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Localized jammed clusters persist in shear-thickening suspension
subjected to swirling excitation
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We investigate the dynamic evolution of heterogeneity in shear-thickening suspensions
subjected to swirling excitation with a free surface. The uniform state of such a system
may lose its stability when the oscillation frequency is above a threshold, and density
waves spontaneously form [Shi et al., J. Fluid Mech. 984, A69 (2024)]. Here, we report
a state where jammed clusters emerge in high-density regions of the density waves. The
jammed cluster exhibits unique motion, creating downstream high-density regions distinct
from the previously reported state of density waves. Additionally, theoretical calculations
show that reducing suspension thickness lowers the frequency and global concentration �

threshold for the heterogeneity onset. Notably, the minimal � for instability can be lower
than the onset of discontinuous shear thickening transition. We also highlight the role of
the free surface in cluster growth and persistence.
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I. INTRODUCTION

Dense suspensions of micron-sized solid particles in a viscous liquid can exhibit a diverse array
of rheological behaviors when subjected to applied shear stress [1,2], such as shear thinning, shear
thickening, and shear jamming. Among these behaviors, shear thickening remains a subject of
considerable debate regarding physical modeling and understanding its underlying mechanisms.
One proposed cause of shear thickening is the formation of hydroclusters [3,4]. However, recent
research indicates that the physical contact between particles likely plays a significant role in this
phenomenon [5–7]. As a result, the dominant interaction between particles shifts from hydrody-
namic lubrication to frictional forces when the applied stress surpasses the interparticle repulsion
[2]. Recently, a phenomenological model based on a mean-field perspective was introduced by
Wyart and Cates [6]. Although this approach has yielded a range of results that has proven effective
in describing both simulation and experimental data [8–12], many questions remain.

One set of those questions includes spatial as well as temporal dynamics within the shear thick-
ening regime. Temporal fluctuations in bulk viscosity have been observed in classical rheology, and
visual evidence suggests the presence of associated spatial heterogeneities. These heterogeneities
include transient bands that propagate along the vorticity direction [13,14], periodic density waves
moving in the flow direction [15,16], as well as localized high viscosity or fully jammed phases
[17,18]. Direct observations on the suspension surface within a rheometer during shear have
revealed local dilation-induced surface deformations [19]. Similarly, numerical simulations have
identified stress fluctuations occurring at both the particle level and larger scales [20–23]. Hetero-
geneity has conventionally been associated with the negative slope of the constitutive curve under
rigid confinement [24]. However, while the role of boundary confinement in the shear-thickening
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FIG. 1. (a) Rheological data of the aqueous cornstarch suspension at different volume fractions. The solid
curves are best fits of the Wyart-Cates model (see text). Inset: Image of the cornstarch grains. (b) Sketch of the
setup. (c) Snapshot of the cornstarch suspension with � = 0.43 and h0 = 5 mm at f = 6 Hz. Note that jammed
clusters arise in the high-φ region of density waves.

transition is proposed [25,26], further research is needed to explore the origin of instability transi-
tions under free surfaces and the influence of boundary conditions on the growth of heterogeneity.

In our recent study, a dense cornstarch suspension was subjected to swirling excitation using an
orbital shaker at a given suspension thickness, and a phenomenon of self-organization of density
waves into a hexagonal pattern was reported [16]. Our interpretation of the origin of this instability
centered around the competition between kinematic instability and particle migrations. In the current
investigation, within the high-fraction region, a new state with the emergence of jammed clusters is
observed. The jammed clusters are characterized by a constant neighboring relation among closely
packed particles. As the oscillation frequency increases, these jammed clusters grow to larger
ones, eventually replacing the density waves across the system. Notably, reducing the suspension
thickness h0 also decreases the onset frequency of the jammed cluster. Moreover, it is noteworthy
that the long-standing jammed clusters undergo decomposition when subjected to confinement by a
fixed acrylic plate.

