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Reactive Rayleigh-Taylor turbulence: Influence of mixing on the growth and
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The purpose of this paper is to investigate the effects of molecular mixing on the evolu-
tion of a reactive Rayleigh-Taylor turbulent mixing zone. In this regard, we derive algebraic
relations showing that an increase in the mixing level leads to a slowing of the growth of the
mixing zone width. We also show the existence of a maximum displacement velocity of the
mixing zone center. These predictions are assessed using both direct numerical simulations
and large eddy simulations.
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I. INTRODUCTION

The Rayleigh-Taylor instability occurs when two fluids initially separated by an interface are
submitted to an acceleration pointing from the denser fluid to the less dense one [1–5]. In this
configuration, the small perturbations seeding the initial interface are amplified and eventually
develop into a turbulent mixing zone. At late times, this zone reaches a self-similar regime such
that its width increases as the square of time. The prefactor αnr of this quadratic evolution is a
key parameter of Rayleigh-Taylor turbulence and has been the object of numerous studies [6–17]
(note that the subscript “nr” in αnr stands for nonreactive). Among these studies, several point out
that αnr is connected to the level of molecular mixing reached in the flow [7–12]. Indeed, the less
mixing there is, the more potential energy is available and the faster the growth of the mixing zone
should be. As a result, αnr is expected to increase as the level of mixing decreases. This intuitive
idea was given a quantitative formulation in Refs. [11,12]. In these two works, αnr was shown to be
a decreasing function of the global mixing parameter �, a ratio equal to 0 when the flow is fully
segregated and to 1 when it is fully mixed.

In the present work, we consider a Rayleigh-Taylor mixing zone in which chemical or fusion
reactions take place [18–34]. Our purpose is to understand whether the level of molecular mixing
influences the self-similar evolution of this reactive layer, as it does for a nonreactive one. This
question is of importance for several applications, such as type Ia supernovae [27–34]. In the latter
context, several authors have proposed idealized configurations of Rayleigh-Taylor unstable flames
in order to better understand the physical mechanisms at work in these flows. One of the simplest
possible setting, studied, for instance, in [30–34], consists in a statistically planar flame with a small
density contrast that propagates upward in a gravity field. The flame is piloted by a single isothermal
reaction and consumes heavy reactants initially placed on top of light products. At late times, this
unstable flame becomes turbulent, and its brush can equivalently be viewed as a turbulent mixing
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zone driven by the interplay between the Rayleigh-Taylor instability and combustion. It is this
idealized flow that we will hereafter examine and refer to as reactive Rayleigh-Taylor turbulence.

The numerical and theoretical studies of [30–33] have put forward several key features of reactive
Rayleigh-Taylor turbulence. First, a self-similar regime is reached at late times, such that the width
of the mixing zone grows quadratically with time. This is similar to the nonreactive case, except
that the prefactor α of this quadratic growth is not necessarily equal to the nonreactive prefactor αnr.
Another difference with the nonreactive case is that the center of the mixing zone is not stagnant:
it moves towards the reactants as they are being consumed. At late times, the distance traveled by
the center is again proportional to the square of time with a prefactor β different from α and αnr.
A last key feature highlighted in [30] is that reactions take place in thin flame fronts that separate
pockets of pure fluids. The typical size of these fronts increases with time but at a much slower
rate than the size of the mixing zone. As a result, the proportion of the volume occupied by mixed
regions decreases, and the flow becomes more and more segregated: the mixing parameter � tends
to 0. This is strikingly different from the nonreactive case where high levels of mixing are generally
observed with � reaching nonzero asymptotic values as high as 0.8 [16].

This last property raises an apparent conundrum concerning the objective of this paper. Indeed,
for the nonreactive case, we mentioned that the growth rate of the mixing zone αnr is connected to the
level of mixing measured by the value of the mixing parameter � [11,12]. But for the reactive case,
the existence of such a dependency appears elusive: the level of mixing vanishes and � decreases
to 0 whatever the value of the growth rate α. The asymptotic values of α and � are consequently
independent, and, at first sight, it seems that the connection between α and the level of mixing is lost.
However, if � always tends to 0, it does so in a self-similar fashion, proportionally to the inverse
of time and to a nondimensional parameter γ [30]. Hence, at a given time and for a given reaction
rate, a higher γ implies a higher level of mixing. In other words, the mixedness of a self-similar
reactive Rayleigh-Taylor flow is measured by the nonzero constant γ and not by the vanishing value
of �. With this understanding, looking for a dependency of α on the level of mixing remains as
legitimate in reactive Rayleigh-Taylor turbulence as it is in the nonreactive case [7–12], provided
one substitutes γ to � as a measure of the level of mixing. Furthermore, if the growth rate α depends
on γ , one may also wonder if it is also the case for the coefficient β measuring the displacement of
the mixing zone center.

