rates due to ambient flows. Understanding these phenomena and the underlying
physical mechanisms is crucial, especially given the escalating melt rates observed in global ice
reserves [4]. In this paper we study the complexities of the melting processes in idealized canonical
geometries to better understand the underlying physics.

Despite extensive research on ice melt rates using models [5–7], experiments [3,8–10], and
simulations [11–14], the potential effects of geometry on the melt rate are generally ignored. Not
only icebergs and ice floes exhibit considerable shape and size variations [15,16], with sizes ranging
from a few meters to several hundred kilometers, but also in dissolution processes the size spans
several orders of magnitude. In laboratory experiments in which ice was melted by external flows the
overall melt rate has been found to depend on the aspect ratio [2,17]. Despite its importance for the
ice melt rate, the effect of shape is still poorly understood. Therefore, to deepen our understanding
and improve the iceberg melting predictions, it is imperative to consider aspect ratio and shape in
models of iceberg melt rates. The natural fundamental questions we address here are: How does the
melt rate depend on the shape, and what is the optimal shape (defined as the slowest-melting shape
for a fixed initial volume)?
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FIG. 1. (a) Simulation setup. The initial effective diameter of ice is fixed as D = √
hw = 0.1L. (b) Zoom-

in view of the temperature field of a melting ice block with an aspect ratio γ = 3. θ is the dimensionless
temperature.

To answer these questions consider the three mechanisms of heat transfer: conduction, radiation,
and convection. For conduction and radiation the transfer is proportional to the area and we can
therefore restate the problem as finding a shape with minimal surface area. From the isoperimetric
inequality [18] we know that an n ball—with its O(n) symmetry—gives us the shape for which the
perimeter (a circle in two dimensions or a sphere in three dimensions) is minimized. However, for
convection the gravitational acceleration breaks this symmetry and therefore an n ball is no longer
the shape that melts the slowest. This means that, whereas for conduction and radiation an initial
ball shape stays self-similar during the melting process, for convection the shape evolves over time
and is not self-similar. Previous studies also highlight the complex interplay between ice melting
and ambient flows, leading to distinct morphologies and melt rates [3,9,13,19].

II. NUMERICAL SIMULATION METHOD

In this article, the impact of the initial ice shape on the melt rates is investigated by means
of direct numerical simulations and theoretical analysis. We focus on the scenario of ice melting
in a water-filled box, where natural convection due to buoyancy dominates the flow. Our aim is
to understand how the aspect ratio affects the ice melt rates, with the help of direct numerical
simulations. We numerically integrate the Navier-Stokes and advection-diffusion equations to find
the evolution of the velocity field u(x, t ) and the temperature field T (x, t ), respectively. Note that
for melting of ice in cold water around 4 ◦C, the density anomaly of water is key [20–23]; we
approximate it as

ρ = ρ0(1 − β|T − Tmax|q), (1)

where β = 9.3 × 10−6(◦C)−q is the generalized thermal expansion coefficient, with the exponent
q = 1.895 [24] and Tmax = 4 ◦C for fresh water. The melting process is modeled by the phase-
field method, which has been widely used and verified in previous studies [12,13,17,23,25,26]. In
this technique, the phase-field variable φ is integrated in space and time and smoothly transitions
from a value of 1 in the solid phase to a value of 0 in the liquid phase. In the simulations, we
prescribe an ice object with an initial cross-sectional area A0 and effective diameter D = 2

√
A0/π

at the center of a square domain with the side length L = 10D (corresponding area ratio A0/L2 =
0.8%) [see Fig. 1(a)]. Two-dimensional and three-dimensional simulations (with size L in the third
dimension) are performed. All boundaries are adiabatic with free-slip conditions on the velocity
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FIG. 2. (a) Rescaled melt rate f̃ = f Ra1/4 as a function of the aspect ratio γ for different Ra. The dashed
line shows the theoretical prediction for the curve of the minima from Eq. (7). (b) The heat map of the rescaled
melt rate (by the optimal melt rate fopt) as a function of Ra and γ . The red line shows the optimal aspect
ratio γmin with the minimum melt rate, which is obtained by a quadratic fitting of the data points around the
minimum.

field. An example of the temperature field of a melting ice object is shown in Fig. 1(b). More details
on the governing equations and the numerical method can be found in Appendix.

