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The computation of the second-order mean wave drift loads on a body with thin
perforated shells is fundamental and relevant to a wide range of applications in marine
engineering, marine aquaculture, offshore renewable energy, etc. In this work, formulations
involving a control surface at a distance from the body are proposed to compute drift loads
on structures composed of an impermeable hull and a perforated surface accurately and ef-
ficiently. Applications of mathematical identities and conservation of fluid momentum are
proved to yield identical formulations. Due to the presence of perforated shells, an integral
caused by the dissipation through perforated surfaces is included in the formulation. The
present formulation cannot only give all six components of the mean wave drift force and
moment, but also determine the drift loads on each individual body of a multibody system.
The developed formulations are applied to a series of structures, including single-body
and multibody systems. It is found that the perforated surface integral plays a secondary
role in the computation of drift loads. Besides, perforating body surfaces can mitigate the
near-trapped wave motion in a multibody system. Compared to a fixed system, the mean
wave drift loads can be amplified around the resonance frequencies of body motions. The
dissipation through the perforated shell can enhance the damping effect and suppress the
excessive motion response, resulting in a reduction in the amplified drift loads.

DOI: 10.1103/PhysRevFluids.9.074802

I. INTRODUCTION

Perforated structures with slots or pores are utilized across a wide range of coastal and offshore
applications. They are key components in breakwaters for dissipating wave energy [1,2] and in wave
energy devices for harnessing wave power [3–5]. Additionally, they are used in wave absorption in
flumes or basins [6,7], motion dampers for marine structures [8–10], and sloshing reduction in liquid
tanks [11–13].

Wave interaction with perforated structures can be modeled using various approaches. High-
fidelity computational fluid dynamics (CFD) methods can accurately capture the complex flow
features through perforated surfaces, though they require refined meshes and result in high compu-
tational costs [14–17]. Alternatively, potential flow theory is widely used, assuming the perforated
geometry is thin with fine pores. This approach does not explicitly model the flow through the
slots or pores but employs a linear or quadratic relationship between pressure drop and cross-flow
velocity. Linear resistance laws have been derived using Darcy’s law [18] or a convection-neglected
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Euler equation model [19]. Linear resistance laws have been widely applied to evaluate breakwaters’
performance through analytical methods or boundary element models.

In oscillatory flows, the normal velocity of the fluid across a perforated surface can lead to energy
loss due to flow separation at the edges of the openings. Consequently, the pressure drop across
the perforated surface can be expressed as a combination of a quadratic drag term and an inertial
term due to flow acceleration through the openings [8,9]. This quadratic pressure drop has been
explicitly considered in numerous studies to predict the added mass and damping for perforated
stabilizers or plates undergoing forced motions [9,20,21] and to compute wave forces on thin
perforated sheets [22]. A numerical model based on a boundary element method was established
by Mackay et al. [23] to compute wave forces on structures with perforated elements, considering
both linear and quadratic pressure-velocity relationships. Additionally, reciprocal hydrodynamic
identities for quadratic pressure discharge conditions were derived. Liang et al. [24] also considered
hydrodynamic loads on perforated elastic plates subject to a quadratic pressure drop condition.

For the design of station-keeping systems for floating bodies, the nonlinear slow-drift motion
is a critical issue. It is generally understood that the second-order difference-frequency wave force
is the primary source of excitation [25]. Reliable semianalytical solutions and numerical models
for the second-order wave force in bichromatic waves have been developed [26–28]. To achieve a
complete resolution of the difference-frequency wave force, second-order wave theory is necessary.
Due to the nonlinearity and intrinsic complexity of boundary conditions over the infinite free surface
and the moving body surface, complex formulations and intensive computational efforts are required
for complete solutions. Therefore, different approximations have been proposed [29–32]. One of the
widely used approximations is Newman’s approximation [29], in which the difference-frequency
wave force is expanded into a Taylor’s series concerning the frequency difference, and only the
zero-order component is retained. Consequently, the exact difference-frequency wave force is
approximated by the mean wave drift force on structures in regular waves.

All of the approximations above show the importance of the mean wave drift force to the low-
frequency behavior of a floating body. To date, the mean wave drift force on impermeable bodies
has been extensively studied. This study focuses on wave drift loads on structures with perforated
surfaces. The wave force on perforated shells arises from the pressure difference between their
outer and inner surfaces. Researchers have computed the mean wave drift force on a perforated body
using either a far-field formulation or a near-field formulation [23,33–37]. The far-field formulation,
which applies the momentum theorem to the fluid domain, is limited to providing only mean
wave drift surge/sway forces and yaw moments around the vertical axis. Whereas the near-field
formulation is based on direct pressure integration over the body surface. For complex geometries,
singularities in the velocity field around sharp corners of the hull can lead to poor convergence when
integrating the quadratic pressure over the body surface [38,39]. Therefore, efforts have been made
to improve computational accuracy, leading to formulations for evaluating the mean wave drift force
on impermeable bodies [38–40].

Encouraged by the advancements for impermeable bodies, this study develops a formulation to
compute mean wave drift forces and moments on structures with perforated shells. This formula-
tion is derived either by transforming the conventional direct pressure integration method to one
involving a control surface at a distance from the body or by applying the conservation of fluid
momentum in a control volume enclosing the body. The inclusion of perforated shells introduces a
dissipation term due to the flow through the perforations. This new formulation can determine all
components of the mean wave drift forces and moments, making it more comprehensive than the
far-field formulation. Moreover, unlike the traditional near-field formulation, this approach does not
require the fluid velocity over the impermeable hull surface, which is typically singular at sharp
corners, thereby improving accuracy. To demonstrate the advantages of the developed formulations,
numerical examples for a variety of structures are presented following an elaborate derivation.

The layout of the paper is as follows. In Sec. II, we present the basic assumptions and the bound-
ary value problem. Section III sets forth an elaborate derivation of the formulation for determining
the mean wave drift loads on bodies with perforated shells in the time domain, followed by the
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corresponding formulations in the frequency domain presented in Sec. IV. Numerical examples for
single/multiple perforated cylinder and a compound cylinder with a perforated shell are exhibited in
Sec. V. Finally, concluding remarks are presented in Sec. VI. Key procedures for deriving analytical
solutions to numerical examples are detailed in Appendixes A and B.

II. MATHEMATICAL MODEL

The interaction of water waves with structures containing thin perforated shells is concerned
in this study. The structure is assumed to consist of a single impermeable body and a perforated
surface enclosing a volume of water connected to the body. A reference system in Cartesian
coordinates is defined with the oxy plane (z = 0) coinciding with the undisturbed free surface
and z axis orienting vertically upward. The perforated part of the structure is assumed to be thin
with fine pores and is treated as a homogeneous surface. The flow through the perforated shell is
approximately modeled as a pressure drop dependent on the fluid velocity normal to the perforated
surface, as in Refs. [8,18,19]. Away from the perforated surface, the fluid is assumed to be inviscid
and incompressible, and its motion is irrotational. Under these assumptions of a perfect fluid, a
velocity potential � satisfying the Laplace equation can be used to describe the fluid motion

∇2�(x, y, z, t ) = 0. (1)

Besides the Laplace equation, appropriate boundary conditions on the mean free surface at z = 0
and the seabed at z = −h are also required. The linear free-surface boundary condition is

∂2�

∂t2
+ g

∂�

∂z
= 0, on z = 0, (2)

where g is the acceleration due to gravity, and t denotes time. The seabed condition is written as

∂�

∂z
= 0, on z = −h. (3)

We define Sb as the impermeable wetted body surface, and S+
w and S−

w as the outer and inner sides
of the perforated surface, respectively. On Sb, the normal vector is defined as positive, pointing out
of the fluid domain. In the meantime, the normal vectors on S+

w and S−
w are defined as pointing into

the interior and exterior regions, respectively. On the impermeable surface Sb, the body boundary
condition is

∂�

∂n
= Ẋ · n, on Sb, (4)

where the overdot means the derivative with respect to time t , and X = (X1, X2, X3)T denotes the
first-order displacements due to the translational and rotational motions of the structure, which are
written as

X = � + A × r̂, with r̂ = x − xo, (5)

where � = (�1, �2, �3)T denotes the translational motion vector, A = (A1, A2, A3)T is the rota-
tional motion vector, and xo is the rotational center.

On the perforated surface, the normal velocity components on both sides are continuous, whereas
there exists a pressure difference across the perforated surface. It is assumed that the shells are thin
and of fine pores, and we are concerned with the actions of incident waves of small steepness.
The pressure drop through the perforated shell can be assumed linearly proportional to the normal
velocity. The linear pressure discharge condition on the perforated surface is written as [18,41]

−∂ (�+ − �−)

∂t
= ± μ

ργ
Wn, on S±

w , (6)
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where ρ is the fluid density; �+ and �− denote the velocity potential on the outer and inner sides
of the perforated surface, respectively; μ is the dynamic fluid viscosity; γ is a coefficient with a
dimension of length ranging from 0 to +∞ with γ = 0 and γ = +∞ corresponding to impermeable
and transparent scenarios, respectively; Wn is the relative fluid velocity in the direction normal to
the boundary surface. Wn can be written as

Wn = ∂�

∂n
− {�̇ · n + Ȧ · [(x − xo) × n]}. (7)

III. SECOND-ORDER MEAN WAVE DRIFT LOADS ON STRUCTURES
WITH PERFORATED SHELLS

Once the boundary-value problem described in Sec. II is solved, the first-order physical quantities
are obtained. The linear wave loads can be determined via direct integration of the first-order
pressure. The second-order wave forces and moments (F2, M2) can be decomposed into

(F2, M2) = (F21, M21) + (F22, M22), (8)

where (F21, M21) is due to the quadratic products of the first-order quantities, and (F22, M22)
is contributed by the second-order velocity potential, which is determined by the second-order
boundary-value problem. The mean drift wave force, which we are concerned with here, is the
time-independent components of (F21, M21), and (F21, M21) can be further decomposed into

(F21, M21) = (Fq, Mq) + (FS, MS ), (9)

where (Fq, Mq) are associated with the dynamic pressure integration over the mean position of the
hull surface and along the water line, and (FS, MS ) are the second-order variation of the hydrostatic
wave force and moment due to the first-order body motions [42], which give only nonzero values
for the wave forces in the vertical direction and moments around the horizontal axes. As discussed
in Ref. [42], (FS, MS ) depend on the hull geometry and body motions, and thus can be computed
easily. In the following context, we focus on the computation of terms (Fq, Mq ).