II. EXPERIMENTAL SET UP AND PHENOMENON

In our experimental setup, we utilize an open cylindrical container filled with a cornstarch
suspension. The container has a total height of 50 mm and an internal radius of 160 mm. The
thickness of the suspension, h0, is a variable in this study. The container is securely affixed to an
orbital shaker (Heidolph Unimax 1010), which imparted a horizontal orbital motion — a circular
movement of the entire platform. The oscillation frequency, denoted as f , can be adjusted within
the range of 0.5 to 8.33 Hz, with a fixed amplitude of A = 5 mm, representing the radius of the
orbital motion, as depicted in Fig. 1(b). This oscillation can be described as the superposition of
periodic motion in the x and y directions: x = A sin(ωt ) and y = −A cos(ωt ), where ω = 2π f .
We neglect the influence of the side wall, as reducing the container diameter does not alter the
phenomena studied in this work. The system is illuminated from beneath by a red LED panel. A
high-speed camera (Microtron EoSens 1.1cxp2) is securely mounted in the laboratory frame of
reference, capturing the dynamics of the suspension and the light transmission. In our experiments,
the variation in local density is the primary cause of light intensity contrast. Readers may refer to
Ref. [16] for the calibration data and method justification.

The suspension consists of cornstarch particles suspended in deionized water, with the addition
of CsCl to achieve density matching. The cornstarch particles exhibit irregular shapes and have
diameters ranging from 5 to 20 µm, as depicted in the inset of Fig. 1(a). The mass density of
dry starch particles, denoted as ρp, is 1.61 kg/m3. The rheological properties of the suspension
are characterized using a stress-controlled Couette rheometer (Anton Paar 302) for different values
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of �. The resulting flow curves are represented as η(τ ) = τ/γ̇ . The flow curves are fitted using
the Wyart-Cates model: ηs(�) = ν0ρs(φJ (τ ) − �)−2 [6]. This mean-field model suggests that the
jamming fraction φJ undergoes a transition from its frictionless value φ0 to φm for frictional contacts
when the applied stress τ exceeds a characteristic value τ ∗, i.e., φJ = φ0 − e−τ ∗/τ (φ0 − φm). The
key parameters, φ0, φm, and τ ∗, are obtained by fitting the rheological data. Although these
parameters are assumed to be constant in the model, variations are observed when fitting data
from different � independently [16], implying a dependence of the parameters on �. Revisions
to the model have been suggested to address this discrepancy [27,28]. In this study, we follow
the original Wyart-Cates model and fit all the rheological data collectively [see Fig. 1(a)]. The
resulting values, ν0 = 0.93 × 10−6 m2/s, τ ∗ = 3.6 Pa, φ0 = 0.45, and φm = 0.58, will be used
in subsequent analyses. The Discontinuous Shear Thickening (DST) boundary τ (�) must satisfy
(φ0 − �)/(φ0 − φm) = e−τ ∗/τ (1 + 2τ ∗/τ ), leading to the minimal packing fraction for the onset of
DST �DST = φ0 − 2e−1/2(φ0 − φm) = 0.43 for the cornstarch suspension used in our experiments.
The packing fraction � is varied within the range of 0.36 to 0.44 in experiments.

The uniform state of the suspension is unstable under bottom shear, and the development of
inhomogeneity undergoes two distinct stages as the oscillation frequency increases. For instance, in
a specific system characterized by � = 0.43 and h0 = 5 mm, the inhomogeneity first manifests
as density waves when the oscillation frequency surpasses 2.33 Hz. With a further increase in
the oscillation frequency beyond 3.67 Hz, numerous jammed clusters emerge in the high-φ region
[Fig. 1(c)]. Notably, reducing h0 to 3.1 mm shifts the onset of both stages toward lower frequencies
and �. As jammed clusters signify the evolution of instability, how h0 affects the instability of the
uniform state is examined first.

III. THE EFFECT OF SUSPENSION THICKNESS ON THE ONSET OF HETEROGENEITY

Noting that the onset of instability in our suspension system exhibits characteristics akin to
a compression wave of density, a two-fluid model is commonly employed to investigate its flow
instability [24,29,30]. For a comprehensive understanding of the model and linear stability analysis
of this system, readers may refer to our previous study [16]. In this section, we primarily provide
an intuitive argument for the stability criterion and present key findings related to analyzing the
influence of h0 for the stability criterion. We first consider the uniform state with respect to which
the instability develops.

