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This paper presents analytical solutions for a steady turbulent miscible gravity current
flowing along a horizontal rigid boundary of finite length into a quiescent uniform environ-
ment. These solutions are obtained from the governing equations (mass, momentum, and
buoyancy) originally proposed by Ellison and Turner [J. Fluid Mech. 6, 423 (1959)] for
a buoyant layer of fluid in the Boussinesq approximation. For a constant drag coefficient
Cd and the specific entrainment law E ∝ Ri−1, Ri being the local Richardson number, we
first derived a system of coupled ordinary differential equations describing the longitudinal
evolution of the velocity u, the height h, the density deficit η, and the Richardson number Ri
of the current. For an initially supercritical flow (Ri0 < 1), explicit relations are found for
u(x), h(x), and η(x) solely as a function of the Richardson number Ri(x). The longitudinal
evolution of the Richardson number is then theoretically obtained from a universal function
F which can be tabulated and, as in the present paper, also plotted. The function F allows
us to determine (and only from the knowledge of the boundary conditions at the source)
whether the flow remains supercritical over the whole length of the rigid boundary, or might
transit towards a subcritical state (Ri > 1). In this latter case, the mathematical resolution
is modified by including a discontinuity similar to a hydraulic jump. The location and
amplitude of this discontinuity are calculated from an additional universal function G and
the injection conditions. The method is finally extended to provide analytical solutions for
other classical entrainment laws.

DOI: 10.1103/PhysRevFluids.9.074803

I. INTRODUCTION

A gravity current is a canonical flow that occurs when a light (heavy) fluid propagates into a
heavier (lighter) ambient fluid along a rigid boundary. This flow can involve immiscible or miscible
fluids. In the latter case, the current engulfs the surrounding fluid in a process called entrainment,
resulting in a longitudinal evolution of the current mass flow rate.

Gravity currents arise in many environmental flows such as katabatic winds (Manins and Sawford
[1]), oceanic deep currents (Cenedese and Adduce [2]) or turbidity currents (Meiburg and Kneller
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[3]), to name but a few. They may also appear in hazardous situations such as oil spreading on the
sea (Hoult [4]) or fire-induced smoke propagation (Alpert [5]).

Because of both their ubiquity and academic interest, gravity currents have been widely studied.
The pioneering works of Von Kármán [6] and later Benjamin [7] were the first to tackle this flow
theoretically. One of the main objectives of these works was to determine the dynamics of the current
head during the propagation phase. Several authors have subsequently addressed the transient
evolution of this flow by proposing models for gravity currents resulting from a fixed-volume
release using experimental (Huppert and Simpson [8], Rottman and Simpson [9], Lowe, Rottman,
and Linden [10]) numerical (Birman, Battandier, Meiburg, and Linden [11], Bonometti, Ungarish,
and Balachandar [12]) and theoretical means (Shin, Dalziel, and Linden [13]), as well as from
a fixed-flux release with experiments (Longo, Ungarish, Di Federico, Chiapponi, and Addona
[14], Sher and Woods [15], Martin, Negretti, Ungarish, and Zemach [16]), numerical simulations
(Shringarpure, Lee, Ungarish, and Balachandar [17], Hogg, Nasr-Azadani, Ungarish, and Meiburg
[18]), and theory (Johnson and Hogg [19], Ungarish [20]).

In contrast with the transient phase of gravity currents, which has been addressed in a substantial
number of studies, the steady phase (i.e., after a long time subsequent to the reaching of the exit
of the rigid boundary by the flow) remains little investigated so far. In their seminal article, Ellison
and Turner [21] (hereafter referred to as ET59) developed a theoretical model for a fixed-flux steady
gravity current based on the conservation equations for mass, momentum, and buoyancy. Through
a system of coupled differential equations, their model allows the evolution of the three variables of
the current (velocity, thickness, and density deficit) to be calculated along the longitudinal propaga-
tion x axis. Similarly to Morton, Taylor, and Turner [22] for turbulent plumes, they introduced an
entrainment coefficient E to quantify the amount of ambient fluid entrained into the current. After
some algebraic manipulations, the Richardson number Ri naturally appears in their equations. It is
defined as

Ri = η gh

u2
, (1)

with η = |ρa − ρ|/ρa being the density deficit, ρa the density of the ambient, g the gravitational
acceleration and h, ρ, and u, the thickness, density, and velocity of the current, respectively. As
explained in ET59, the Richardson number, which characterizes the local stability of the current,
allows three different flow regimes to be identified: the supercritical regime when Ri < 1, the
subcritical regime when Ri > 1, and a so-called critical regime when Ri = 1.

A particular feature of this model (as shown in Sec. III B), which can also be found in some
hydraulic problems (Wilkinson and Wood [23]), is the presence of a mathematical singularity which
raises an additional problem when Ri = 1.