Thus, the main question we would like to examine in this work can be rephrased as follows:
do the growth and displacement rates, α and β, of a self-similar reactive Rayleigh-Taylor mixing
zone exhibit any dependency on the degree of mixing of the flow as measured by the constant γ ?
To answer this question, we turn our attention to nonreactive Rayleigh-Taylor turbulence and to the
αnr − � relation derived in [11,12]. Two broad assumptions are required to obtain this relation and
none of them is specifically tied to the nonreacting character of the flow. Hence, in this work, we
propose to start from the very same assumptions as in [11,12] and to follow their consequences
but this time in a reactive setting. More precisely, we assume that an eigenmode of the buoyancy
production term is dominant over the other ones and that second-order moments are known functions
of the mean concentration. Equipped with these hypotheses, we are then able to explore how α,
β, and γ are related.

This paper unfolds as follows. In Sec. II a general description of reactive Rayleigh-Taylor
turbulence, along with its governing equations, is given. Then in Sec. III the two assumptions
mentioned above are detailed, and relationships between α, β, and γ are derived. Finally, in Sec. IV
direct numerical simulations (DNS) and large-eddy simulations (LES) are performed. The resolution
of these simulations is high enough to attain a state close to self-similarity. Hence, the validity of
the results derived in Sec. III can be assessed with these simulations.

II. GENERAL DESCRIPTION OF REACTIVE RAYLEIGH-TAYLOR TURBULENCE

In the introduction, we gave a brief definition of reactive Rayleigh-Taylor turbulence and outlined
some of its properties. The aim of this section is to provide further details on this idealized
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configuration. More precisely, we present the governing equations of reactive Rayleigh-Taylor
turbulence, describe its self-similar regime, and draw comparisons with the nonreactive case.

A. Governing equations and global flow parameters

We consider two incompressible fluids that mix and react, while being submitted to a desta-
bilizing gravity field pointing in the direction x3. We assume that the Atwood number of the
mixing zone—defined as At = (ρh − ρl )/(ρh + ρl ), with ρh,l the densities of the “heavy” and “light”
fluids—is small compared to one. Also, for the sake of simplicity, we restrict our attention to the
case where the heavy fluid reacts with the light fluid to give even more light fluid. This reaction is
autocatalytic and can be described by adding a Fischer-Kolmogorov-Petrovsky-Piskunov (F-KPP)
source term to the evolution of the concentration of the light fluid. Autocatalytic reactions, and
their interaction with the Rayleigh-Taylor instability, play an important role in many industrial
applications [18–23]. The system studied here is consequently directly relevant to these situations.
Beyond this aspect, single-step auto-catalytic reactions can also be viewed as toy models for both
premixed and nonpremixed combustion (see [30] for a discussion on this subject). This property
has been used to gain insights into the behavior of RT unstable flames and in particular those
appearing in SNIa progenitors [27–34]. However, it should be emphasized that a single-step reaction
which involves only one scalar cannot describe a configuration where the progress of the reaction
is decoupled from the advancement of mixing. At least two scalars would be required in that
case. This situation may occur in a wide variety of contexts including some inertial confinement
fusion experiments [25,26,35]. The study of such configurations is beyond the scope of this work.
Note that this limitation is not linked to the particular dependency of the F-KPP source term
on the concentration field. The results obtained in this article can be adapted to more complex
dependencies, as explained in Appendix C.