The mean wave drift force on the perforated shell is due to the pressure difference on its outer
and inner surfaces [33,34]. As a result, for structures that are wall-sided at the waterline and contain
perforated surfaces, (Fq, Mq ) can be expressed as

Fq = −ρ

∫∫
Sb∪S±

w

[(
1

2
∇� · ∇� + X · ∇ ∂�

∂t

)
n + (A × n)

∂�

∂t

]
ds

+ ρg

2

∮
�b∪�±

w

[ζ (ζ − 2X3)n]dl, (10a)

Mq = −ρ

∫∫
Sb∪S±

w

[(
1

2
∇� · ∇� + X · ∇ ∂�

∂t

)
n̂ + (� × n + A × n̂)

∂�

∂t

]
ds

+ρg

2

∮
�b∪�±

w

[ζ (ζ − 2X3)n̂]dl, (10b)

where �b and �±
w are the intersections of Sb and S±

w with z = 0, respectively, n̂ = r̂ × n, and ζ

denotes the first-order free-surface elevation determined by the dynamic free-surface boundary
condition,

ζ = − 1

g

∂�

∂t

∣∣∣∣
z=0

. (11)

In addition, in Eq. (10) and subsequent equations,
∫∫

S±
w

and
∮
�±

w
mean

∫∫
S−

w
− ∫∫S+

w
and

∮
�−

w
− ∮

�+
w

,
respectively.
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Integration of the square of fluid velocity is involved in Eq. (10). For structures having a complex
geometry, the gradient of velocity potential is singular at sharp corners. Taking a truncated cylinder
as an example, the gradient of the perturbed potential at the edge has a minus cubic-root singularity
[43]. The singularity problem is more pronounced when the body experiences large motions. As
discussed in Refs. [39,44,45], singularities of the fluid velocity components near a sharp corner is
challenging to obtain converged computational results of the mean wave drift force. All in all, even
though Eq. (10) is easy to be implemented, it is difficult to achieve converged results for structures
with a sharp variation in geometry.

A. Application of Gauss’ and Stokes’ theorems

In this subsection, efforts are made to recast Eq. (10) by means of Gauss’ and Stokes’ theorems.
By applying Stokes’ theorem over the body surface, the following expressions can be obtained [38]:∫∫

Sb∪S±
w

[(
X · ∇ ∂�

∂t

)
n − (X · n)∇ ∂�

∂t
+ (A × n)

∂�

∂t

]
ds = −

∮
�b∪�±

w

∂�

∂t
(τ × X)dl, (12a)∫∫

Sb∪S±
w

[(
X · ∇ ∂�

∂t

)
n̂ + (� × n + A × n̂)

∂�

∂t
−
(

r̂ × ∇ ∂�

∂t

)
(X · n)

]
ds

= −
∮

�b∪�±
w

∂�

∂t
[r̂ × (τ × X)]dl, (12b)

where τ is the tangent vector along the waterline. For structures that intersect the mean free surface
vertically, the following relationship holds:

τ × n = k, on �b and �±
w , (13)

where k is the unit vector along the positive z axis.
We further consider a control volume 	c bounded by the mean wetted body surface as well as

Sc and S f , respectively. Sc represents a fictitious (control) surface surrounding the body, intersecting
the mean free surface vertically. S f is the mean free surface within the control volume. The normal
vector on Sc points to the far-field region, whereas that on S f is oriented upward.

Applying Gauss’ theorem in the control volume gives rise to [46]∫∫
Sb∪S±

w∪Sc∪S f

[(∇� · ∇�)n]ds = 2
∫∫

Sb∪S±
w∪Sc∪S f

(
∂�

∂n
∇�

)
ds, (14a)∫∫

Sb∪S±
w∪Sc∪S f

[(∇� · ∇�)n̂]ds = 2
∫∫

Sb∪S±
w∪Sc∪S f

[
∂�

∂n
(r̂ × ∇�)

]
ds. (14b)

By making use of Eqs. (12) and (14), the mean wave drift force and moment given by Eqs. (10a)
and (10b) are rewritten as

Fq = −ρ

∫∫
Sb

∂

∂t
[(X · n)∇�]ds − ρ

∫∫
S±

w

[
∂�

∂n
∇� + (X · n)∇ ∂�

∂t

]
ds

− ρ

∫∫
Sc∪S f

[
∂�

∂n
∇� − 1

2
(∇� · ∇�)n

]
ds + ρg

2

∮
�b∪�±

w

[ζ 2n − 2ζ (X · n)k]dl, (15a)

Mq = −ρ

∫∫
Sb

∂

∂t
{r̂ × [(X · n)∇�]}ds − ρ

∫∫
S±

w

{
r̂ ×

[
∂�

∂n
∇� + (X · n)∇ ∂�

∂t

]}
ds

− ρ

∫∫
Sc∪S f

{
r̂ ×

[
∂�

∂n
∇� − 1

2
(∇� · ∇�)n

]}
ds

+ ρg

2

∮
�b∪�±

w

{r̂ × [ζ 2n − 2ζ (X · n)k]}dl. (15b)
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Application of Green’s theorem over S f yields∫∫
S f

(
∂�

∂t
∇̄ ∂�

∂t

)
ds = 1

2

∮
�c∪�b∪�±

w

(
∂�

∂t

∂�

∂t
n
)

dl, (16a)∫∫
S f

[
∂�

∂t

(
r̂ × ∇̄ ∂�

∂t

)]
ds = 1

2

∮
�c∪�b∪�±

w

(
∂�

∂t

∂�

∂t
n̂
)

dl, (16b)

where ∇̄ means the gradient with respect to horizontal coordinates and defined as ∇̄ = ∂/∂xi +
∂/∂yj; �c is the intersection of Sc with z = 0. With the employment of identities (16), Eqs. (15a)
and (15b) are further written as

Fq = Ft − ρ

∫∫
S±

w

[
∂�

∂n
∇� + (X · n)∇ ∂�

∂t

]
ds − ρ

∫∫
Sc

[
∂�

∂n
∇� − 1

2
(∇� · ∇�)n

]
ds

− ρ

∫∫
S f

[(
∂�

∂z

∂�

∂z
− 1

2
∇� · ∇�

)
k
]

ds − ρg

2

∮
�c

(ζ 2n)dl − ρg
∮

�b∪�±
w

[ζ (X · n)k]dl,

(17a)

Mq = Mt − ρ

∫∫
S±

w

r̂ ×
[
∂�

∂n
∇� + (X · n)∇ ∂�

∂t

]
ds − ρ

∫∫
Sc

r̂ ×
[
∂�

∂n
∇� − 1

2
(∇� · ∇�)n

]
ds

− ρ

∫∫
S f

[(
∂�

∂z

∂�

∂z
− 1

2
∇� · ∇�

)
(r̂ × k)

]
ds

−ρg

2

∮
�c

(ζ 2n̂)dl − ρg
∮

�b∪�±
w

[ζ (X · n)(r̂ × k)]dl, (17b)

where Ft and Mt represent the terms that can be grouped as the derivative with respect to time and
are given by

Ft = −ρ

∫∫
Sb

∂

∂t
[(X · n)∇�]ds + ρ

g

∫∫
S f

∂

∂t

(
∂�

∂t
∇̄�

)
ds, (18a)

Mt = −ρ

∫∫
Sb

∂

∂t
{r̂ × [(X · n)∇�]}ds + ρ

g

∫∫
S f

∂

∂t

[
r̂ ×

(
∂�

∂t
∇̄�

)]
ds. (18b)

Equations (17a) and (17b) provide a way to calculate the second-order wave force and moment con-
tributed by the first-order wave field, including both the sum- and difference-frequency components.
In addition, the control surface involved in Eqs. (17a) and (17b) can be arbitrary shaped. It can be
at a finite distance from the body or at infinity. When the mean wave drift force and moment are
concerned, the contribution from Eqs. (18a) and (18b) is nil [38]. Then, the application of Eqs. (17a)
and (17b) does not require the computation of fluid velocity components on an impermeable hull
surface.

In Eqs. (17a) and (17b), when the perforated part of the structure becomes impermeable, the
integrals over S±

w can be grouped as ∂t [(X · n)∇�] and ∂t {r̂ × �(X · n)∇��}, respectively, and can
thus be incorporated into Eqs. (18a) and (18b), which do not contribute to the mean wave drift force
and moment.