In their attempt to solve the ET59 equations, Guo, Li, Ingason, Yan, and Zhu [24] circumvented
this problem by freezing the Richardson number at unity once the critical condition was reached.
This requires an artificial modification of the velocity which unfortunately fails to conserve fluxes.
Recently, similarly to what was done by Dhar, Das, and Das [25] for the flow of a thin water film,
Haddad, Vaux, Varrall, and Vauquelin [26] proposed a method to face the singularity problem by
introducing a discontinuity, similar to a hydraulic jump, to match the supercritical and subcritical
regions. In their paper, they solved the equations numerically with an iterative procedure to de-
termine the location and amplitude of the jump for given values of the domain length and initial
release conditions. The authors also compared the results provided by solving the equations of
ET59 extended in the non-Boussinesq configuration with the results obtained from large eddy
simulations (LES). They found good agreement between the simulations and theory, particularly
for fully supercritical flows.

Nevertheless, and this is the purpose of the present paper, it is possible to go further and propose
explicit solutions to the ET59 equations via purely analytical means. The methodology used to
obtain these analytical solutions is in the same vein as that presented in Michaux and Vauquelin
[27] for the Morton et al. [22] plume equations.
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FIG. 1. Schematic of the studied configuration.

The paper is set out as follows: the studied configuration and the governing equations are
presented in Sec. II. Analytical solutions to these equations are proposed in Sec. III for a specific
entrainment law (E ∝ Ri−1) in the case of a supercritical flow, but also for a flow with a regime
change (supercritical to subcritical). The method is finally extended to other classical entrainment
laws in Sec. IV in order to apply the modeling to a wider range of real-world cases. Conclusions are
drawn in Sec. V.

II. CONFIGURATION AND GOVERNING EQUATIONS

As depicted in Fig. 1, we consider a fluid of density ρ0 (lower than the density ρa of the ambient,
at rest), injected horizontally from a plane nozzle of height h0 with a velocity u0 along a boundary
of length L coincident with the horizontal x axis. The flow at the injection is therefore characterised
by its Richardson number Ri0 = η0 gh0/u2

0, which is assumed to be less than unity (the flow is then
initially supercritical). We consider that the current has reached the end of the domain for a long
period and therefore is in a steady state. For the sake of simplicity, the velocity and density profiles
along the vertical z axis will be considered uniform (top-hat assumption). Also, shape factors, used
by ET59 to take into account the deviation between the real profiles and the top-hat profiles of the
velocity and the density, are set to unity, even if they could be adjusted to nonunity values without
preventing the algebraic development presented in this article. So, at a given distance x from the
injection, u(x), η(x), and h(x) stand for the top-hat velocity, the top-hat density deficit and the
height of the current, respectively. As in ET59, the conservation equations for mass, momentum, and
buoyancy are established over an infinitesimal element of length dx of the current. In the Boussinesq
approximation, these equations read

d (u h)

dx
= E u, (2)

d (u2 h)

dx
= −Cd u2 − 1

2

d

dx
(η gh2), (3)

d

dx
(η gu h) = 0, (4)

with E being the entrainment coefficient and Cd the drag coefficient. The terms on the right-hand
side of Eq. (3) represent respectively the turbulent basal drag and the pressure force associated with
the change of height and density of the current.

In contrast to the entrainment coefficient for a turbulent plume, which can be considered as a
constant, the entrainment coefficient for a gravity current depends on the stability of the flow and
therefore on the Richardson number. This is why this coefficient has been the subject of numerous
studies. Papers by ET59 and Lofquist [28] were some of the first to address this issue experimentally
with salt water experiments. They highlighted the marked dependence of the entrainment coefficient
on the Richardson number and proposed laws in which E is a function of Ri only. Other significant
contributions include the experimental works of Parker, Fukushima, and Pantin [29], Dallimore,
Imberger, and Ishikawa [30], and Wells, Cenedese, and Caulfield [31]. In addition, the reader is
referred to the extensive review of Fernando [32] and Chowdhury and Testik [33] and also to
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the article of Christodoulou [34] in which experimental results from the literature are compiled
to provide power laws for several ranges of Richardson number under the form

E = α

Rin
, (5)

where α and n are constants. This modeling can only be used for steady configurations in which the
entrainment process concerns a quasihorizontal surface. In the unsteady regime, and as explained
and illustrated by Nogueira, Adduce, Alves, and Franca [35] and Sher and Woods [15], the flow
morphology is more complex and requires the use of specific entrainment models for the head, the
body, and even the tail.

The drag coefficient has also been investigated in the literature, and it is not uncommon to choose
it as being constant (Hogg and Woods [36], Baines [37]). We have also made this assumption in the
following sections of this paper.