The control parameters of the system are the Rayleigh number Ra (dimensionless buoyancy
strength), the aspect ratio γ of the initial ice shape, which is defined as the ratio of its width w

and height h, the Prandtl number Pr, which is the ratio between the kinematic viscosity ν and the
thermal diffusivity κ , and the Stefan number Ste, which is the ratio between the latent heat L and
the sensible heat:

Ra = gβ
qD3

νκ
, γ = w

h
, Pr = ν

κ
, Ste = L

cp

. (2)

Here, g is the gravitaional acceleration, cp is the specific heat capacity, and 
 is the temperature
difference between the ambient water and the ice. Given the large parameter space, some of the
control parameters have to be fixed in order to make the study feasible. We fix Pr = 7 and Ste =
4 as the values for water at 20 ◦C. Our simulations cover a parameter range of 104 � Ra � 109

(corresponding to ice diameters 5 mm � D � 160 mm) and 0.5 � γ � 4.

III. MELT RATE DEPENDENCE ON γ AND Ra

We first investigate dependences of the melt rate dependence on the aspect ratio γ and Ra, as
shown in Fig. 2(a). The time it takes for the ice to completely melt is t f , and we define f = 1/t f as
the mean melt rate. The trend of the rescaled melt rate f̃ = f Ra1/4 depends not only on γ but also
on Ra. Here we rescale the melt rate to make the trends for different Ra comparable. For increasing
γ , the melt curves exhibit a nonmonotonic trend, with the rescaled melt rate first decreasing and then
increasing. As explained above, in the absence of gravity (Ra = 0), the minimum melt rate would
occur at an aspect ratio γmin = 1 (disk shape) as that minimizes the perimeter. As Ra increases, γmin

first increases to around γmin ≈ 2. The same trend is also observed for three-dimensional simulations
of elliptical cylinders with cross sections of different aspect ratios. However, as Ra increases further
(Ra � 3 × 108), remarkably γmin starts to decrease even below 1. The same observation can also be
seen from the heat map of the normalized melt rate in Fig. 2(b).
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Our findings demonstrate that in the absence of external flow, ice with an elliptical shape (when
the short axis is aligned with gravity) can melt up to 10% slower than a disk shape. This previously
neglected shape factor may have implications for accurately estimating the melt rate of icebergs in
previous models [5–7] that neglected it. The counterintuitive nature of this phenomenon demands
an explanation and raises further questions about its physical mechanisms.

To quantitatively explain the result, we consider the total ice mass budget for the melting process:

dA(t )

dt
= P(γ , t )vn, (3)

where A is the total area of ice (in two dimensions), P(γ , t ) is the perimeter as a function of aspect
ratio and time, and vn is the surface-averaged melt velocity. Assuming the elliptical shape does not
significantly change with time, we have for the perimeter of an ellipse

P(γ , t ) = 4

√
A(t )

πγ
E (1 − γ 2), (4)

where E is the complete elliptic integral of the second kind. The presence of a flow generated from
natural convection increases the temperature gradient at the ice front and makes vn nonuniform. To
estimate vn, we consider the Stefan boundary condition, i.e., that the dimensionless surface-averaged
melt velocity ṽn is related to the surface-averaged heat flux Nu:

ṽn = vn

U0
= − 1

U0

κcp

L
∂T

∂n
= Nu

Ra1/2Pr1/2A1/2Ste
, (5)

where Nu can be estimated from the scaling of Nu for a laminar boundary layer [27] by