B. Conservation of fluid momentum

The derivation based on the conservation of fluid momentum is now considered. By using the
kinematic transport theorem and Gauss’ theorem, the changing rate of the linear momentum of fluid
in a control volume can be expressed as [47,48]

dM

dt
= −

∫∫
S±

W ∪SB∪SF ∪SC

[Pn + ρgznzk + ρu(u · n − Un)]ds, (19)

074802-6



SECOND-ORDER WAVE DRIFT LOADS ON FLOATING …

where M denotes the linear momentum in the control volume; S±
W and SB denote the instantaneous

perforated and impermeable wetted body surfaces, SC and SF the instantaneous control surface and
free surface within the control volume, respectively, u = (u1, u2, u3)T the vector of the fluid velocity,
and Un the normal velocity of the boundary surface. On SB and SF , the condition that u · n = Un is
satisfied. The control surface is fixed, indicating Un = 0 on SC . Then, we can relate the wave force
F acting on the structure to the time differentiation of fluid momentum in the control volume

F =
∫∫

S±
W ∪SB

Pnds = −
∫∫

S±
W ∪SB

(ρgznzk)ds −
∫∫

S±
W

ρu(u · n − Un)ds

−
∫∫

SF ∪SC

(Pn + ρgznzk)ds −
∫∫

SC

ρu(u · n)ds − dM

dt
. (20)

On the right-hand side of Eq. (20), the first term contributes to the hydrostatic forces. When the time
average is taken and the periodicity invoked, the last term does not contribute to the mean force.

By using Bernoulli’s equation and expanding the quantities from SC to the mean control surface
Sc, the quadratic terms of the integral over the control surface are given in the following form:

Fc = −ρ

∫∫
Sc

[
∂�

∂n
∇� − 1

2
(∇� · ∇�)n

]
ds − ρg

2

∮
�c

(ζ 2n)dl. (21)

In Eq. (21), the control surface is assumed to be wall-sided near the free surface. On the right-hand
side of Eq. (21), the line integral along the mean waterline �c accounts for the momentum flux from
z = 0 to the instantaneous waterline.

On the free surface, the fluid pressure is equivalent to atmospheric pressure, which is assumed to
be zero. The application of Bernoulli’s equation to SF yields

−
∫∫

SF

(Pn + ρgznzk)ds = k
{
ρ

∫∫
SF

[(
∂�

∂t
+ 1

2
∇� · ∇�

)
nz

]
ds

}
. (22)

By applying Eq. (22), the quadratic terms of the integral over SF are expressed as

F f = k

{
ρ

∫∫
S f

(
∂2�

∂t∂z
ζ + 1

2
∇� · ∇�

)
ds − ρg

∮
�b∪�±

w

[ζ (X · n)]dl

}
, (23)

where the first integral is due to the expansion of the velocity potential from the instantaneous
position to the mean position, and the last integral is caused by the movement of the waterline and
accounts for the vertical momentum flux over the portion of free surface between the instantaneous
waterlines and the mean waterlines.

In the meantime, the quadratic terms of the integral over the perforated surface, which is denoted
by Fw, can be expressed as

Fw = −ρ

∫∫
S±

w

(∇�Wn)ds. (24)

By taking the time average over one period, the second-order mean wave drift force on the system
can be expressed as follows:

f− = −ρ

{∫∫
S±

w

(∇�Wn)ds +
∫∫

Sc

[
∂�

∂n
∇� − 1

2
(∇� · ∇�)n

]
ds + g

2

∮
�c

(ζ 2n)dl

}

+ ρk

{∫∫
S f

(
∂2�

∂t∂z
ζ + 1

2
∇� · ∇�

)
ds − g

∮
�b∪�±

w

ζ (X · n)dl

}
. (25)
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Analogous to the analysis of the mean wave drift force, the changing rate of the angular
momentum of the fluid in the control volume can be expressed as [48]

dL

dt
= −

∫∫
S±

W ∪SB∪SF ∪SC

[P(r̂ × n) + ρgznz(r̂ × k) + ρ(n · u − Un)(r̂ × u)]ds, (26)

where L is the angular momentum of the fluid in the control volume. Then, we can relate the wave
moment M to the time differentiation of the angular moment

M =
∫∫

S±
W ∪SB

P(r̂ × n)ds

= −
∫∫

S±
W ∪SB

[ρgznz(r̂ × k)]ds −
∫∫

S±
W

ρ(n · u − Un)(r̂ × u)ds

−
∫∫

SF ∪SC

[P(r̂ × n) + ρgznz(r̂ × k)]ds −
∫∫

SC

ρ(n · u)(r̂ × u)ds − dL

dt
. (27)

On the right-hand side of Eq. (27), the first term contributes to the hydrostatic moment, and
the last term is nil by taking the time average over one period. By using Bernoulli’s equation and
Taylor’s series expansion, the quadratic terms of the integral over the control surface, free surface,
and perforated surface, denoted by Mc, M f , and Mw, respectively, are written as

Mc = −ρ

∫∫
Sc

{
r̂ ×

[
∂�

∂n
∇� − 1

2
(∇� · ∇�)n

]}
ds − ρg

2

∮
�c

ζ 2(r̂ × n)dl, (28a)

M f = ρ

∫∫
S f

[
∂2�

∂t∂z
ζ + 1

2
(∇� · ∇�)

]
(r̂ × k)ds − ρg

∮
�b∪�±

w

ζ (X · n)(r̂ × k)dl, (28b)

Mw = −ρ

∫∫
S±

w

Wn(r̂ × ∇�)ds. (28c)

By taking the time average, the second-order mean wave drift moment on the structure becomes

m− = − ρ

∫∫
S±

w

Wn(r̂ × ∇�)ds − ρ

∫∫
Sc

{
r̂ ×

[
∂�

∂n
∇� − 1

2
(∇� · ∇�)n

]}
ds

− ρg

2

∮
�c

ζ 2(r̂ × n)dl + ρ

∫∫
S f

(
∂2�

∂t∂z
ζ + 1

2
(∇� · ∇�)

)
(r̂ × k)ds

− ρg
∮

�b∪�±
w

ζ (X · n)(r̂ × k)dl. (29)

As the following relations hold:

(X · n)∇ ∂�

∂t
+
(

∂X
∂t

· n
)

∇� = ∂

∂t
[(X · n)∇�] = 0, (30a)

∂�

∂z

∂�

∂z
+ ∂2�

∂t∂z
ζ = ∂

∂t

(
∂�

∂z
ζ

)
= 0, (30b)

the time average of Eqs. (17a) and (17b) is consistent with Eqs. (25) and (29), respectively. It
indicates that the application of fluid momentum gives rise to identical formulations for mean wave
drift force and moment obtained from direct applications of mathematical identities.
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IV. REPRESENTATIONS IN THE FREQUENCY DOMAIN

The formulations to determine the mean wave drift loads on structures with perforated shells in
the frequency domain are now considered. The incident waves in a time-harmonic steady state with
an angular frequency ω and an amplitude A are considered. Physical quantities are expressed as

[�(x, t ), ζ (x, t ), X(t ),�(t ), A(t )] = Re{[φ(x), η(x),χ, ξ,α]e−iωt }, (31)

where Re denotes that the real part is taken, and i = √−1 is the imaginary unit. By taking the time
average of Eqs. (17a) and (17b), we obtain the formulations of mean wave drift force and moment
in the frequency domain. The mean wave drift force is written as

f− = f−
w + f−

c + f−
f , (32)

with f−
w , f−

c and f−
f defined as

f−
w = Re

[
−ρ

2

∫∫
S±

w

(wn∇φ∗)ds

]
, (33a)

f−
c = Re

{
−ρ

2

∫∫
Sc

[
∂φ

∂n
∇φ∗ − 1

2
(∇φ · ∇φ∗)n

]
ds − ρg

4

∮
�c

[(ηη∗)n]dl

}
, (33b)

f−
f = Re

{
−ρ

2

∫∫
S f

[(
∂φ

∂z

∂φ∗

∂z
− 1

2
∇φ · ∇φ∗

)
k
]

ds − ρg

2

∮
�b∪�±

w

[η∗(χ · n)k]dl

}
, (33c)

where the asterisk denotes complex conjugate.
The mean wave drift moment is

m− = m−
w + m−

c + m−
f , (34)

with m−
w , m−

c and m−
f defined as

m−
w = Re

[
−ρ

2

∫∫
S±

w

wn(r̂ × ∇φ∗)ds

]
, (35a)

m−
c = Re

{
−ρ

2

∫∫
Sc

[
∂φ

∂n
(r̂ × ∇φ∗) − 1

2
(∇φ · ∇φ∗)n̂

]
ds − ρg

4

∮
�c

(ηη∗)n̂dl

}
, (35b)

m−
f = Re

[
−ρ

2

∫∫
S f

(
∂φ

∂z

∂φ∗

∂z
− 1

2
∇φ · ∇φ∗

)
(r̂ × k)ds − ρg

2

∮
�b∪�±

w

η∗(χ · n)(r̂ × k)dl

]
.

(35c)

In Eqs. (33a) and (35a), wn is the amplitude of the relative fluid velocity across the perforated
surface, and equals

wn = ∇φ · n − {−iω[ξ + α × (x − xo)] · n}. (36)

By using the pressure drop condition in Eq. (6), the following condition is satisfied by wn on the
perforated surface [18,41]

wn =
{

iκ0G0(φ+ − φ−), on S+
w ;

iκ0G0(φ− − φ+), on S−
w ,

(37)

where G0 = ωργ /(κ0μ) is normally defined as the porous-effect parameter, κ0 is the wave number,
satisfying the dispersion relation ω2 = gκ0 tanh(κ0h), and φ+ and φ− are the complex spatial
potentials on S+

w and S−
w , respectively.