In the next section, when presenting the approach to analytically solving the ET59 equations,
we will use, in addition to a constant drag coefficient, the submodel E = α/Ri proposed by
Christodoulou [34] for the range 0.1 < Ri < 10. The advantage of selecting this submodel is
that it theoretically encompasses a broad range of the super- and sub-critical flows with a unique
entrainment model.

III. ANALYTICAL SOLUTIONS

By combining conservation Eqs. (2), (3), (4) and the entrainment submodel (5) with n = 1, we
obtain the first-order derivatives of the height, velocity, and density deficit as

d h

dx
= α

2

4 + Ri(κ − 2)

Ri (1 − Ri)
, (6)

d u

dx
= −α

2

u

h

2 + κ Ri

Ri (1 − Ri)
, (7)

d η

dx
= −α

η

h

1

Ri
, (8)

where κ is a constant equal to 1 + 2Cd/α.
Additionally, the first-order derivative of the local Richardson number Ri(x) can be obtained by

combining Eqs. (1), (6), (7), and (8). It reads

d Ri

dx
= 3 α

2

1

h

2 + κ Ri

(1 − Ri)
. (9)

We notice that Eqs. (6), (7), and (9) present a mathematical singularity when the Richardson number
reaches unity. For an initially supercritical flow (Ri0 < 1), a quick look at the right-hand side of
Eq. (9) reveals that Ri has to increase monotonically. With this in mind, two situations have to be
considered. In the first one, the current remains supercritical from the injection until the exit of
the domain, i.e. the Richardson number never exceeds unity. The set of Eqs. (6), (7), (8), and (9)
can be solved without difficulty. In the second one, the Richardson number reaches unity before
the end of the domain, meaning that the flow has to transition from a supercritical to a subcritical
regime, preventing solutions to be obtained by a straightforward integration. This issue was recently
addressed by Haddad et al. [26] and discussed by Ungarish [38].

In both cases (the flow remains supercritical or becomes subcritical before the end of the domain),
analytical solutions can be obtained. This is the purpose of the following sections.
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A. Initially supercritical flow remaining supercritical

At first, by combining the Eqs. (7) and (9), we easily show that the velocity u(x) can be expressed
as a function of the Richardson number Ri(x):

−1

3

d Ri

Ri
= d u

u
�⇒ u(x)

u0
=

[
Ri0

Ri(x)

] 1
3

, (10)

where the subscript 0 refers to values at the injection. We now combine the Eqs. (8) and (9) to write

1 − Ri

Ri (2 + κ Ri)
d Ri = −3

2

d η

η
, (11)

which allows the density deficit η(x) to be expressed explicitly as a function of the Richardson
number Ri(x):

η(x)

η0
=

[
Ri0

Ri(x)

] 1
3
[

2 + κ Ri(x)

2 + κ Ri0

] 2+κ
3 κ

. (12)

Finally, given the buoyancy conservation (4) and Eqs. (10) and (12), we immediately obtain for the
height h(x) of the current:

h(x)

h0
=

[
Ri(x)

Ri0

] 2
3
[

2 + κ Ri0
2 + κ Ri(x)

] 2+κ
3 κ

. (13)

The three relations (10), (12), and (13) allow the calculation of the longitudinal evolution of the
characteristic variables of the current (velocity, density deficit, and height) exclusively from the
knowledge of the longitudinal evolution of the Richardson number. This latter can be determined
by solving the Eq. (14) below, obtained from Eqs. (9) and (13):

d Ri

d x
= 1

�0

(2 + κ Ri)
2+4 κ

3 κ

(1 − Ri)Ri
2
3

, (14)

where the constant �0, which has the dimension of a length, reads

�0 = 2 h0(2 + κ Ri0)
2+κ
3 κ

3 α Ri
2
3
0

. (15)

By integrating Eq. (14) from the injection to an abscissa x, it becomes
∫ Ri(x)

Ri0

(1 − ζ ) ζ
2
3

(2 + κ ζ )
2+4 κ

3 κ

d ζ = 1

�0

∫ x

0
d ξ . (16)

We then introduce a universal function F (X ) defined by

F (X ) =
∫ X

0

(1 − ζ ) ζ
2
3

(2 + κ ζ )
2+4 κ

3 κ

d ζ , (17)

which allows the relation (16) to be rewritten as:

F [Ri(x)] = x

�0
+ F (Ri0). (18)

In practice, once the values of α and Cd are set, the different steps of the calculation are as follows:
(1) From the injection conditions u0, η0, and h0, Ri0 and �0 are first calculated.
(2) The value of F (Ri0) is then determined using Eq. (17).
(3) For a given abscissa x, the quantity x/�0 is added to this value, in order to obtain F [Ri(x)],

according to Eq. (18).
(4) Ri(x) is then obtained from F [Ri(x)] via the inverse of the universal function F .
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FIG. 2. Illustration of the graphical determination of the longitudinal evolution of the Richardson number
via the universal function F for several values of κ . The dashed lines are provided to illustrate the graphical
procedure for κ = 1.