Within this framework, the evolution of the velocity and concentration fields is governed by the
following reactive Boussinesq equations:

∂t c + uk∂kc = νc∂
2
kkc + 1

τ
c(1 − c), (1a)

∂t ui + uk∂kui = −∂i p + ν∂2
kkui + 2At gcδi3, (1b)

∂kuk = 0, (1c)

with u the velocity field, c the concentration of the light products, g the gravity, p the reduced
pressure, ν and νc the viscosity and diffusion coefficients, and τ the characteristic time of the
reaction. In the absence of a turbulent velocity field (u = 0), a laminar flame propagates with a
typical velocity slam and length δlam defined by

slam = 2
√

νc/τ and δlam = 8
√

νcτ . (2)

To complete Sys. (1), initial conditions must be provided. Here we assume that the light and heavy
fluids are initially separated by an interface centered around the position x3 = 0 and deformed by a
perturbation of height h(x1, x2). With At g > 0, the flow is Rayleigh-Taylor unstable provided c = 1
for x3 < h and c = 0 for x3 > h:

c(x, t = 0) = Heaviside[h(x1, x2) − x3]. (3)

This corresponds to having heavy reactants initially placed above light products. As a result of this
convention, the flame propagates towards positive x3, and the gradient of the mean concentration is
negative.

A typical evolution of a reactive Rayleigh-Taylor flow obeying Sys. (1) and starting from initial
condition (3) is shown in Fig. 1. This figure displays the volume rendering of the concentration field
extracted at three different times for simulation D2 that will be detailed in Sec. IV. As we can see,
not only does the width L of the mixing zone increase, but its center Xc is also displaced as reactants
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FIG. 1. Typical evolution of a reactive Rayleigh-Taylor flow. Volume rendering of the concentration field
c of simulation D2 (see Table I) at times t = 0.8, t = 1.9, and t = 2.9. The rendering is done for 0.01 < c <

0.99. Red corresponds to c = 0.99 (light products) and blue to c = 0.01 (heavy reactants).

are consumed. Another important feature of this mixing zone is its high degree of segregation. This
can be seen in Fig. 1 by the overwhelming presence of the red and blue colors, which correspond to
zones of almost pure fluids.

These three features—width, displacement, and mixing level—can be measured using the fol-
lowing diagnostics:

L = 6
∫

c(1 − c) dx3, Xc =
∫

(c − c(0) ) dx3, and � =
∫

c(1 − c) dx3∫
c(1 − c) dx3

, (4)

where · denotes the ensemble mean and where c(0)(x3) = c(x3, t = 0) is the initial value of c.
The parameter � is called mixing ratio or mixing parameter. Its value falls within the interval [0, 1],
� = 0 corresponding to a fully segregated flow and � = 1 to a fully mixed one. Note that the mixing
zone width L is defined up to a multiplicative constant, here chosen equal to 6. Different values can
be found in the literature, and the choice made here could appear to be arbitrary. However, this is
not the case. The reason for selecting a prefactor equal to 6 is linked to the assumptions detailed in
Sec. III. They lead to a unique unambiguous value of the prefactor, as explained in Appendix A.

B. Self-similarity and combustion regime

At late times, Chertkov et al. [30] showed that a reactive Rayleigh-Taylor flow obeying Sys. (1)
reaches a self-similar state such that

L(t ) = 2αAt gt2, Xc(t ) = 2βAt gt2, and �(t ) = γ
τ

t
, (5)

where α, β, and γ are three dimensionless constants. Another way of specifying this self-similar
regime is by defining dynamic estimates of the coefficients α, β, and γ . More precisely, let us
introduce the following quantities:

αL(t ) = L̇(t )

8At g τL(t )
, βL(t ) = Ẋc(t )

8At g τL(t )
, and γL(t ) = 2�(t )

τL(t )

τ
, (6)

where the notation ḟ (t ) = dt f (t ) is used as a shorthand for the time derivative of a function f
depending uniquely on t and where τL is the time associated with the growth of the mixing zone
width L:

τL(t ) = L(t )

L̇(t )
. (7)

Then the self-similar regime expressed by Eq. (5) can equivalently be defined by

for t → ∞, αL(t ) = α, βL(t ) = β, and γL(t ) = γ . (8)
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Note that the definition of αL is identical to the one used classically in nonreactive Rayleigh-Taylor
flows. It is, however, more commonly written in the form αL = (L̇)2/(8At gL).

Two aspects of the self-similar regime given by Eq. (5) [or equivalently Eq. (8)] are worth
highlighting. The first one is that At g and t are the only dimensional parameters appearing in the
expressions of L and Xc. This implicitly means that buoyancy forces are the primary mechanism
driving the growth and displacement of the mixing zone. Nonetheless, the influence of reactions
must not be ruled out: they can still have an impact on L and Xc through the values of the constants
α and β.