Nu ∝ Ra1/4
h (6)

with Rah = Ra(h/D)3 the Rayleigh number defined by the cross-sectional height h in the gravity
direction. By substituting Eqs. (4)–(6) into Eq. (3), we obtain

f ∝ P(γ )γ −3/8, (7)

which provides the overall melt rate dependence on γ . The factor γ −3/8 originates from the scaling
of Nu, representing the effect of convective flow on melt rate, and P(γ ) represents the effect of the
perimeter size on the melt rate with the minimum at γ = 1, which dominates when the ambient
flow is absent or weak. γ −3/8 displays a monotonic decrease in melt rate. This can be physically
understood by the natural convective flows induced by melting. The effective length scale for natural
convection is the vertical length, which is larger for smaller γ , resulting in larger Rah and therefore
stronger convection, i.e., higher melt rates. The total melt rate, the product of P(γ ) and γ −3/8,
features a nonmonotonic trend with a minimum at γ > 1, which is shown in Fig. 2(a). Although the
curve differs from our results since the actual melting dynamics is far more complicated [e.g., γ is
changing with time (see Appendix), and Eq. (6) does not take into consideration any morphology
changes], the trend agrees with our explanation for γmin > 1.

However, as Ra increases further, γmin decreases even below 1, which is opposite to the previous
prediction. This behavior of γmin is due to a transition associated with cavity formation at the bottom
of the melt shape, as seen in Figs. 3(b)–3(d). The parameter space in the (γ , Ra) place is shown in
Fig. 3(a) and features a regime with transition from no-cavity to cavity formation and a regime
without this transition. Figures 3(b)–3(d) show the instantaneous flow patterns and cavity structures
for varying γ values. This cavity formation is due to the onset of flow separation, a phenomenon
that is commonly observed in flows around (heated) objects [27]. The melt water flows along the
surface at the top and detaches before reaching the bottom. The occurrence of flow separation leads
to enhanced mixing, triggering an increased local heat flux. This enhanced local melt rate results in
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FIG. 3. (a) The Ra-γ phase diagram of cavity formation. The black disks mean no-cavity formation during
melting and the circles mean that cavity formation is observed. The squares in (a) correspond to the cases shown
in (b)–(d) of the instantaneous temperature field and a zoom-in of the cavity at the bottom for Ra = 7.61 × 108

and (b) γ = 0.5, (c) 1, and (d) 3. The thin dashed gray lines show the initial shape of the object, and future
shapes are indicated with solid lines inside the objects.

the development of a cavity at the bottom of the ice object. This transition can be seen for either
high values of γ or high values of Ra.

Moreover, the regime transition associated with cavity formation aligns with the corresponding
trend transition in the melt rate, as showcased in Fig. 2(a). Circles (disks) in the graph correspond
to cases where cavities manifest (no cavities appear). This is consistent because the enhanced local
melt rate significantly influences the overall melt rate f , leading to a significant increase in f in
these cases. This effect is particularly pronounced for larger γ values, and it explains why γmin

shifts towards smaller values, revealing the complexity in the relationship between aspect ratio and
melt rates.

IV. MELT RATE DEPENDENCE ON AMBIENT TEMPERATURE

Until now we only considered the ambient temperature Ta as 20 ◦C. However, the density of
water follows a nonmonotonic relationship with temperature [see Eq. (1)]. This effect can cause
distinct flow regimes and ice melting morphologies for different ambient temperatures [20–22]. We
therefore investigate the effect of the ambient temperature on f and γmin for fixed Ra = 1.86 × 105.
Figure 4(a) shows the dependence of γ on the overall melt rate at different ambient temperatures.
One can see similar trends and values of γmin for large ambient temperature (Ta � 8 ◦C) and small
ambient temperature (Ta � 5 ◦C). However, γmin decreases towards 1 for intermediate temperatures
(5 ◦C � Ta � 8 ◦C). The same trend can also be seen from the heat map of the normalized melt rate
in Fig. 4(b), where a sharp transition of γmin (the red line) towards disk shape (γ = 1) at intermediate
temperatures exists.