(5) Finally, Eqs. (10), (12), (13) allow the characteristic variables of the current, u(x), η(x), and
h(x), to be calculated.

Although the function F can be calculated numerically without difficulty, we propose in Fig. 2 a
graphical illustration of the method for several values of the constant κ .

Note that, from relation (18), it is possible to determine the critical length Lc at which the flow
theoretically reaches the critical condition (i.e., Ri = 1). We therefore obtain

Lc = �0 [F (1) − F (Ri0)]. (19)

This relation is particularly interesting since it allows, from the knowledge of the injection condi-
tions and the length of the domain, to know immediately whether or not the gravity current is likely
to transition from a supercritical to a subcritical regime. This issue was discussed by Kostic and
Parker [39] in the particular case of a turbidity current developing along a boundary of finite length.

B. Initially supercritical flow becoming subcritical

We now consider the case where the length L of the domain is greater than the critical length Lc,
i.e., the case when the flow transitions from a supercritical to a subcritical regime.

To take into account this transition in the equations of ET59, Haddad et al. [26] introduced a
mathematical discontinuity similar to a hydraulic jump at a location L1, which leads the Richardson
number and the height of the current to suddenly increase to match the subcritical regime.

Assuming that the density deficit in the current does not change on either side of the discontinuity,
the governing equations (mass and momentum) of the jump are

u1 h1 = u2 h2, (20)

u2
1 h1 + η1 g h2

1

2
= u2

2 h2 + η2 g h2
2

2
, (21)

in which the subscripts 1 and 2 are used for the quantities just upstream and just downstream of the
jump, respectively. By combining these two equations, we obtain the jump relation, also known as
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FIG. 3. Representation of a gravity current including an idealized transition between the supercritical and
the subcritical flows.

Bélanger equation (or Rankine-Hugoniot condition):

h2

h1
=

(
Ri2
Ri1

) 1
3

= σ (Ri1), (22)

with

σ (X ) =
√

1 + 8
X − 1

2
. (23)

The theoretical problem of ET59 can be addressed by considering the connection between a
supercritical flow (from Ri0 to Ri1 over a length L1) and a subcritical flow (over a length L − L1,
from Ri2 to the Richardson number at the exit of the domain, denoted RiL), as illustrated in Fig. 3.

Thus, based on the mathematical developments presented above, the location of the jump L1

as well as the corresponding Richardson number Ri1 just upstream can be found by solving the
following system of equations:

F (Ri1) = L1

�0
+ F (Ri0), (24)

F (RiL ) = L − L1

�2
+ F (Ri2), (25)

where �2 is given by

�2 = 2 h2 (2 + κ Ri2)
2+κ
3 κ

3 α Ri
2
3
2

. (26)

At this stage, the system composed of Eqs. (24) and (25) contains five unknowns, namely, Ri1,
L1, Ri2, RiL, and h2. First, concerning the Richardson number RiL at the exit, as explained by
Henderson [40], it should be close to unity for a subcritical current in an open channel. We will
therefore consider hereafter that RiL = 1. In addition, the use of the Bélanger Eq. (22) allows, on
the one hand, to express Ri2 as a function of Ri1, and on the other hand, by using it in the relation
(13), to obtain explicitly the value of the current height h2 after the jump:

h2 = h0

(
Ri1
Ri0

) 2
3
(

2 + κ Ri0
2 + κ Ri1

) 2+κ
3 κ

σ (Ri1). (27)

After some algebra, we can show that Ri1 is given by the following relation:

G(Ri1) = L

�0
+ F (Ri0), (28)
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FIG. 4. Illustration of the graphical determination of the Richardson number Ri1 just upstream of the jump
via the universal function G for several values of κ . The dashed lines are provided to illustrate the graphical
procedure for κ = 1.

with G being a universal function defined by

G(X ) =
(

2 + κ X σ 3(X )

2 + κ X

) 2+κ
3 κ F (1) − F [X σ 3(X )]

σ (X )
+ F (X ). (29)

Practically, for a fixed value of κ , we first calculate Ri0, �0, and F (Ri0). Then, we add to F (Ri0)
the quantity L/�0 which allows Ri1 to be calculated with the Eq. (28) and the inverse of the function
G. A graphical illustration of the method is proposed in Fig. 4.