The second remarkable point is that � tends to 0, that is, the flow becomes more and more
segregated with time. In [30], this behavior was associated with the emergence of a thickened-
wrinkled flame combustion regime [36]. As its name indicates, this regime corresponds to reaction
zones that are broadened by the smallest scales of the turbulent spectrum, while also being wrinkled
by the largest ones. Chertkov et al. [30] showed that, in reactive Rayleigh-Taylor turbulence, the
broadening of the reaction zones is slower than the growth of the mixing zone width. Hence, the
volume they occupy becomes smaller and smaller compared to the volume occupied by the burnt
and unburnt fluids. This results in � tending to 0.

It should be emphasized that the tendency towards the thickened-wrinkled regime is a direct
consequence of the self-similar evolution expressed by Eq. (5). More precisely, the thickened-
wrinkled flame regime is defined by high values of two nondimensional numbers, the Damköhler
and Karlovitz numbers, which compare the reaction time τ to the characteristic times τt and τη

of the largest and smallest structures of the turbulent field. These two numbers are defined as
Da = τt/τ and Ka = τ/τη. During the self-similar phase, with At g and t the only dimensional
parameters involved, we necessarily have τt ∝ t . Furthermore, assuming a Kolmogorov turbulent
spectrum, we have τη ∝ τtRe−1/2 ∝ t1/2, with Re the turbulent Reynolds number. Therefore, once
the self-similar phase is reached, Da and Ka grow with time and eventually become very large: the
thickened-wrinkled flame regime is reached.

This property can be illustrated using a Borghi diagram, which allows us to visualize the different
combustion regimes in a velocity-length scale phase space. Figure 2 shows such a Borghi diagram
in which the typical turbulent velocity υ ′ and length scale t at the center of the mixing zone and
for different times are reported for simulations D1, D2, D3, and D4 detailed in Sec. IV. Once
self-similarity is reached, we have υ ′ ∝ t and t ∝ t2 so that υ ′ ∝ 

1/2
t . In other words, a self-

similar evolution of these quantities appears in the Borghi diagram as a curve with a logarithmic
slope 1/2. This property is indeed observed for simulations D1, D2, D3, and D4 in Fig. 2. It can
also be observed in this figure that a 1/2-slope curve always ends up within the boundaries of the
thickened-wrinkled flame region as time increases. This region is indeed delimited by the two curves
Da = 1 and Ka = 1, which respectively have logarithmic slopes of 1 and 1/3.

C. Comparison with nonreactive Rayleigh-Taylor turbulence

Without reaction, the self-similar state of Rayleigh-Taylor turbulence is characterized by the
following relations:

Nonreactive case: L = 2αnrAt gt2, Xc = 0, and � = �∞, (9)

where αnr and �∞ are dimensionless constants.
The comparison between Eqs. (5) and (9) reveals several differences between reactive and non-

reactive Rayleigh-Taylor turbulence. First, even though the growth of the mixing zone is quadratic
in time in both cases, the growth constants α and αnr of the two flows are not necessarily the same.
Second, the center of the mixing zone does not move in the absence of reaction. And, finally, without
reactions, the mixing parameter � tends to a nonzero constant �∞. Simulations [4] suggest that �∞
is close to 0.8, which corresponds to a well-mixed flow. This is in stark contrast with the reactive
case for which the mixture becomes almost fully segregated. This last point, more than any other,
sets apart the reactive and nonreactive versions of the Rayleigh-Taylor instability.
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FIG. 2. Borghi diagram for simulations D1 (red), D2 (green), D3 (blue), and D4 (purple) (see Table I for
simulation names). The curve shown for each simulation is obtained by plotting [t (t )/δlam, v′(t )/slam] for
different times t . The turbulent velocity v′ corresponds to the square root of the turbulent kinetic energy taken
at the center of the mixing zone. The integral scale t is computed by integrating the turbulent velocity spectrum
divided by the wave number and normalized by the kinetic energy. The definitions of the laminar flame speed
and width are given in Eq. (2).

Indeed, mixing plays an important role in understanding the behavior of Rayleigh-Taylor tur-
bulence. As explained in the introduction, a lesser level of molecular mixing implies that more
potential energy is available and can be converted into kinetic energy, which, in turn, can contribute
to the growth of the mixing zone. This simple and intuitive reasoning connects the growth of the
mixing zone to the level of mixing. It does not depend on whether reactions are present or not and,
if verified, should apply equally well to nonreactive and reactive Rayleigh-Taylor turbulence.