Under the swirling excitation considered here, the flow velocity, U (z, t ) = Ux + iUy, of the
suspension corresponds to a solution to the Stokes problem in two dimensions of uniform state
under bottom circular shear, as expressed by

Û (ẑ, t̂ ) = e
−ẑ
l

(
e

2(1+i)
l + e

2ẑ(1+i)
l

1 + e
2(1+i)

l

)
ei(t̂− ẑ

l ). (1)

Here, l = √
2ν/ω/h0, Û = U/(Aω), ẑ = z/h0, t̂ = tω, where ν is the effective kinematic viscosity

of the suspension. The terms e−ẑ/l and ei(t̂−ẑ/l ) represent the amplitude decay and phase lag,
respectively. Notably, l ∼ ν

1
2 is prominently featured in the terms involving ẑ/l . Therefore, at high

viscosity, the motion of the bottom plate deeply percolates to the surface of the suspension with
minimal phase lag, as illustrated in Fig. 2(b).

The shear stress magnitude,

τ = ρν|∂U/∂z| = l√
2

√
cosh(2(ẑ − 1)/l ) − cos(2(ẑ − 1)/l )

cosh(2/l ) + cos(2/l )
ρAhω2, (2)

is defined for a given �. The viscosity of the suspension can thus be calculated using the constitutive
relation, for which we employ the Wyart-Cates expression [6]: ν(�, τ ) = ν0[φ0(1 − e−τ ∗/τ ) +
φme−τ ∗/τ − �]−2, with ν0, τ ∗, φ0 and φm obtained from the independent rheological measurement.
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FIG. 2. (a) Sketch of the notations, where χ represents the main flow direction. Inset: Velocity profile
under the comoving configuration (detailed in Sec. IV), where the suspension is covered by an acrylic plate
that moves synchronously with the container. (b) Velocity profiles of the primary flow in Eq. (1).

Note that τ and ν are mutually dependent for given ω and �. Additionally, the nonlinear velocity
profile leads to a stress gradient along the vertical direction, potentially promoting the aggregation
of particles near the surface. For simplicity, we neglect the secondary flow in the vertical direction
and assume � is maintained across the entire system. To characterize the mainstream flow of
the suspension, we employ Ũ (l,�) = |U (z = h, t )| and 
(l,�) = τ (z = 0). The main flow is
simplified to a one-dimensional homogeneous flow, which is closed by the constitutive relation
ν(�,
).

Once a disturbance of local density, φ, arises within the mainstream flow, the resultant accumu-
lation rate of particles is characterized by relative velocity between the loose and dense regions,
�Ũ ′, where Ũ ′ = dŨ/dφ|φ=�. On the other hand, the pressure gradient ∇
 = 
′∇φ drives the
particles to migrate out of the high φ regions. The corresponding migration velocity is characterized
by

√

′/ρp. When the accumulation rate of particles exceeds their migration, the inhomogeneous

distribution of φ grows. A dimensionless threshold C of order unity then sets the onset of instability
of the uniform state:

C̃ = �Ũ ′√

′/ρp

> C ∼ O(1). (3)

The threshold C ∼ O(1) is to be determined by comparisons with experimental data and accounts
for the features simplified in the model.