Once Ri1 is known, Ri2 is calculated with the Bélanger Eq. (22), L1 by Eq. (24), h2 by
Eq. (27), and �2 by Eq. (26). Finally, according to Eq. (16), the longitudinal evolution of the
Richardson number in the subcritical region can be obtained graphically (see Fig. 5), or numerically
from the following equation:

F [Ri(x)] = x − L1

�2
+ F (Ri2). (30)

Once Ri(x) is known over the whole domain, the characteristic variables u(x), h(x), and η(x) of
the current are calculated immediately from (10), (12), and (13) in the supercritical region, and in
the subcritical region with the following relations:

u(x)

u2
=

[
Ri2

Ri(x)

] 1
3

,
η(x)

η2
=

[
Ri2

Ri(x)

] 1
3
[

2 + κ Ri(x)

2 + κ Ri2

] 2+κ
3κ

,

and
h(x)

h2
=

[
Ri(x)

Ri2

] 2
3
[

2 + κRi2
2 + κRi(x)

] 2+κ
3κ

. (31)

IV. ANALYTICAL SOLUTIONS FOR OTHER ENTRAINMENT LAWS

The methodology for obtaining analytical solutions presented in the previous section considered
the specific entrainment model E = α/Ri. In this section we propose to extend the approach for
other entrainment laws from the literature. These laws are often associated with particular flow
regimes, as will be specified.
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FIG. 5. Illustration of the graphical determination of the longitudinal evolution of the Richardson number
downstream of the jump (subcritical regime) via the universal function F for several values of κ . The dashed
lines are provided to illustrate the graphical procedure for κ = 1.

A. No entrainment

A null entrainment coefficient can be associated with a strongly buoyant gravity current for
which buoyancy forces inhibit the mixing such as long-distance submarine currents with strong
stratification. The no-entrainment configuration can also correspond to hydraulic or immiscible
flows.

In this case, the density deficit turns out to be a constant of the problem and the two primary
variables u(x) and h(x) are immediately expressed as a function of the local Richardson number:

u(x)

u0
=

[
Ri0

Ri(x)

] 1
3

and
h(x)

h0
=

[
Ri(x)

Ri0

] 1
3

. (32)

Substituting h(x) into Eq. (9) by its expression as a function of the Richardson number, the
integration is straightforward and we obtain the longitudinal evolution of the Richardson number
from the following implicit equation:

[4 − Ri(x)]Ri(x)1/3 = 4

3 �0
x + [4 − Ri0]Ri1/3

0 , (33)

with

�0 = h0

3Cd Ri1/3
0

. (34)

B. Constant entrainment coefficient

A constant entrainment coefficient (as in plumes and jets) can be associated with a strongly
inertial gravity current for which the stable density gradient of the flow weakly affects the mixing,
as in the case of a ceiling jet from an impinging plume. However, this model is no longer appropriate
when the Richardson number increases and the effects of buoyancy appear (when Ri reaches 0.01
according to Christodoulou [34]).
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From a mathematical point of view, returning to Eqs. (2), (3), and (4) with E = α, a pure constant,
the first derivatives of the primary variables and the local Richardson number read

d h

dx
= α

2

3 + κ − Ri

(1 − Ri)
, (35)

d u

dx
= −α

2

u

h

1 + κ + Ri

(1 − Ri)
, (36)

d η

dx
= −α

η

h
, (37)

d Ri

dx
= 3 α

2

1

h

Ri(1 + κ + Ri)

(1 − Ri)
, (38)

with κ = 1 + 2Cd/α.
In the same way as in Sec. III, we first express the primary variables as a function of the

Richardson number:

u(x)

u0
=

[
Ri0

Ri(x)

] 1
3

,

η(x)

η0
=

[
Ri(x) + 1 + κ

Ri0 + 1 + κ

] 2(2+κ )
3(1+κ )

[
Ri0

Ri(x)

] 2
3(1+κ )

,

h(x)

h0
=

[
Ri0 + 1 + κ

Ri(x) + 1 + κ

] 2(2+κ )
3(1+κ )

[
Ri(x)

Ri0

] 3+κ
3(1+κ )

, (39)

and by substituting h(x) in Eq. (38), we introduce the universal function F :

F (X ) =
∫ X

0

(1 − ζ )ζ
−2κ

3(1+κ )

(ζ + 1 + κ )
7+5κ

3(1+κ )

d ζ , (40)

which allows the longitudinal evolution of the Richardson number to be determined from the
following relation:

F [Ri(x)] = x

�0
+ F (Ri0), (41)

where �0 is a constant equal to

�0 = 2 h0 (Ri0 + 1 + κ )
2(2+κ )
3(1+κ )

3 α Ri
(3+κ )

3(1+κ )

0

. (42)

C. Entrainment law in the Parker style

In their paper on turbidity currents, Parker et al. [29] proposed to express the entrainment
coefficient as

E = α

β + Ri
, (43)

with α and β being two constants. This model is justified by the fact that it allows the entrainment
coefficient to tend towards a universal asymptotic value for low Richardson numbers.