For nonreactive Rayleigh-Taylor turbulence, this connection has been corroborated and translated
in the form of a relation between the dynamic evaluation αL of the growth coefficient [Eq. (6)] and
the mixing parameter � [11,12]:

αL(t ) = {dcc[1 − �(t )]}2

1 + dcc[1 − �(t )]
. (10)

At large times, we have αL(t ) → αnr and �(t ) → �∞ so that the asymptotic version of Eq. (10) is

αnr = [dcc(1 − �∞)]2

1 + dcc(1 − �∞)
. (11)

In formulas (10) and (11), dcc ∈ [0, 1] is an anisotropy coefficient which measures whether turbulent
structures are flat or elongated. It is equal to π/4 in the isotropic case and to 1 for fully elongated
structures. A value of 0.7 to 0.8 is generally observed in nonreactive Rayleigh-Taylor simulations
[11,12]. In [11], dcc is approximated by dcc = ∫

Ecc(k) sin2 θ dk/
∫

Ecc(k) dk where Ecc is the
concentration spectrum, k the wave number and θ = arccos(k3/k) the angle between k and x3.
In [12] a more complex formula involving eigenmode spectra is used.

Equation (10) is assessed in Fig. 3 using the nonreactive Rayleigh-Taylor simulations described
in Sec. IV. It can be seen that the simulation results align with the predicted curve defined by Eq. (10)
with dcc = 0.7. In addition to these nonreactive data, Fig. 3 also displays results for the reactive
simulation D2 described in Sec. IV. As expected from Eqs. (5) and (9), the (αL,�) trajectories of
the reactive and nonreactive cases are blatantly different, and formula (10) clearly does not apply to
reactive Rayleigh-Taylor turbulence. In the reactive case, an almost horizontal line is obtained: αL
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FIG. 3. Comparison between reactive (Sim. D2) and nonreactive (Sim. NR) Rayleigh-Taylor turbulence
(see Table I for simulation names). Growth coefficient αL as a function of the mixing parameter � for an
interval of time such that L/Ldom varies between 0.02 and 0.3 for Sim. D2 and between 0.05 and 0.3 for Sim.
NR. The opacity of the symbols increases with time. The two black curves are obtained by setting dcc = 1 and
dcc = 2/3 in Eq. (10). The gray region they delimit corresponds to the (αL − �) domain identified in [11] as
encompassing most simulation and experimental results of nonreactive Rayleigh-Taylor turbulence.

reaches an asymptotic value, while � still decreases with time. This horizontal line is an illustration
of the fact that no univocal relation between αL and � can be drawn in the reactive case.

At first sight, this observation may appear to contradict the existence of a connection between
growth rate and mixing levels in the reactive case. However, it shows only that this connection does
not take the form of a αL − � relationship. Given the properties (5) of the reactive self-similar state,
αL and its asymptotic value α still appear as proper parameters for estimating the growth of the
mixing zone. However, the fact that � tends to 0 means that this parameter is not fit for comparing
mixing levels. Instead, it is the prefactor γ of the decay law of � that now plays this role: at a given
nondimensional time t/τ , different values of γ imply different degrees of mixing.

Thus, for reactive Rayleigh-Taylor turbulence, the link between growth rate and mixing should
not be looked for in the form of a relation between α and � but rather between α and γ , or
equivalently between αL and γL, the dynamic estimates of α and γ (Eq. (6)). The same remark also
applies to β and βL. To derive these relations, several hypotheses are required. They are detailed in
the next section, along with their consequences.

III. RELATIONSHIPS BETWEEN α, β AND γ

A. Overview of the derivation

1. Main steps of the derivation

The derivation presented in this section hinges around one central quantity: the mean concentra-
tion c. The latter evolves according to the following equation, obtained by averaging Eq. (1a):

∂t c + ∂3u′
3c′ = νc∂

2
33c + 1

τ
c(1 − c), (12)

with X ′ = X − X the fluctuation of a given quantity X . The reason why c plays such an important
role is because the knowledge of its self-similar properties allows us to formulate two independent
equations linking α, β, and γ . It thus brings an answer to the problem raised in the preceding section,
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namely, finding how the growth and displacement rates of the mixing zone, α and β, depend on the
mixing level measured by γ .