074802-9



CONG, LIANG, LIU, AND TENG

FIG. 1. Sketch of water wave interaction with a bottom-standing concentric perforated cylinder system.

V. RESULTS AND DISCUSSIONS

As a sequel to the derivation of developed formulations in Secs. III and IV, numerical examples
are exhibited for a series of structures, including a bottom-standing concentric perforated cylinder
system, a square array of bottom-standing perforated cylinders, and a floating concentric perforated
cylinder system. Semianalytical solutions to these systems based on eigenfunction expansions are
presented in Appendixes A and B, respectively. By a set of experiments for a perforated cylinder
in waves, Zhao et al. [49] connected the porous-effect parameter G0 to the opening rate τ of the
perforated shell, obtaining

G0 = 1

2π

τ 2

1 + 1.06τ

(
17.8

ε
+ 143.2

)
, (38)

in which ε = κ0A is the wave steepness. In the subsequent study, Eq. (38) is used to determine the
relationship between G0 and τ with ε being set to 0.10 unless otherwise specified.

A. A bottom-standing concentric perforated cylinder system

We first consider a bottom-standing, surface-piercing, and impermeable cylinder of radius a,
surrounded by an exterior cylindrical shell of radius b (see Fig. 1). Both of them are fixed rigidly at
the horizontal sea bottom. Such a system can be considered a limiting case of a floating system as
the clearance between the system and the seabed approaches zero. Then, the solution to this system
can be referred to as those introduced in Appendix A. Figure 2 depicts the frequency response of
the horizontal mean wave drift forces on a system of b/a = 2 and h/a = 3. In addition, the radius
of the control surface equals 3a. In the computation, perforated shells with small opening rates are
primarily concerned. The results for porous-effect coefficients G0 = 0.2, 0.6, and 1.0 are displayed
in Figs. 2(a), 2(b), and 2(c), respectively. The associated opening rates are τ = 6.39%, 11.5%,

and 15.1%, respectively. The mean wave drift force on a system with an impermeable shell, which
amounts to G0 = 0.0, is also presented. The integral over the free surface to the horizontal mean drift
force is nil in the present problem. Comparison is made with the far-field method solution, and good
agreement has been obtained. Compared to the impermeable shell, a system with a perforated shell
experiences larger wave drift loads in long waves corresponding to a small wave number and smaller
wave drift loads in short waves at a large wave number. By increasing the porous-effect parameter G0

associated with the open-area ratio, smaller wave drift forces are generally experienced. In addition,
individual contributions from the control surface and perforated surface integrals are also presented.
The perforated surface integral gives rise to negative drift forces in general. In all cases, the mean
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FIG. 2. Horizontal mean wave drift force on a bottom-standing concentric perforated cylinder system
when b/a = 2 and h/a = 3 for (G0, τ ) = (0.2, 6.39%), (0.6, 11.5%), and (1.0, 15.1%) as in (a), (b), and
(c), respectively. A comparison is made with the far-field method solution by Ref. [35].

wave drift force acting on the system is dominated by the control surface integral, whereas the
integral over the perforated surface plays a secondary role.

B. A square array of bottom-standing perforated cylinders

As a sequel to the study of a single body, the focus is now placed on the mean wave drift loads on
an array of four identical bottom-standing perforated cylinders, as sketched in Fig. 3. In this case,
the far-field formulation can only yield the total drift force on the multibody system, but cannot
give rise to that on each individual body. The radius of each cylinder is a, and the center-to-center
distance between two cylinders in line with either x axis or y axis is 4a. The centers of the cylinders
are located at (±2a,±2a), and the cylinders are numbered anticlockwise, with cylinder number 1
located in the first quadrant. Solutions based on the near-field formulation and the newly derived
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FIG. 3. Sketch of water wave interaction with a square array of bottom-standing perforated cylinders.

formulation are developed in Appendix B. When the newly derived formulation is used, the radius
of the control surface surrounding each cylinder equals 1.5a. Figures 4 and 5 depict the frequency
responses of the mean wave drift forces in the direction of wave propagation with G0 = 0.1 and
0.2. The associated opening rates are τ = 6.39% and 11.5%, respectively. In the computation, the
wave heading is 45◦ with respect to the positive x axis. Comparison is made between different
solutions, and satisfactory agreement has been obtained. Individual contributions from integrals
over the control and perforated surfaces are shown, corroborating that the control surface integral is
predominant. Besides, the mean wave drift force exerted on an isolated perforated cylinder is also
displayed. Strong interference effects in the cylinder array exhibit oscillations with wave numbers
in the three subplots. When G0 = 0.1, the maximum mean drift forces on Cylinder 1 that occurred
in the range κ0a ∈ (1.5, 2.0) are almost twice that on the isolated cylinder. In this range, Cylinder
2 and Cylinder 3 experience negative mean wave drift forces. It can be envisioned that water waves
in the region surrounded by cylinders are nearly trapped, resulting in repulsion drift forces on the
cylinder array.

The wave trapping in a column array has been demonstrated theoretically and experimentally
in previous studies [50–52]. Evans and Porter [50] indicated that the phenomenon of pure wave
trapping could occur in a cylinder array when the matrix of coefficients associated with the
expansion series has a zero determinant. For the present square array, the wave number where the
pure wave trapping occurs is κ0a = (1.671,−0.094) in the complex space. When the imaginary
part of the complex wave number is set to be zero, the wave motion within the region internal to the
polygon is weakly damped, leading to a phenomenon of near trapping. Figures 6 and 7 depict the
distribution of the free-surface elevation amplitude at κ0a = 1.671 for β = 0◦ and 45◦, respectively.
In the computation, the porous-effect parameter varies as G0 = 0.0, 0.2, 0.6, and 1.0. The associated
opening rates are τ = 0.0% (impermeable), 6.39%, 11.5%, and 15.1%. Noticeable wave runups are
observed around the cylinders, which is more evident for β = 45◦. Figure 7(a) is characterized by
a 2 × 2 arrangement of peaks and troughs within an impermeable cylinder array. When an apparent
peak appears around one cylinder, troughs will simultaneously occur in the local vicinity of the
adjacent cylinders, creating a (+ −

− +) pattern [50]. If the cylinders become perforated, the wave
energy dissipation through the perforated surfaces can reduce the peak wave runup and make a
breakdown of the near-trapped wave motion.

The mean wave drift force on the cylinder in the first quadrant is illustrated in Fig. 8 for different
wave headings. Around the near-trapping frequency, the positive mean wave drift force with

074802-12



SECOND-ORDER WAVE DRIFT LOADS ON FLOATING …

(a)

(b)

(c)

FIG. 4. Mean wave drift forces in the direction of wave propagation for an array of four identical bottom-
standing perforated cylinders when (G0, τ ) = (0.1, 6.39%) and β = 45◦ of (a) Cylinder 1, (b) Cylinder 2 (or
Cylinder 4), and (c) Cylinder 3.

β = 45◦ is enhanced and more apparent than those with other headings. Such enhancement gets
reduced by perforating body surfaces, which is consistent with the observation from the wave runup.

C. A floating concentric perforated cylinder system

In the numerical examples presented in Secs. V A and V B, in which bottom-standing perforated
cylinders are studied, there is no sharp corner, and therefore, the corresponding singularity does not
appear. Here, we consider the wave interaction with a floating concentric perforated cylinder system,
as illustrated in Fig. 9, in which the sharp corner singularity matters. In the present example, the
floating system consists of a compound cylinder and a perforated sidewall. The compound cylinder
has an inner column of radius a and a bottom base of radius b = 2a and height e = 0.1a. The
perforated shell has the same radius as the bottom base. The draft of the system is d = 1.3a, and
the water depth is h = 10a, as shown in Fig. 10. Solutions based on the far-field formulation and
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(a)

(b)

(c)

FIG. 5. Mean wave drift forces in the direction of wave propagation for an array of four identical bottom-
standing perforated cylinders when when (G0, τ ) = (0.2, 11.5%) and β = 45◦ of (a) Cylinder 1, (b) Cylinder
2 (or Cylinder 4), and (c) Cylinder 3.

the newly derived formulation are developed in Appendix A. When the newly derived formulation is
used, the radius of the cylindrical control surface is Rc = 3a. Numerical results of the body motion
and the mean drift wave force are presented. The rotational center is at (0, 0, 0). Other quantities,
such as the wave exciting force, added mass, and damping coefficients, have been studied in previous
studies [23,36,53], and hence they are not discussed here for brevity.

In the computation, we assume that the mass of the system is evenly distributed over the sub-
merged impermeable part, and the mass of the thin perforated shell is negligible. Figure 11 depicts
the surge, heave, and pitch motion amplitude of the system for a series of porous-effect parameters,
i.e., G0 = 0.0, 0.05, 0.1, 0.15, and 0.2. The associated opening rates are τ = 0.0% (impermeable),
3.02%, 4.42%, 5.48%, and 6.39%. The legend in Fig. 11 is the combination of G0 and τ , i.e., (G0,
τ ). In Fig. 11, the surge or heave motion amplitude is normalized by the incident wave amplitude.
However, that for the pitch motion is normalized by the wave steepness parameter ε = κ0A. The
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FIG. 6. Distribution of the free-surface elevation amplitude around a square array of bottom-standing
cylinders when κ0a = 1.671 and β = 0◦ for impermeable cylinders as in (a) and for perforated cylinders with
(G0, τ ) = (0.2, 6.39%), (0.6, 11.5%), and (1.0, 15.1%) as in (b), (c), and (d), respectively.

system is freely floating in waves, and no external damping or mooring force is applied. Due to
the lack of restoring force, the surge motion is significant in long waves. In addition, owing to the
small water-plane area of the system, the restoring moment for the pitch motion is low. This leads
to a low resonance frequency of the pitch motion, which is around κ0a = 0.055. It should be noted
that the apparent low-frequency motion in Figs. 11(a) and 11(c) are based on the assumption that
the action of long incident waves is strong. However, in the actual ocean environment, the incident
wave energy of long waves remains at a low level. It suggests that the long incident waves are not the
main source of the excitation for the low-frequency motion. Noticeable peak motion response can
also be found in the wave-frequency region for each motion mode. For structures with perforated
elements, the damping for the body motions includes not only conventional wave radiation damping
but also a term related to the dissipation through the perforated surface [33]. The latter term can
obviously enhance the damping effect. Therefore, as shown in Fig. 11, the peak motion response
can be noticeably reduced after the exterior shell becomes perforated.