Mathematically, with this entrainment law, after a little algebra, the conservation equations allow
the primary variables u(x), η(x) and h(x) to be written as a function of the local Richardson number
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Ri(x) as

u(x)

u0
=

[
Ri0

Ri(x)

] 1
3

,

η(x)

η0
=

[
σ + κ Ri(x)

σ + κ Ri0

] 2(κ+σ )
3 κ σ

[
Ri0

Ri(x)

] 2
3σ

,

h(x)

h0
=

[
σ + κ Ri0

σ + κ Ri(x)

] 2(σ+κ )
3 κ σ

[
Ri0

Ri(x)

] 2+σ
3 σ

, (44)

with κ = 1 + 2Cd/α and σ = 2 (1 − β + βκ ).
We then introduce the universal function F:

F (X ) =
∫ X

0

(1 − ζ )ζ
2−2 σ

3 σ (β + ζ )

(σ + κ ζ )
κ (2+3 σ )+2 σ

3 σ κ

d ζ , (45)

which allows us to calculate the evolution of the Richardson number with the relation

F [Ri(x)] = x

�0
+ F (Ri0), (46)

where �0 is a constant defined as

�0 = 2 h0 (σ + κ Ri0)
2(κ+σ )

3 σ κ

3 α Ri
2+σ
3 σ

0

. (47)

For the sake of brevity, we do not discuss here the implementation of the results introduced in
the Sec. IV when a jump appears. However, it is entirely possible to combine these results with the
methodology presented in Sec. III B to adapt the entrainment law before or after the jump. A new
function G is then obtained in order to determine the magnitude and the location of the jump.

V. CONCLUSIONS AND DISCUSSIONS

This paper reports an analytical method to solve the equations of Ellison and Turner [21]
describing the longitudinal evolution of a steady Boussinesq miscible gravity current. The buoyant
fluid that forms the current is continuously injected from a plane nozzle along a horizontal rigid
boundary of finite length.

First, expressions of the primary variables of the current (velocity u, height h, and density deficit
η) as explicit functions of the Richardson number Ri(x) are established. Then, the longitudinal
evolution of the Richardson number is obtained from a universal function F (which depends
only on the entrainment and drag coefficients). This universal function is given by an indefinite
integral which can be easily calculated or, alternatively, tabulated. Here, we have illustrated the
method by means of a graphical representation which, for prescribed injection conditions, allows
the Richardson number to be determined readily at any abscissa x along the horizontal boundary.

The ET59 equations present a mathematical singularity when Ri = 1, so the developed method
applies therefore easily as long as the flow remains supercritical (Ri < 1) on the whole domain. Note
that, from the knowledge of the injection conditions and the length of the domain, it is possible to
determine theoretically thanks to the universal function F whether the flow remains supercritical or
should transition to a subcritical state (Ri > 1).

If there is a transition (i.e. if the Richardson number reaches unity before the exit of the domain),
the two regimes (supercritical and subcritical) can be matched by introducing in the ET59 equations
a mathematical discontinuity similar to a hydraulic jump. For the sake of simplicity, we have
modeled this jump using the Bélanger relation, as that was previously done by Haddad et al. [26].
In practice, the location of the jump is obtained from the injection conditions and a second universal
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function G. The evolution of the primary variables is then obtained for each zone (upstream and
downstream of the jump) from the first function F .

The approach presented in this article has led to analytical solutions to the ET59 equations
for different entrainment laws: E = 0, E ∝ Ri0, E ∝ Ri−1, and E ∝ (β + Ri)−1. It can also be
applied to other laws proposed in the literature, such as those of ET59, Hebbert, Patterson, Loh, and
Imberger [41], Dallimore et al. [30], Wells et al. [31], Johnson and Hogg [19], and van Reeuwijk
et al. [42], for example.

Finally, in this article, we studied theoretically a gravity current in a steady state, which is the
consequence of a transient development. In some configurations, we had to introduce a mathematical
discontinuity in the theoretical model (similar to a hydraulic jump). This raises the question of the
existence (or not) and development of this discontinuity in the transient phase. Ungarish [38] has
recently addressed this issue using the shallow water equations. He has provided interesting results,
but no definitive answers, making this a still-open question.