The transition at play can be understood by the density anomaly effect, which results in dis-
tinctive flow structures for different ambient temperatures, as elucidated in Figs. 4(c)–4(e). For low
ambient temperatures [Fig. 4(c)], the melt water simply ascends due to its lower density at 0 ◦C as
compared to the density of the surrounding water. For high ambient temperature [Fig. 4(e)], the melt
water’s density remains higher than that of the ambient water, which means only downward flow
motion. However, as the temperature of the ambient water is slightly above 4 ◦C [Fig. 4(d)], the melt
water adopts a bidirectional flow pattern, having both upward and downward motion, which Weady
et al. also observe for a melting cylinder [3]. Initially, the melt water (0 ◦C) moves upwards. As the
ambient water mixes with and warms up the melt water, the density of the melt water increases,
surpassing that of the surrounding water, causing it to then flow downwards.
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FIG. 4. (a) Rescaled melt rate as a function of the aspect ratio γ for different T with a fixed Ra = 1.86 ×
105. The melt rates are rescaled by the melt rate of the disk (γ = 1) at the same ambient temperature. (b) The
heat map of the rescaled melt rate as a function of T and γ . The red line shows the optimal aspect ratio γmin

with the minimum melt rate, which is obtained by a quadratic fitting of the data points from simulation results.
(c),(d) The snapshot of temperature fields at the ambient temperatures T = 4 ◦C, 5.25 ◦C, and 8 ◦C, with the
same color bar as in Fig. 3. The arrows show the direction of the main flow.

More details of the flow dynamics under different ambient temperatures can be appreciated in
Appendix. Around the intermediate temperatures, where both upward and downward flows occur,
the cold melt water stays closer to the object for a longer time and also leads to a more uniform flow
around the ice. Consequently, the asymmetry induced by convection weakens, and the length of the
perimeter becomes dominant in determining the melt rate, which causes a transition of the optimal
shape close to a disk (γmin ≈ 1).

V. CONCLUSION

In summary, we conducted comprehensive numerical investigations on elliptical shapes across
various aspect ratios (γ ), Rayleigh numbers Ra, and ambient temperatures Ta. Our primary focus
was on understanding the behavior of the overall melt rate f and the corresponding shape evo-
lution. Notably, our findings revealed a nonmonotonic dependence of the melt rate f on these
control parameters Ra, γ , and Ta. f was found to be nonmonotonic with γ such that for low
Ra elliptically shaped ice with γ ≈ 2 melts ≈10% slower than disk-shaped ice. Moreover γmin

initially increases and then decreases with rising Rayleigh number Ra, which we were able to
explain using physical rationale. We identified a direct correlation between the reduction of γmin
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and the emergence of cavity formations due to flow separation as Ra increases. This phenomenon
significantly amplifies the local melt rate, particularly for larger γ values. Our investigation was
further extended to explore the interplay of γmin with the ambient temperature Ta, where we
uncovered another nonmonotonic relationship—essential for accurate predictions of melting in fresh
water. This behavior stems from the density anomaly of water around 4 ◦C, causing alterations in
the flow dynamics around the ice and consequently influencing the melt rate.

Overall, our study offers comprehensive insight into the intricate relationship between the shape-
dependent ice melt rate and the gravitational symmetry breaking by convection. These findings have
significant relevance to the modeling of large-scale geophysical and climatological or industrial
processes.

Our physical explanation of the shift of γmin can also be extended to other moving boundary
problems, such as erosion [19], ablation, and dissolution [28,29]. Future studies may investigate the
ice melting dynamics in salty water, where double-diffusive convection plays an important role and
can result in intriguing flow patterns [14,30].
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APPENDIX A: GOVERNING EQUATIONS

We consider an incompressible flow nondimensionalized by the free-fall velocity Uf = √
βg
qD

as the velocity scale, the ice effective diameter D as the length scale, and the temperature difference
between the ambient water and the ice 
 as the temperature scale. The nondimensionalized
quantities include (two) three velocity components ui with (i = 1, 2) i = 1, 2, 3 for our simulations
in (2D) 3D, the pressure p, the temperature θ , and the phase field scalar φ. The dimensionless
governing equations read

∇ · u = 0,

∂

∂t
u + (u · ∇)u = −∇p +

√
Pr

Ra

(
∇2u − φu

η

)
+ |θ − θm|qez,

∂

∂t
θ + (u · ∇)θ = 1√

RaPr
∇2θ + Ste

∂

∂t
φ,

∂φ

∂t
= 6

5CSte
√

RaPr

[
∇2φ − 1

ε2
φ(1 − φ)(1 − 2φ + Cθ )