The heave motion response is then calculated in an expanded range of G0, in which G0 varies
from 0.5 to +∞. The calculated results are shown in Fig. 12. As G0 increases, the peak have re-
sponse amplitude operator (RAO) decreases first, and then increases again. Moreover, the frequency
of peak RAO moves gradually to the high-frequency region as G0 increases. This is related to the
added mass caused by the movement of the entrapped fluid between the exterior shell and the interior
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FIG. 7. Distribution of the free-surface elevation amplitude around a square array of bottom-standing
cylinders when κ0a = 1.671 and β = 45◦ for impermeable cylinders as in (a) and for perforated cylinders
with (G0, τ ) = (0.2, 6.39%), (0.6, 11.5%), and (1.0, 15.1%) as in (b), (c), and (d), respectively.

column. In addition, as expected, when the exterior shell is removed, i.e., G0 tends to +∞, there
exist a zero value at the cancellation frequency around κ0a = 0.18.

We then consider the computation of mean wave drift loads on the system. The variation of
the present and the near-field solution of the horizontal mean wave drift force at κ0a = 0.55, 0.7,
and 0.8 is shown in Table I for different truncated numbers of eigenmodes N . In all the cases,
the present solution possesses good convergence characteristics and is consistent with the far-field
solution when N is less than 80. Nevertheless, the convergence of the near-field solution versus the
increasing number of eigenmodes is much slower than that of the present solution. This is owing to
the fact that the integration of the quadratic velocity term over the bottom edge, around which the
fluid velocity components are singular, would affect the overall accuracy.

Figure 13 depicts the mean wave drift force and moment on a freely floating concentric perforated
cylinder system. The results indicate that the body motion can result in a noticeable effect on
the mean wave drift loads. Around the resonance frequencies of the heave and pitch motions, the
horizontal mean wave drift force is amplified. In short waves, a series of small peaks can be observed
from the horizontal mean force. Similar phenomena have been found for the bottom-standing
concentric perforated cylinder systems [35], which is due to that at specific wave frequencies,
certain propagation modes of the incident waves can pass through the exterior perforated shell
without any dissipation, enhancing the wave impact on the system. The effect of body motions
on the vertical mean wave drift wave is also evident. A negative mean force appears around the
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(a)

(b)

(c)

FIG. 8. Mean wave drift force on the cylinder in the first quadrant for a square array of impermeable
cylinders as in (a) and perforated cylinders with (G0, τ ) = (0.1, 4.42%) and (0.2, 6.39%) as in (b) and (c),
respectively.

resonance frequency of heave motion. The mean wave drift moment exhibits combined features
of the horizontal and vertical mean wave drift force. Amplified positive and negative mean wave
drift moments are found around the resonance frequencies of the heave and pitch motions. As
the dissipation through the perforated shell can enhance the damping and suppress the excessive
body motions, the vastly amplified mean wave drift force and moment are noticeably reduced after
perforating the exterior shell.

Figures 14 and 15 depict the horizontal and vertical mean wave drift force and its constituent
components on a floating concentric cylinder system, either fixed or freely floating in waves. For the
horizontal force, the comparison is made with the far-field method solution, and good agreement has
been obtained. As shown in Fig. 14, the control surface integral is predominant for the horizontal
mean force on either a fixed or a free-floating system. The perforated surface integral generally
makes a negative contribution to the horizontal force. For the vertical mean force (see Fig. 15),
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FIG. 9. Sketch of water wave interaction with a freely floating concentric perforated cylinder system.

the perforated surface integral plays a negligible role, and the whole force is dominated by the
free surface and the control surface integrals, which are generally out-of-phase. The comparison
of the mean wave drift force on a fixed and a free-floating system shows a remarkable difference
that appears around the resonance frequencies of the heave and pitch motions, where the radiated
waves can significantly disturb the wave field and cause amplified positive mean horizontal force and
negative mean vertical force. In short waves, the results of horizontal mean force for fixed and freely
floating systems are comparable, while the vertical mean force decays quickly until vanishing.

As the perforated structures can effectively attenuate wave actions and impose less disturbance
to water environments, they have been extensively used in near-shore breakwaters for coastal
protection. The present research illuminated that perforated structures can also be used as key
components for floating bodies. The second-order mean wave drift loads are mainly caused by

TABLE I. Present and near-field solutions of the horizontal mean wave drift force on a freely floating
concentric perforated cylinder system (b/a = 2, e/a = 0.1, d/a = 1.3 and h/a = 10) for different numbers
(N) of eigenmodes. In addition, (G0, τ ) = (0.1, 4.42%). The force is normalized by ρgaAA∗. N = 200 is used
in the far-field solution shown in this table. The asterisk ∗ means that the relative error with respect to the
far-field solution is less than 10−4.

Present solution Near-field solution
���������N =

κ0a =
0.55 0.7 0.8 0.55 0.7 0.8

10 1.2150 1.3211 1.4777 0.9824 0.9709 1.2248
20 1.2165 1.3280 1.4795 1.0299 1.0317 1.2653
30 1.2160 1.3285 1.4800 1.0790 1.0916 1.3060
40 1.2154 1.3289 1.4802 1.1080 1.1248 1.3283
50 1.2151 1.3291 1.4803 1.1040 1.1226 1.3279
60 1.2149 1.3293 1.4804 1.1118 1.1322 1.3345
70 1.2148 1.3294 * 1.1312 1.1533 1.3481
80 * * * 1.1329 1.1560 1.3503
100 * * * 1.1426 1.1669 1.3573
150 * * * 1.1562 1.1825 1.3671
200 * * * 1.1671 1.1944 1.3746
Far-field solution 1.2146 1.3296 1.4806 1.2146 1.3296 1.4806
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FIG. 10. Schematic of the geometry and the definition of the coordinate system for a floating concentric
perforated cylinder system.

the interaction between the first-order wave fields (including the incident, diffraction and radiation
waves) in the wave-frequency region, and are responsible for the low-frequency body motions. The
body motions in the wave-frequency and low-frequency regions are coupled closely through the
mean wave drift loads. Present results demonstrated that the integration of perforated shells into
a floating body could suppress the excessive wave-frequency body motions and in turn reduce the
amplified mean wave drift loads. This is beneficial for the mitigation of low-frequency motions. It
indicates that applying perforated structures can be a promising way to improve motion stability
in a wide frequency range, and can serve the purpose of motion stabilizer for various types of
floating structures.

VI. CONCLUSION

In the present study, formulations for the accurate computation of mean wave drift loads on
structures with a perforated shell are derived by directly applying Gauss’ and Stokes’ theorems
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(a)

(b)

(c)

FIG. 11. Normalized motion amplitudes of a floating concentric perforated cylinder system when b/a = 2,
e/a = 0.1, d/a = 1.3 and h/a = 10 for different combinations of (G0, τ ): (a) surge, (b) heave, and (c) pitch.

or conservation of fluid momentum. The developed formulation involves a control surface sur-
rounding each body. Compared to the far-field formulation, the present formulation can give all
six components of the mean wave drift force and moment and can determine the mean wave
drift loads on each body of a multibody system. In contrast to the near-field formulation based
on direct pressure integration, the computation of fluid velocity components over the impermeable
hull surface, which are singular near sharp corners, is no longer required. It is demonstrated that
the developed formulations have better convergence than the near-field formulation. The developed
formulations are then applied to compute the mean wave drift loads on different types of structures,
and good agreement has been obtained by comparing them with benchmark results. Through this
study, the following conclusions can be drawn:

(1) The developed formulation transforms the impermeable hull surface integral and part of the
perforated surface integral to a control surface at a distance from the body. However, there still
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FIG. 12. Normalized heave motion amplitude of a floating concentric perforated cylinder system in an
expanded range of G0 when b/a = 2, e/a = 0.1, d/a = 1.3, and h/a = 10.

exists an integral over the perforated surface. Extensive numerical examples demonstrate that the
perforated surface integral plays a secondary role, and has limited influence on the overall accuracy.

(2) For a multibody system, the interference effect is non-negligible. When the water waves
within the array are nearly trapped, the weather-side body may experience opposing mean wave
drift forces. Perforating body surfaces reduce the amplified mean wave drift force on the bodies
around the near-trapping frequency and cause a breakdown of the near-trapped wave motion.

(3) For a floating truncated cylinder shielded by a perforated exterior shell, the body motions
can impose an appreciable impact on the mean wave drift force. Compared to a fixed system, the
mean wave drift loads can be amplified around the body motions’ resonance frequencies. The wave
energy dissipation through the perforated shell enhances the damping effect and reduces excessive
body motion. Therefore, the amplified mean drift wave force or moment is reduced after perforating
the exterior shell.