[1] P. C. Manins and B. L. Sawford, A model of katabatic winds, J. Atmos. Sci. 36, 619 (1979).
[2] C. Cenedese and C. Adduce, A new parameterization for entrainment in overflows, J. Phys. Oceanogr. 40,

1835 (2010).
[3] E. Meiburg and B. Kneller, Turbidity currents and their deposits, Annu. Rev. Fluid Mech. 42, 135 (2010).
[4] D. P. Hoult, Oil spreading on the sea, Annu. Rev. Fluid Mech. 4, 341 (1972).
[5] R. L. Alpert, Turbulent ceiling-jet induced by large-scale fires, Combust. Sci. Technol. 11, 197 (1975).
[6] T. von Kármán, The engineer grapples with nonlinear problems, Bull. Amer. Math. Soc. 46, 615 (1940).
[7] T. B. Benjamin, Gravity currents and related phenomena, J. Fluid Mech. 31, 209 (1968).
[8] H. E. Huppert and J. E. Simpson, The slumping of gravity currents, J. Fluid Mech. 99, 785 (1980).
[9] J. W. Rottman and J. E. Simpson, Gravity currents produced by instantaneous releases of a heavy fluid in

a rectangular channel, J. Fluid Mech. 135, 95 (1983).
[10] R. J. Lowe, J. W. Rottman, and P. F. Linden, The non-Boussinesq lock-exchange problem. Part 1. Theory

and experiments, J. Fluid Mech. 537, 101 (2005).
[11] V. K. Birman, B. A. Battandier, E. Meiburg, and P. F. Linden, Lock-exchange flows in sloping channels,

J. Fluid Mech. 577, 53 (2007).
[12] T. Bonometti, M. Ungarish, and S. Balachandar, A numerical investigation of high-Reynolds-number

constant-volume non-Boussinesq density currents in deep ambient, J. Fluid Mech. 673, 574 (2011).
[13] J. O. Shin, S. B. Dalziel, and P. F. Linden, Gravity currents produced by lock exchange, J. Fluid Mech.

521, 1 (2004).
[14] S. Longo, M. Ungarish, V. Di Federico, L. Chiapponi, and F. Addona, Gravity currents produced by

constant and time varying inflow in a circular cross-section channel: experiments and theory, Adv. Water
Resour. 90, 10 (2016).

[15] D. Sher and A. W. Woods, Mixing in continuous gravity currents, J. Fluid Mech. 818, R4 (2017).
[16] A. Martin, M. Negretti, M. E. Ungarish, and T. Zemach, Propagation of a continuously supplied gravity

current head down bottom slopes, Phys. Rev. Fluids 5, 054801 (2020).
[17] M. Shringarpure, H. Lee, M. Ungarish, and S. Balachandar, Front conditions of high-Re gravity currents

produced by constant and time-dependent influx: an analytical and numerical study, Eur. J. Mech. B Fluids
41, 109 (2013).

[18] A. J. Hogg, M. M. Nasr-Azadani, M. Ungarish, and E. Meiburg, Sustained gravity currents in a channel,
J. Fluid Mech. 798, 853 (2016).

[19] C. G. Johnson and A. J. Hogg, Entraining gravity currents, J. Fluid Mech. 731, 477 (2013).
[20] M. Ungarish, Benjamin’s gravity current into an ambient fluid with an open surface, J. Fluid Mech. 825,

R1 (2017).
[21] T. H. Ellison and J. S. Turner, Turbulent entrainment in stratified flows, J. Fluid Mech. 6, 423 (1959).

074803-12

https://doi.org/10.1175/1520-0469(1979)036<0619:AMOKW>2.0.CO;2
https://doi.org/10.1175/2010JPO4374.1
https://doi.org/10.1146/annurev-fluid-121108-145618
https://doi.org/10.1146/annurev.fl.04.010172.002013
https://doi.org/10.1080/00102207508946699
https://doi.org/10.1090/S0002-9904-1940-07266-0
https://doi.org/10.1017/S0022112068000133
https://doi.org/10.1017/S0022112080000894
https://doi.org/10.1017/S0022112083002979
https://doi.org/10.1017/S0022112005005069
https://doi.org/10.1017/S002211200600437X
https://doi.org/10.1017/S0022112010006506
https://doi.org/10.1017/S002211200400165X
https://doi.org/10.1016/j.advwatres.2016.01.011
https://doi.org/10.1017/jfm.2017.168
https://doi.org/10.1103/PhysRevFluids.5.054801
https://doi.org/10.1016/j.euromechflu.2013.04.004
https://doi.org/10.1017/jfm.2016.343
https://doi.org/10.1017/jfm.2013.329
https://doi.org/10.1017/jfm.2017.460
https://doi.org/10.1017/S0022112059000738


ANALYTICAL SOLUTIONS FOR LONG-TIME STEADY …

[22] B. R. Morton, G. I. Taylor, and J. S. Turner, Turbulent gravitational convection from maintained and
instantaneous sources, Proc. R. Soc. London 234, 1 (1956).