It is clear that the instability onset primarily hinges on the terms Ũ ′ and 
′ in Eq. (3). For a
fixed angular frequency, the solution for Ũ in Eq. (1) exhibits a rapid increase at intermediate �,
corresponding to a regime with a large Ũ ′ [Fig. 3(a)]. An increase of l would shift this regime
toward lower packing fractions. The pressure term 
 follows a similar trend [Fig. 3(b)]. However,
Ũ ′ increases more rapidly than 
′, leading to C̃, the left-hand side of Eq. (3), increases with
� at the uniform state [Fig. 3(c)]. A reduction in h0, leading to an increase in the parameter l ,
shifts the instability onset toward lower values of �, as illustrated in Fig. 3(c). Consequently, the
boundary line representing the onset frequency of instability ωc(�) moves to the lower � when h0 is
reduced from 5 to 3.1 mm [Fig. 4]. This shift results in the minimum packing density for persistent
heterogeneity, �min = 0.37, which is notably below �DST = 0.423. Previous studies suggest that
the instability transition of shear-thickening suspensions under rigid confinement is closely linked
to the characteristic dτ/d γ̇ � 0 in the flow curve [13,14,24]. However, within the scope of our
investigation with a free surface, instability can also be observed at a packing fraction that does not
fall within the DST regime. Thus, a negative slope in the constituent curve is not a strict requirement
for the initiation of heterogeneity.

Beyond the stability criterion of the uniform state, the heterogeneity develops first into density
waves and then into jammed clusters as the oscillation frequency increases. The influence of h0 on
the onset of these two states follows the same trend in the parameter space, as depicted in Fig. 4.
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FIG. 3. (a) The surface velocity Ũ increases with � at a fixed angular frequency ω = 25 rad s−1. (b) Shear
stress at the bottom 
 increases with � at the same angular frequency. (c) The left-hand side of Eq. (3), C̃,
varies with � at the same angular frequency. When C̃ exceeds 1, the system theoretically becomes unstable.
The minimum packing fraction at which C̃ first exceeds 1 is reduced by decreasing h0.

Since the jammed clusters represent the further development of the heterogeneity, this state displays
characteristics that cannot be captured by the analysis in the proximity of the uniform state. We
investigate its dynamic features next.

IV. THE LONG-STANDING JAMMED CLUSTERS

Numerous cuspidal points emerge and persist in the high-φ region of the density waves as the
oscillation frequency increases (dark/bright regions in Figs. 5(a)–5(c) correspond to high/low φ

areas [16]). These cuspidal points gradually grow and replace the density waves with the further
increase of the oscillation frequency, eventually distributed throughout the system (see Supplemen-
tal Material, Movie 1 [36]). The motion of individual cuspidal points follows circular paths and
demonstrates the same frequency as the external excitation with a phase lag of π/8, similar to
density waves. Nevertheless, it exhibits distinct characteristics. The typical diameter of the circular
path of a cuspidal point measures 4.81 mm, considerably smaller than the orbit of the container.
In comparison, the typical diameter of the circular path of a density wave is 11 mm [Fig. 5(b)].
In addition, the steep density gradient is located upstream for the jammed cluster, contrasting with
the density wave. The peak-to-valley surface height difference is 0.5 mm [Fig. 5(a), inset], smaller
than the 1 mm height difference associated with the density wave [16]. The number of cuspidal
points per unit area is recorded while ramping the oscillation frequency, and the hysteresis is

FIG. 4. State diagram. Circles: uniform state. Squares: density waves. Triangles: jammed clusters. Black
curve: theoretical onset frequency of instability growth. (a) h0 = 3.1 mm and C = 1.35. (b) h0 = 5 mm and
C = 1.15.
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FIG. 5. (a)–(c) A zoomed area at different phases in one oscillation period (� = 0.43, h0 = 5 mm, f =
6 Hz). The dashed circle denotes the trajectory of the center of the dense area, where the small circle indicates
the cuspidal point and the large one marks the density wave. The yellow arrow indicates the instantaneous flow
direction. The red arrow refers to the instantaneous drive direction. The inset in (a) displays the surface profile
over a jammed cluster. (d) The number of jammed clusters per unit area varies with oscillation frequency ω. The
upward and downward arrows correspond to the increase and decrease in oscillation frequency, respectively.
The error bars are calculated by repeating the loop four times.

consistently observed [Fig. 5(d)]. This hysteresis can be attributed to the microscopic adhesion
reported when cornstarch particles come into prolonged contact [31], suggesting the formation
of permanent aggregates by interacting particles. Therefore, the cuspidal point is distinguished
from the density wave state, a transient aggregate state that does not display hysteresis across its
onset [16].