]
,

where θm = Tc/
 is the nondimensionalized maximum temperature with Tc = 4 ◦C, ε is the dif-
fusive interface thickness, which is typically set to be the mean grid spacing. C is the phase
mobility parameters related to the Gibbs-Thompson relation. We choose C = 10 and avoid extreme
values of γ , where the high curvature regions might be inaccurate. More details can be found
in previous studies [13,25]. Simulations are performed using the second-order staggered finite
difference code AFiD, which has been extensively validated and used to study a wide range of
turbulent flow problems [31–33], including phase-change problems [13,23]. The phase field method
is applied to model the phase-change process, which has been widely used in previous studies
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(a) (b) (c) (d)

FIG. 5. (a) Normalized ice volume as a function of time with different refined resolutions at Ra = 1.85 ×
105 and γ = 1. (b) The corresponding total melt rate t f (from beginning to completely melt) as a function of
resolution. Our final choice of resolution for this case is 1536. (c) Normalized ice volume as a function of time
with different domain-diameter ratios (L/D) at γ = 1. (d) The corresponding total melt rate t f as a function of
L/D. Our final choice of resolution for this case is L/D = 10.

[13,12,17,26,34,35]. The flow is confined to a square box with all no-slip boundary conditions for
the velocity and is adiabatic for the temperature. A multiresolution method [31] is applied to the
phase field.

The resolution convergence test is shown in Figs. 5(a) and 5(b) for Ra = 1.85 × 105. Here we
applied a refined (3×) grid for the phase field, which shows convergence at nφ = 1536. Note that the
finite size of the computation domain could feasibly affect the ice melt rate, as the meltwater also
accumulates at the bottom. To ensure that this does not affect our results much, we performed a test
for disks shaped with different values of L/D, see Figs. 5(c) and 5(d), which produced a converging
melt rate at L/D = 10.

APPENDIX B: Nu(Ra) SCALING

Closely related to the Rayleigh number is the Nusselt number Nu. The Nusselt number is given
by the ratio between convective and conductive heat transfer [27]:

Nu = hD

k
, (B1)

(a) (b)

FIG. 6. (a) The overall averaged Nusselt number Nu as a function of Ra for different γ . (b) The effective
Nusselt number Nueff(t ) as a function of the effective Rayleigh number Raeff(t ) (defined by the instantaneous
size of ice) with different Ra for γ = 1. The lines are fits with exponent 0.265.
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=0.5 =1.0 =4.0

FIG. 7. The contour evolution plot of ice for different starting γ and Ra. The contours are taken equidistant
in time.

where h is the heat transfer coefficient and k is the thermal conductivity. In the melting process, the
melt rate is linked to Nu through the Stefan boundary condition:

ṽn = vn

U0
= − 1

U0

κcp

L
∂T

∂n
= Nu

SteRa1/2Pr1/2A1/2
. (B2)

Here we estimate the averaged Nusselt number Nu using the overall melt rate (from initial to
completely melted), and check how Nu is expressed as a function of Ra using a scaling relation.
In Fig. 6(a), we plot the Nu as a function of Ra for different aspect ratios, which all show a similar
scaling as Nu ∝ Ra0.265 by fitting. Figure 6(b) shows the scaling between effective Rayleigh number
Raeff and effective Nusselt number Nueff (both defined by the instantaneous size of the ice during
melting), which also shows the same scaling as in Fig. 6(a).

APPENDIX C: ICE SHAPE EVOLUTION

Figure 7 shows the temporal evolution of the contours of ice shape for different initial γ and
Ra. One can see the cavity formation at high γ and Ra regime. Figure 8 shows the evolution of the
aspect ratio of ice shape for different initial γ at Ra = 1.86 × 105. One can see γ (t ) is changing
with time, which explains the difference between our numerical results and the theoretical model
[which assumes a constant γ �= γ (t )].
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FIG. 8. The evolution of the instantaneous aspect ratio γ (t ) of ice shape for different initial γ = 0.5, 1, 2, 4
for Ra = 1.86 × 105. γ (t ) is measured by the ratio of the maximum ice dimensions in vertical and horizontal
directions.
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