The significance of the present work is threefold. Firstly, the developed formulation enables
accurate and efficient computation of mean drift loads on single and multiple bodies with perfo-
rated shells. Secondly, the analytical solutions presented here provide benchmark results for the
verification of numerical simulations, e.g., the boundary element method. Lastly, this study sheds
light on how the application of perforated shells can reduce the mean wave drift loads on floating
bodies, which may in turn mitigate the low-frequency motions. This is of practical importance to
offshore engineering and marine aquaculture.
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APPENDIX A: SOLUTIONS TO THE MEAN WAVE DRIFT FORCE ON A FREELY FLOATING
CONCENTRIC PERFORATED CYLINDER SYSTEM

A floating concentric perforated cylinder system is now considered, as illustrated in Figs. 9 and
10. A cylindrical coordinate system is defined with its origin at the center of the interior cylinder and
on the still free surface. The z axis orients vertically upwards. The plane incident waves travel along
the positive x axis. To facilitate the numerical implementation, a control surface, which consists of
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(a)

(b)

(c)

FIG. 13. Mean wave drift wave force and moment on a floating concentric perforated cylinder system
when b/a = 2, e/a = 0.1, d/a = 1.3, and h/a = 10 for different combinations of (G0, τ ) with the horizontal
and vertical force in (a) and (b), and pitch moment in (c).

a cylindrical surface (r = Rc and −h � z � 0) as well as a circular surface (r � Rc and z = −h),
has been used.

The following decomposition of the velocity potential is made:

φ = φI + φD − iω
6∑

j=1

ξ jφ j, (A1)

where φI is the incident velocity potential, and given by

φI = − iAg

ω

cosh [κ0(z + h)]

cosh (κ0h)
eiκ0x. (A2)
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(a)

(b)

FIG. 14. Horizontal mean wave drift force and its constituent components on a floating concentric perfo-
rated cylinder system when b/a = 2, e/a = 0.1, d/a = 1.3, (G0, τ ) = (0.1, 4.42%), and h/a = 10 of (a) a
fixed system, and (b) a freely floating system.

In Eq. (A1), φD is the diffraction potential due to the presence of the body, and φ j ( j = 1, 2, . . . , 6)
is the radiation potential due to the body motion in the jth mode. φ̂ is used to denote the summation
of the incident and diffraction potentials. That is

φ̂ = φI + φD. (A3)

The wave diffraction problem is first considered. d1 is used to denote the height of entrapped fluid
within the system, and S = h − d the clearance between the system and seabed. The entire fluid
domain is divided into three subdomains: the exterior domain 	1(r � R,−h � z � 0), the interior
domain 	2(a � r � R,−d1 � z � 0), and the lower domain 	3(0 � r � R,−h � z � −d ). The
potential in the nth subdomain is denoted by φ̂n. By using separation of variables, the velocity
potentials valid in each subdomain are expressed as

φ̂n = − iAg

ω

+∞∑
m=0

ϕ̂n,m cos mθ, (n = 1, 2, 3), (A4)

where

ϕ̂1,m(r, z) = εmim

⎡⎣Jm(κ0r)Z0(κ0z) +
+∞∑
j′=0

Âm, j′Rm, j′ (κ j′r)Zj′ (κ j′z)

⎤⎦, (A5a)

ϕ̂2,m(r, z) = εmim
+∞∑
k=0

[B̂m,kPm,k (μkr) + Ĉm,kQm,k (μkr)]Uk (μkz), (A5b)

ϕ̂3,m(r, z) = εmim
+∞∑
l ′=0

D̂m,l ′Vm,l ′ (λl ′r)Zl ′ (λl ′z). (A5c)
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(a)

(b)

FIG. 15. Vertical mean wave drift force and its constituent components on a floating concentric perforated
cylinder system when b/a = 2, e/a = 0.1, d/a = 1.3, (G0, τ ) = (0.1, 4.42%), and h/a = 10 of (a) a fixed
system, and (b) a freely floating system.

In Eq. (A5), ε0 = 1 and εm = 2(m � 1); Âm, j′ , B̂m,k , Ĉm,k , and D̂m,l ′ are the unknown coefficients;
κ j′ ( j′ � 1) is the j′th positive real root of ω2 = −gκ j′ tan(κ j′h); μ0 and ω satisfy the dispersion
relation ω2 = gμ0 tanh (μ0d1); μk (k � 1) is the kth positive real root of ω2 = −gμk tan(μkd1); the
eigenvalues λ′

l are defined as λ0 = 1 and λl ′ = l ′π/S(l ′ � 1); Jm(·) is the mth-order Bessel function
of the first kind; Rm, j′ (κ j′r), Pm,k (μkr), Qm,k (μkr), and Vm,l ′ (λl ′r) are radial functions and defined
by

Rm, j′ (κ j′r) =

⎧⎪⎨⎪⎩
Hm (κ0r)
Hm (κ0R) , j′ = 0,

Km (κ j′ r)
Km (κ j′ R) , j′ � 1,

(A6a)

Pm,k (μkr) =
⎧⎨⎩

Jm (μ0r)Hm (μ0a)−Jm (μ0a)Hm (μ0r)
Jm (μ0R)Hm (μ0a)−Jm (μ0a)Hm (μ0R) , k = 0,

Im (μkr)Km (μka)−Im (μka)Km (μkr)
Im (μkR)Km (μka)−Im (μka)Km (μkR) , k � 1,

(A6b)

Qm,k (μkr) =
⎧⎨⎩

Jm (μ0R)Hm (μ0r)−Jm (μ0r)Hm (μ0R)
Jm (μ0R)Hm (μ0a)−Jm (μ0a)Hm (μ0R) , k = 0,

Im (μkR)Km (μkr)−Im (μkr)Km (μkR)
Im (μkR)Km (μka)−Im (μka)Km (μkR) , k � 1,

(A6c)

Vm,l ′ (λl ′r) =
⎧⎨⎩
(

r
R

)m
, l ′ = 0,

Im (λl′ r)
Im (λl′ R) , l ′ � 1,

(A6d)
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where Hm(·) = Jm(·) + iYm(·) stands for the Hankel function of the first kind of order m; Im(·)
and Km(·) are the modified Bessel functions of the first and second kinds of order m, respec-
tively [54], and Zj′ (κ j′z), Uk (μkz) and Zl ′ (λl ′z) are orthonormal functions given at the intervals
[−h, 0], [−d1, 0] and [−h,−d], respectively, and defined by

Zj′ (κ j′z) =
⎧⎨⎩

cosh [κ0(z+h)]
cosh (κ0h) , j′ = 0,

cos[κ j′ (z+h)]
cos(κ j′ h) , j′ � 1,

(A7a)

Uk (μkz) =
⎧⎨⎩

cosh [μ0(z+d1 )]
cosh (μ0d1 ) , k = 0,

cos [μk (z+d1 )]
cos (μkd1 ) , k � 1,

(A7b)

Zl ′ (λl ′z) =
{√

2/2, l ′ = 0

cos[λl ′ (z + h)], l ′ � 1.
(A7c)

After truncating the infinite series in Eq. (A5) and accumulating the first N + 1 terms (from mode
0 to mode N), the above-defined wave diffraction problem can be solved by using the matching
conditions and boundary conditions on r = a and r = R. More details can refer to Ref. [53], and are
not shown here for brevity.

We then proceed to solve the wave radiation problem. Due to the symmetry of the geometry, only
the surge, heave, and pitch motions ( j = 1, 3, 5) can be excited. The radiation potential due to the
surge, heave, and pitch motions can be expanded into a Fourier series with respect to θ

φ j,n =

⎧⎪⎨⎪⎩
ϕs

n cos θ, j = 1,

ϕh
n , j = 3,

ϕ
p
n cos θ, j = 5,

(A8)

where the subscript n denotes the potential in the nth subdomain. As the pitch motion owns the
combined characteristics of the surge and heave motions, we take the pitch motion as an example to
show the solution procedure of wave radiation. The radiation potential due to pitch motion can be
expressed as

ϕ
p
1 (r, z) =

+∞∑
j′=0

Ap
j′R1, j′ (κ j′r)Zj′ (κ jz); (A9a)

ϕ
p
2 (r, z) =

+∞∑
k=0

[
Bp

k P1,k (μkr) + Cp
k Q1,k (μkr)

]
Uk (μkz) − r

(
z + 1

v

)
; (A9b)

ϕ
p
3 (r, z) =

+∞∑
l ′=0

Dp
l ′V1,l ′ (λl ′r)Zl ′ (λl ′z) − r

2S

[
(z + h)2 − r2

4

]
. (A9c)

The last terms on the right-hand side of Eqs. (A9b) and (A9c) are developed to satisfy the
inhomogeneous boundary conditions on z = −d1 and z = −d , respectively. The velocity potential
given in Eq. (A9) describes the flow in the respective region. The unknown coefficients in these
expressions can be determined similarly to that in the wave diffraction problem, and hence the
details are not presented here for brevity.