To investigate the microscopic nature of the cuspidal point, we capture microscopic images
around the cuspidal point at a resolution of 28.2 µm/pixel and calculate the flow field using particle
image velocimetry (PIV), as illustrated in Figs. 6(b) and 6(c). The multimedia content showcases
the consistent arrangement of closely packed tracer particles within the cuspidal point (see Sup-
plemental Material, Movie 2 [36]), and the flow field reveals that the velocity magnitude of the
cuspidal point remains constant at different phases [Figs. 6(b) and 6(c)]. These observations strongly
suggest the formation of a jammed cluster. Equation (1) elucidates that the scaled velocity at the free
surface, Û (ẑ = 1, l ), increases with the parameter l while simultaneously experiencing a decrease
in phase lag. In this context, the jammed cluster experiences an acceleration, indicating a local
surge in l . However, it is essential to note that the velocity of the jammed cluster remains smaller
than that of the drive plate, suggesting that the jammed cluster has not percolated to the bottom.
Furthermore, the flow field becomes distorted around the cluster. The suspension downstream of the

FIG. 6. (a) A top-view snapshot of the jammed cluster. (� = 0.41, h0 = 2 mm, f = 5 Hz) (b)–(c) The
scaled velocity of the surface Û (ẑ = 1) at two different phases. The region bounded by blue dotted lines: the
low-lying area. The region bounded by white dotted lines: the area where suspension is propelled forward by
the cluster.
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cluster is propelled forward by the cluster (bounded by white dashed lines), generating a low-lying,
low-density area beside the jammed cluster (bounded by blue dashed lines). The stress gradient
drives the particles to fill this low-density region from the side, resulting in a rapid flow in this area.

As a jammed cluster emerges, the aggregate particles push against the interface, forming a
humplike cuspidal point that is visible on the surface of the suspension [Fig. 5(a), inset]. Extensive
research has reported the essential role of boundary confinement in shear-thickening phenomena
[25,26,32–34]. When the expansion of the granular phase is impeded by boundary constraints
during shearing, it leads to the generation of normal stresses as particles exert pressure against the
boundaries. The open system studied in our experiments is bounded by the air-suspension interfacial
tension, σ , and the curvature of the free surface, �h/(W/2)2. For the jammed cluster, �h = 0.5 mm
represents the height difference, and W = 6 mm denotes the width of the jammed cluster [Fig. 5(a),
inset]. Therefore, the confining pressure is approximately σNorm � σ�h/(W/2)2 � 4.04 Pa, exceed-
ing the repulsive force between particles τ ∗ = 3.6 Pa. This further substantiates that the particles
within the jammed cluster can be in physical contact.

It is essential to emphasize that long-lived inhomogeneities have previously been reported only
near free surfaces [15,19,35], indicating that boundary confinement influences the development
of underlying clusters (however, when considering the onset of instability, we focus on a state
close to uniformity, where the boundary confinement isn’t crucial). We hypothesize that under soft
confinement, where the boundary is sufficiently flexible to relax normal stress, clusters can grow
larger and persist in the system, as the jammed clusters observed in our experiments. Conversely,
rigid constraints completely suppress stress release, leading to a dramatic increase in the local stress
when the clusters grow to a certain size, ultimately causing them to collapse under stress. To assess
the influence of rigid confinement, a comoving acrylic plate is introduced to cover the suspension,
where the shear profile under the free surface is overlayed with its reflection [Fig. 2(a), inset].
Under this configuration, the uniformity sustains even for ω > ωc. However, upon removing the
confinement and oscillating at ω < ωc, a transient growth of clusters is observed [16]. Therefore,
finite-size clusters exist (too small to be visible in our experiments) under the rigid confinement,
whose growth is, however, suppressed.