[23] D. L. Wilkinson and I. R. Wood, A rapidly varied flow phenomenon in a two-layer flow, J. Fluid Mech.
47, 241 (1971).

[24] Q. Guo, Y. Z. Li, H. Ingason, Z. Yan, and H. Zhu, Theoretical studies on buoyancy-driven ceiling jets of
tunnel fires with natural ventilation, Fire Saf. J. 119, 103228 (2021).

[25] M. Dhar, G. Das, and P. K. Das, Planar hydraulic jumps in thin film flow, J. Fluid Mech. 884, A11 (2020).
[26] S. Haddad, S. Vaux, K. Varrall, and O. Vauquelin, Theoretical model of continuous inertial gravity currents

including a jump condition, Phys. Rev. Fluids 7, 084802 (2022).
[27] G. Michaux and O. Vauquelin, Solutions for turbulent buoyant plumes rising from circular sources, Phys.

Fluids 20, 066601 (2008).
[28] K. Lofquist, Flow and stress near an interface between stratified liquids, Phys. Fluids 3, 158 (1960).
[29] G. Parker, Y. Fukushima, and H. M. Pantin, Self-accelerating turbidity currents, J. Fluid Mech. 171, 145

(1986).
[30] C. J. Dallimore, J. Imberger, and T. Ishikawa, Entrainment and turbulence in saline underflow in Lake

Ogawara, J. Hydraul. Eng. 127, 937 (2001).
[31] M. Wells, C. Cenedese, and C. P. Caulfield, The relationship between flux coefficient and entrainment

ratio in density currents, J. Phys. Oceanogr. 40, 2713 (2010).
[32] H. J. Fernando, Turbulent mixing in stratified fluids, Annu. Rev. Fluid Mech. 23, 455 (1991).
[33] M. R. Chowdhury and F. Y. Testik, A review of gravity currents formed by submerged single-port

discharges in inland and coastal waters, Environ. Fluid Mech. 14, 265 (2014).
[34] G. C. Christodoulou, Interfacial mixing in stratified flows, J. Hydraul. Res 24, 77 (1986).
[35] H. I. Nogueira, C. Adduce, E. Alves, and M. J. Franca, Dynamics of the head of gravity currents, Environ.

Fluid Mech. 14, 519 (2014).
[36] A. J. Hogg and A. W. Woods, The transition from inertia-to bottom-drag-dominated motion of turbulent

gravity currents, J. Fluid Mech. 449, 201 (2001).
[37] P. G. Baines, Mixing regimes for the flow of dense fluid down slopes into stratified environments, J. Fluid

Mech. 538, 245 (2005).
[38] M. Ungarish, Strongly supercritical non-Boussinesq sustained gravity currents: Time-dependent and

steady-state approximate solutions, Phys. Rev. Fluids 8, 053801 (2023).
[39] S. Kostic and G. Parker, Conditions under which a supercritical turbidity current traverses an abrupt

transition to vanishing bed slope without a hydraulic jump, J. Fluid Mech. 586, 119 (2007).
[40] F. M. Henderson, Open Channel Flow, Macmillan Series in Civil Engineering Series (Macmillan, New

York, 1966).
[41] B. Hebbert, J. Patterson, I. Loh, and J. Imberger, Collie river underflow into the Wellington reservoir,

J. Hydraul. Div. 105, 533 (1979).
[42] M. van Reeuwijk, M. Holzner, and C. Caulfield, Mixing and entrainment are suppressed in inclined

gravity currents, J. Fluid Mech. 873, 786 (2019).

074803-13

https://doi.org/10.1098/rspa.1956.0011
https://doi.org/10.1017/S0022112071001034
https://doi.org/10.1016/j.firesaf.2020.103228
https://doi.org/10.1017/jfm.2019.833
https://doi.org/10.1103/PhysRevFluids.7.084802
https://doi.org/10.1063/1.2926758
https://doi.org/10.1063/1.1706013
http://doi.org/10.1017/S0022112086001404
https://doi.org/10.1061/(ASCE)0733-9429(2001)127:11(937)
https://doi.org/10.1175/2010JPO4225.1
https://doi.org/10.1146/annurev.fl.23.010191.002323
https://doi.org/10.1007/s10652-014-9334-7
https://doi.org/10.1080/00221688609499323
https://doi.org/10.1007/s10652-013-9315-2
https://doi.org/10.1017/S0022112001006292
https://doi.org/10.1017/S0022112005005434
https://doi.org/10.1103/PhysRevFluids.8.053801
https://doi.org/10.1017/S0022112007006738
https://doi.org/10.1061/JYCEAJ.0005206
https://doi.org/10.1017/jfm.2019.430