As usual, the wave force contributed by incident and diffraction potentials is defined as the wave
exciting force fe [25]. In the meantime, the radiation force is divided into two parts, which are in
phase with the acceleration and velocity of the moving body, respectively. They are normally defined
as the added mass a jl and radiation damping b jl . Then, we can have

fe, j = iωρ

∫∫
Sb∪S±

w

φ̂n jds, ( j = 1, 2, . . . , 6), (A10)
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and

ω2ρ

∫∫
Sb∪S±

w

φl n jds = ω2a jl + iωb jl , ( j, l = 1, 2, . . . , 6). (A11)

When there is no external damping or mooring force applied on the floating system, the
translation and rotational motions can be determined by solving the following equation:

6∑
l=1

[−ω2(mjl + a jl ) − iωb jl + c jl ]ξl = fe, j, ( j = 1, 2, . . . , 6), (A12)

where mjl and c jl are the coefficients in the mass matrix and restoring force matrix, respectively.
We then turn to the computation of the mean wave drift force. In the nth subdomain, the total

potential φn can be expanded into the following form with respect to θ :

φn =
+∞∑
m=0

ϕn,m cos mθ, (n = 1, 2, 3), (A13)

where

ϕn,m =

⎧⎪⎪⎨⎪⎪⎩
ϕ̂n,m − iωξ3ϕ

h
n , m = 0,

ϕ̂n,m − iω
(
ξ1ϕ

s
n + ξ5ϕ

p
n
)
, m = 1,

ϕ̂n,m, m � 2.

(A14)

By integrating over θ ∈ [−π, π ] and applying orthogonality conditions, different contributions
to the horizontal and vertical mean wave drift force on the system are expressed as

f −
w,x = −ρπ

4
Re

{∫ 0

−d1

[
iκ0G0

+∞∑
m=0

2

εm
((m + 1)δ∗

m+1δm − mδ∗
mδm+1)

]
dz

}
, (A15a)

f −
c,x = ρπ

4
Re

{+∞∑
m=0

2

εm

∫ 0

−h

(
∂ϕ1,m

∂z

∂ϕ∗
1,m+1

∂z
+ m(m + 1)

R2
c

ϕ1,mϕ∗
1,m+1 − ∂ϕ1,m

∂r

∂ϕ∗
1,m+1

∂r

)
Rcdz

+
+∞∑
m=0

2

εm

∫ 0

−h

[
m

ϕ1,m

Rc

∂ϕ∗
1,m+1

∂r
− (m + 1)

ϕ1,m+1

Rc

∂ϕ∗
1,m

∂r

]
Rcdz

−
+∞∑
m=0

(
2

εm

ω2

g
ϕ1,mϕ∗

1,m+1r

)∣∣∣∣∣
r=Rc,z=0

⎫⎬⎭, (A15b)

f −
f ,x = 0, (A15c)

and

f −
w,z = −ρπ

2
Re

{∫ 0

−d1

[
iκ0G0

+∞∑
m=0

2

εm

(
δm

∂δ∗
m

∂z
r

)∣∣∣∣∣
r=R

]
dz

}
, (A16a)

f −
c,z = −ρπ

4
Re

⎧⎨⎩
∫ 0

−h

[+∞∑
m=0

2

εm

(
2
∂ϕ1,m

∂r

∂ϕ∗
1,m

∂z
r

)]∣∣∣∣∣
r=Rc

dz

+
∫ Rc

R

[+∞∑
m=0

2

εm

(
∂ϕ1,m

∂r

∂ϕ∗
1,m

∂r
+ m2

r2
ϕ1,mϕ∗

1,m

)
r

]∣∣∣∣∣
z=−h

dr
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+
∫ R

0

[+∞∑
m=0

2

εm

(
∂ϕ3,m

∂r

∂ϕ∗
3,m

∂r
+ m2

r2
ϕ3,mϕ∗

3,m

)
r

]∣∣∣∣∣
z=−h

dr

⎫⎬⎭, (A16b)

f −
f ,z = ρπ

4
Re

⎧⎨⎩
∫ Rc

R

[+∞∑
m=0

2

εm

(
∂ϕ1,m

∂r

∂ϕ∗
1,m

∂r
+ m2

r2
ϕ1,mϕ∗

1,m − ∂ϕ1,m

∂z

∂ϕ∗
1,m

∂z

)
r

]∣∣∣∣∣
z=0

dr

+
∫ R

a

[+∞∑
m=0

2

εm

(
∂ϕ2,m

∂r

∂ϕ∗
2,m

∂r
+ m2

r2
ϕ2,mϕ∗

2,m − ∂ϕ2,m

∂z

∂ϕ∗
2,m

∂z

)
r

]∣∣∣∣∣
z=0

dr

+ 2iωξ1[−(φ∗
2,1r)|r=a,z=0 + (φ∗

2,1r)|r=R,z=0 − (φ∗
1,1r)|r=R,z=0]

}
, (A16c)

where

δm = (ϕ1,m − ϕ2,m)|r=R. (A17)

The detailed expressions of the mean drift wave moment on the system can be obtained similarly
to the wave force, and hence not shown here for brevity.

Besides the newly derived formulation, the mean wave drift force can also be evaluated using
the near-field or far-field formulation. Based on Eq. (10a) and the expansion series of the velocity
potential, the horizontal mean wave drift force on the system can be expressed as

f −
x = ρπ

4
Re

{∫ 0

−d1

[̃u2(a, z) + ṽ2(a, z) − ũ2(R, z) − ṽ2(R, z)]dz

+
∫ 0

−d
[̃u1(R, z) + ṽ1(R, z)]dz + [w̃2(a) − w̃2(R) + w̃1(R)]

}
, (A18)

where

ũn(r, z) =
+∞∑
m=0

[
2

εm

(
∂ϕn,m

∂r

∂ϕ∗
n,m+1

∂r
+ ∂ϕn,m

∂z

∂ϕ∗
n,m+1

∂z
+ m(m + 1)

r2
ϕn,mϕ∗

n,m+1

)
r

]
, (A19a)

ṽn(r, z) = −iω

{
(ξ ∗

1 + ξ ∗
5 z)

(
2
∂ϕn,0

∂r
+ ∂ϕn,2

∂r
+ 2

ϕn,2

r

)
r

+
[

2ξ ∗
3
∂ϕn,1

∂z
− ξ ∗

5 r

(
2
∂ϕn,0

∂z
+ ∂ϕn,2

∂z

)]
r

}
, (A19b)

w̃n(r) =
{

−ω2

g

+∞∑
m=0

(
2

εm
ϕn,mϕ∗

n,m+1r

)
+ iω[2ξ ∗

3 ϕn,1 − ξ ∗
5 r(2ϕn,0 + ϕn,2)]r

}∣∣∣∣∣
z=0

. (A19c)

In the meantime, when the far-field formulation is used, the horizontal mean wave drift force on the
system is

f −
x = Re

{
−ρ

2

∫∫
S±

w

wn
∂φ∗

∂x
ds − ρ

2

∫∫
S∞

[
∂φ

∂n

∂φ∗

∂x
− 1

2
(∇φ · ∇φ∗)nx

]
ds

− ρg

4

∮
�∞

[(ηη∗)nx]dl

}
, (A20)

where S∞ is a cylindrical surface whose radius tends to infinity; �∞ is the intersection of S∞ at
z = 0. Using asymptotic expressions for Hankel functions, the velocity potential for large r can be
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expressed in an asymptotic form

φ(r, z, θ ) = − iAg

ω

⎡⎣eiκ0r cos θ +
√

2

πκ0r
ei(κ0r− π

4 )
+∞∑
m=0

�m cos mθ

⎤⎦Z0(κ0z), (A21)

with

�m = e− imπ
2

Hm(κ0R)

(
εmimÂm,0 + �m

−iAg/ω

)
, (A22a)

�m =

⎧⎪⎨⎪⎩
−iωξ3Ah

0, m = 0,

−iω(ξ1As
0 + ξ5Ap

0 ) m = 1,

0, m � 2,

(A22b)

where As
0 and Ah

0 are the expansion coefficients of the propagation mode radiation waves caused
by the surge and heave motion, respectively. Inserting Eq. (A21) into Eq. (A20) and applying the
stationary phase method, we can obtain

f −
x = − ρgA2

κ0

2κ0h + sinh 2κ0h

2 sinh (2κ0h)
Re

[+∞∑
m=0

2

(
1

εm
�m�∗

m+1 + �m

)]

− ρπ

4
Re
∫ 0

−d1

[
iκ0G0

+∞∑
m=0

2

εm
((m + 1)δ∗

m+1δm − mδ∗
mδm+1)

]
dz. (A23)

There are two parameters which influence the accuracy of the computation: the number of
eigenmodes N and the number of Fourier modes M. In the present study, N = 100 is adopted unless
otherwise stated. N = 100 is sufficient to achieve converged results when the derived or the far-field
formulation is used. For the sum of the infinite series in Eqs. (A15), (A16), (A19), and (A23), the
accuracy is controlled by a truncation tolerance ε, which is set as ε = 10−6, accumulating the first
M + 1 terms (from mode 0 to mode M). M is the smallest value to satisfy∣∣∣∣∣

M+1∑
m=0

−
M∑

m=0

∣∣∣∣∣
/∣∣∣∣∣

M+1∑
m=0

∣∣∣∣∣ < ε. (A24)

In addition, in the numerical evaluation of the line integrals in Eqs. (A15), (A16), (A18), and (A23),
Romberg quadrature was used to control the accuracy.

APPENDIX B: SOLUTIONS TO THE MEAN WAVE DRIFT FORCE
ON AN ARRAY OF PERFORATED CYLINDERS

We now focus on the wave interaction with an array of N bottom-standing, surface-piercing,
thin-walled perforated cylinders as illustrated in Fig. 16. A global Cartesian coordinate system
oxyz is adopted with its origin at the still free surface. The z axis directs vertically upwards. The
centers of the perforated cylinders are located at (x j, y j, 0) ( j = 1, 2, . . . , N ) at the still free surface.
Local polar coordinate systems ojr jθ j z j ( j = 1, 2, . . . , N ) are defined with their origins located at
(x j, y j, 0) in the global coordinate system. The z j axis is defined as positive upwards. The wave
heading is β with respect to the positive x axis.