Recent experiments with spatial resolution have suggested that when the applied shear stress
is beyond a critical value, τc (τc > τ ∗), localized jammed regions emerge within the system,
corresponding to a shear-thickening transition. These jammed clusters rupture under shear, leading
to transient high-stress events [14,17,18]. In our experiments, when the comoving confinement
is replaced by a fixed one, numerous high-density regions persist for less than one period (see
Supplemental Material, Movie 3 [36]). Under the stress-controlled scenario, the transient localized
high-stress regions further influence the global shear rate, giving rise to complex fluctuations in its
behavior [13,15]. From the perspective that normal stress is proportional to shear stress, there may
exist a critical normal stress, pc, corresponding to τc, at which clusters could persist in the system
as long as the interface constraints are maintained near that value.

V. DISCUSSION AND CONCLUSION

In this study, we investigate the dynamic evolution of heterogeneity in shear-thickening suspen-
sions with a free surface under swirling excitation. As the suspensions lose their uniform states and
become unstable, the heterogeneity grows. The stability criterion, denoted as C̃ = φŨ ′/

√

′/ρp,

is largely determined by the parameter l = √
2ν/ω/h0, the square of which is merely the inverse

Reynolds number representing the significance of viscosity relative to inertia. The shear-thickening
transition results in a substantial amplification of l , effectively diminishing the impact of inertial
effects. Reducing the suspension thickness h0 has a similar effect on amplifying l . In consequence,
the minimal packing fraction for instability (�min) at small h0 could become lower than the minimal
packing fraction for discontinuous shear thickening (DST). The presence of the S-shaped flow curve
is thus not an essential prerequisite for the onset of heterogeneity under free surface conditions.
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However, it may play a role in more developed states, such as jammed clusters, where the local
density is dramatically increased.

The heterogeneity manifests as density waves just above the instability onset. Jammed clusters
are formed far beyond the onset (Fig. 4). The upward migration of particles promotes their formation
(which is neglected in Sec. III for analyzing the uniform state). The jammed cluster, moving as a
collective entity, exhibits properties distinct from the density wave. The jammed clusters propel the
downstream suspension to accelerate forward while creating a significant density gradient upstream,
which is in stark contrast to that of density waves. During the process of reducing oscillation
frequency, the disappearance of clusters noticeably lags behind their onset frequency, a typical
hysteresis feature. In addition, in the experimental setup studied here, jammed clusters have been
also observed in an aqueous solution of polydisperse silica beads (average diameter of 20 µm), a
purely repulsive shear-thickening system. Importantly, when electrolytes are dissolved within the
solvent, which reduces the range of the repulsive forces below that of the particle roughness [10],
macroscopic heterogeneity is significantly weakened (see Appendix). Therefore, in the context of
our study, the observed heterogeneity is a common phenomenon associated with shear thickening.

Finally, we delve into the importance of flexible confinement for the development of long-
standing jammed clusters. The results from simulations [20–22] and experiments [37] reveal that
finite-size clusters already form at the onset of shear-thickening transition under rigid confinement.
These clusters suddenly grow to a size comparable to the gap between the boundaries and break
as the stress increases beyond a critical value [13,14,17,18,38], leading to a transient dramatic
fluctuation in the local stress. However, in the case of soft confinement, such as the free surface
studied in our work, the normal stress generated during shearing is effectively released, setting
a cutoff on 
′ in the criterion Eq. (3). Therefore, it allows the long-standing clusters to grow to
larger ones driven by the dynamic instability. It is plausible that the relative significance between
the shear driving and the boundary deformation further determines how instability manifests, either
as density waves or jammed clusters. Further investigation into the role of boundary flexibility is
needed to provide deeper insights into shear-thickening phenomena.
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APPENDIX: POLYDISPERSION SILICA BEAD EXPERIMENTS

We conduct alternative experiments using a polydisperse silica bead solution with an average
grain diameter of dg = 20 µm. As illustrated in Fig. 7(a), for a solution of deionized water, jammed
clusters are distributed throughout the container. However, when the suspension is added with
0.1 m/L−1 salt[NaCl], the jammed clusters are noticeably suppressed [Fig. 7(b)].

FIG. 7. Snapshots of silica bead aqueous suspension under oscillation. (� = 0.553, h0 = 3.1 mm, f =
8 Hz) (a) deionized water solution without salt[NaCl], (b) 0.1 m/L−1 salt[NaCl] is added in the solution.
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