The unbounded fluid domain is divided into N + 1 subdomains: one single exterior region 	+
and N interior regions 	−

j with j = 1, 2, . . . , N . The interior regions are defined by r j � a j ( j =
1, 2, . . . , N ) where aj is the radius of the jth cylinder. The velocity potential in the exterior region is
denoted by φ+, while that in the jth interior region is defined by φ−

j . In the jth local polar coordinate

074802-28



SECOND-ORDER WAVE DRIFT LOADS ON FLOATING …

x

y

β

aj

θj

θk

αj,k

Rj,k

rk

rj

Rc,j

ak

Sc,j

kth cylinder

jth cylinder

FIG. 16. Plane view of water wave interactions with an array of perforated cylinders and definitions of
physical variables.

system, the incident potential φI can be rewritten as

φI (r j, θ j, z j ) = − iAg

ω
Iβ

j

+∞∑
m=−∞

imJm(κ0r j )Z0(κ0z j )e
im(θ j−β ), (B1)

where Iβ
j is the phase correction factor associated with the jth cylinder defined by

Iβ
j = eiκ0(x j cos β+y j sin β ). (B2)

The diffraction potential φD can be expressed as a summation of waves emanating from different
cylinders

φD =
N∑

j=1

+∞∑
m=−∞

Aj
mC j

mHm(κ0r j )Z0(κ0z j )e
imθ j , (B3)

where Aj
m are unknown coefficients; the factor C j

m is defined by

C j
m = J ′

m(κ0a j )

H ′
m(κ0a j )

. (B4)

Graf’s addition theorem for Bessel functions [54] is then used to express all terms in Eq. (B3) in the
same local coordinate system. The velocity potential in the exterior region can then be expressed in
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the jth local polar coordinate system as

φ+(r j, θ j, z j ) =
+∞∑

m=−∞
ψ+(r j )Z0(κ0z j )e

imθ j , (B5)

where

ψ+(r j ) = � j
mJm(κ0r j ) + Aj

mC j
mHm(κ0r j ) +

N∑
k=1
k �= j

+∞∑
n=−∞

Ak
nC

k
n� j,k

m,nJm(κ0r j ), (B6)

with

� j
m = − iAg

ω
imIβ

j e−imβ, (B7)

and

� j,k
m,n = (−1)mHn−m(κ0Rk j )e

i(nαk j−mα jk ). (B8)

In Eq. (B8), Rk j is the distance between the centers of the jth and kth cylinders; α jk is the angle
between the x axis and the vector from the center of the jth cylinder to that of the kth cylinder.
Equation (B8) is valid for r j < Rk j , which is true around the wall surface of the cylinders.

According to Ref. [55], the velocity potential in the jth interior region can be expressed as

φ−
j (r j, θ j, z j ) =

+∞∑
m=−∞

B j
mJm(κ0r j )Z0(κ0z j )e

imθ j , (B9)

where B j
m are unknown coefficients. By using the Wronskian relations for Bessel functions, Linton

and Evans [56] derived a simple formula for the velocity potential on the cylinders and proposed
an improved expression of the mean drift force. Following Linton and Evans [56], the Wronskian
relations are used, and the following relationships are yielded:

Aj
m

[
1 + 2G0

πκ0a jJ ′
m(κ0a j )H ′

m(κ0a j )

]
+

N∑
k=1
k �= j

+M∑
n=−M

Ak
nC

k
n� j,k

m,n = −� j
m, (B10a)

B j
m = − 2G0

πκ0a j

A j
m

J ′
m(κ0a j )H ′

m(κ0a j )
, (B10b)

where the Fourier modes are truncated from −M to +M. The velocity potential in the vicinity of
the jth cylinder can be expanded into the following form:

φ+(r j, θ j, z j ) =
+∞∑

m=−∞
p+

m, j (r j )Z0(κ0z j )e
imθ j , (B11a)

φ−
j (r j, θ j, z j ) =

+∞∑
m=−∞

p−
m, j (r j )Z (κ0z j )e

imθ j , (B11b)

where

p+
m, j (r j ) = −Aj

m

[
2G0

πκ0a j

Jm(κ0r j )

J ′
m(κ0a j )H ′

m(κ0a j )
+ Jm(κ0r j ) − C j

mHm(κ0r j )

]
, (B12a)

p−
m, j (r j ) = − 2Aj

m

πκ0a jH ′
m(κ0a j )

Jm(κ0r j )

J ′
m(κ0a j )

G0. (B12b)
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Given the first-order velocity potential over the perforated cylinder, the mean wave drift force acting
on the jth cylinder can be obtained via direct pressure integration. Then, we can have{

f −
j,x

f −
j,y

}
= ρ

4

∫ 0

−h

∫ 2π

0

[
(∇φ+ · ∇φ+∗ − ∇φ−

j · ∇φ−∗
j )|r j=a j

]{cos θ j

sin θ j

}
a jdz jdθ j

− ρ

4

ω2

g

∫ 2π

0

[
(φ+φ+∗ − φ−

j φ−
j )|r j=a j ,z j=0

]{cos θ j

sin θ j

}
a jdθ j . (B13)

When r j = a j , Eq. (B12a) can be reduced to the following form:

p+
m, j (a j ) = − 2Aj

m

πκ0a jH ′
m(κ0a j )

[
Jm(κ0a j )

J ′
m(κ0a j )

G0 + i

]
, (B14)

and Eq. (B13) can be further expressed as{
f −

j,x

f −
j,y

}
= ρπa j

2
N0(κ0h) · Re

{ +∞∑
m=−∞

{
1

−i

}[
m(m + 1)

a2
j

− κ2
0

]

·[p+
m, j (a j )p+∗

m+1, j (a j ) − p−
m, j (a j )p−∗

m+1, j (a j )
]}

, (B15)

where N0(κ0h) represents the inner products of the vertical eigenfunction Z0(κ0z) and defined by

N0(κ0h) =
∫ 0

−h
Z2

0 (κ0z)dz = 1

cosh2 (κ0h)

h

2

[
1 + sinh (2κ0h)

2κ0h

]
. (B16)

The computation can also be achieved by using the technique of control surfaces, as discussed in
Sec. III. Then, we can have {

f −
j,x

f −
j,y

}
=
{

f −
c, j,x

f −
c, j,y

}
+
{

f −
w, j,x

f −
w, j,y

}
, (B17)

where

f −
c, j,x = ρ

4
Re

[∫∫
Sc, j

(
∇φ+ · ∇φ+∗ cos θ j − 2

∂φ+

∂r j

∂φ+∗

∂x

)
ds − ω2

g

∮
�c, j

φ+φ+∗ cos θ jdl

]
,

(B18a)

f −
w, j,x = ρ

2
Re

(∫∫
S+

w, j

∂φ+

∂r j

∂φ+∗

∂x
ds −

∫∫
S−

w, j

∂φ−
j

∂r j

∂φ−∗
j

∂x
ds

)
. (B18b)

f −
c, j,y = ρ

4
Re

[∫∫
Sc, j

(
∇φ+ · ∇φ+∗ sin θ j − 2

∂φ+

∂r j

∂φ+∗

∂y

)
ds −ω2

g

∮
�c, j

φ+φ+∗ sin θ jdl

]
,

(B19a)

f −
w, j,y = ρ

2
Re

(∫∫
S+

w, j

∂φ+

∂r j

∂φ+∗

∂y
ds −

∫∫
S−

w, j

∂φ−
j

∂r j

∂φ−∗
j

∂y
ds

)
. (B19b)

In Eqs. (B18) and (B19), Sc, j represents a cylindrical surface of radius Rc, j surrounding the jth
perforated cylinder in the array; �c, j is the intersection of Sc, j with the mean free surface; S+

w, j and
S−

w, j are outer and inner sides of the jth cylinder. As shown in Fig. 16, Sc, j extends from the seabed
to the free surface and does not intersect with any cylinder in the array. After using Eq. (B11),
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Eqs. (B18) and (B19) can be expressed in the following form:{
f −

j,c,x

f −
j,c,y

}
= ρπ

2
N0(κ0h) Re

( +∞∑
m=−∞

F c
j,m

{
1

−i

})
, (B20a)

{
f −

j,w,x

f −
j,w,y

}
= ρπ

2
N0(κ0h) Re

( +∞∑
m=−∞

Fw
j,m

{
1

−i

})
, (B20b)

where

F c
j,m = m(m + 1)

Rc, j
p+

m, j (Rc, j )p+∗
m+1, j (Rc, j )

− κ2
0 Rc, j p+

m, j (Rc, j )p+∗
m+1, j (Rc, j ) − Rc, jq

+
m, j (Rc, j )q

+∗
m+1, j (Rc, j )

+ mq+∗
m+1, j (Rc, j )p+

m, j (Rc, j ) − (m + 1)q+
m, j (Rc, j )p+∗

m+1, j (Rc, j ), (B21a)

Fw
j,m = −mq+∗

m+1, j (a j )p+
m, j (a j ) + (m + 1)q+

m, j (a j )p+∗
m+1, j (a j )

+ mq−∗
m+1, j (a j )p−

m, j (a j ) − (m + 1)q−
m, j (a j )p−∗

m+1, j (a j ). (B21b)

In Eq. (B21), q±
m, j denotes the differentiation of p±

m, j with respect to the argument. In Eqs. (B15),
(B20a), and (B20b), the sums of the infinite series are controlled by a truncation tolerance ε, set as
ε = 10−6.
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