The first of these two equations is obtained rather straightforwardly. By integrating Eq. (12) over
x3, the following equation for Xc is derived:

Ẋc = �L

6τ
, (13)

where we used the definitions of Xc, �, and L [Eq. (4)] and the fact that the molecular and turbulent
concentration fluxes are null outside the mixing zone. Injecting the self-similar evolution of Xc,
�,and L [Eq. (5)] into this equation, we then find that

β = γ

12
α. (14)

As for the second relation, its starting point rests on the following observation: once self-similarity
is reached, the mean concentration profile depends only the dimensionless coordinate x3/L and on
nondimensional self-similar parameters. These include α, β, and γ but are not limited to them. This
property can be expressed as

Self-similar regime: c(t, x3) ≡ cs

(
x3

L(t )
; α, γ , p

)
, (15)

where p = (p1, p2, . . . ) stands for the ensemble of the self-similar parameters other than α and γ .
The parameter β is not included due to its explicit dependency on α and γ [Eq. (14)]. When injecting
this expression into the definition (4) of L, i.e., into L = 6

∫
c(1 − c)dx3, and when replacing the

integration variable by y = x3/L, we derive that

I (α, γ , p) = 1 (16a)

with I (α, γ , p) = 6
∫

cs(y; α, γ , p)[1 − cs(y; α, γ , p)]dy. (16b)

Thus, an integral equation is obtained, which links α, γ and the other self-similar parameters p
together. When solved, this equation allows to express α as a function of γ and p:

α ≡ αs(γ , p). (17)

Formally, this solution would answer the main question raised in our paper.

2. Main assumptions

To sum up, Eq. (17) is the main relation we aim to derive. To this end the value of I (α, γ , p)
must first be found. For this, it is necessary to determine the self-similar profile cs of c. This may
be accomplished only by introducing simplifying assumptions. In this regard, it is instructive to
consider the nonreactive case and the way Eqs. (10) and (11) were obtained in [11,12]. In these
references, two main hypotheses were necessary to arrive at these predictions. The first one is that
buoyancy production plays a dominant role at energetic scales, and the second that the spatial profile
of the mean concentration c is linear within the mixing zone. In [11] it was also explained how this
second hypothesis is fully equivalent to specifying that the spatial profiles of the variance and flux
of concentration are proportional to c(1 − c).

Concerning the reactive case, we already noted in Sec. II B that buoyancy forces are the main
mechanism driving the growth and displacement of the mixing zone, as implied by the dimensional
parameters appearing in the self-similar laws (5). This suggests that the first hypothesis mentioned
above should remain appropriate for analyzing reactive Rayleigh-Taylor turbulence. As for the
second hypothesis, its alternative formulation based on second-order moments can be viewed as
a truncation of their spatial profiles in terms of Legendre polynomials. Its principle is consequently
not restricted to the nonreactive case and its implications can also be explored in a reactive context.
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Thus, despite the intrinsic differences between reactive and nonreactive Rayleigh-Taylor flows,
the study of the way growth rate and mixing are linked can be approached using the same general
assumptions. These assumptions, however, have very different consequences in each context. This
is what we detail in the remainder of this section.

B. First assumption: Truncated Legendre polynomial expansion

1. Legendre expansion

First, let us recast the evolution equation of c by using the self-similar coordinate y = x3/L,
already introduced in the definition of I (α, γ , p). We obtain

τL∂t c − y∂yc + ∂y(u′
3c′/VL ) = 1

Sc ReL
∂2

yyc + DaL c(1 − c) (18)

with VL = L̇, Sc = ν

νc
, ReL = LVL

ν
, and DaL = τL

τ
. (19)

We recall that τL = L/VL has already been introduced in Eq. (7) in order to define αL, βL and γL.
Three nondimensional numbers appear in Eq. (18): the Schmidt number Sc, the Reynolds number
ReL, and the Damköhler number DaL. The last two are based on the width L and on the velocity
VL = L̇ and are different from the turbulent Reynolds and Damköhler numbers, Re and Da, which
were introduced in Sec. II.

By itself, Eq. (18) is not sufficient to make any statement about the shape of c. Two unknown
correlations, the flux of concentration u′

3c′ and its variance c′2 = c(1 − c) − c(1 − c), are indeed
involved in Eq. (18). In order to deal with these correlations, we note that, within the bounds of the
mixing zone, the mean concentration c(t, y) varies monotonically as a function of y. Hence, within
these bounds, i.e., for 0 < c(t, y) < 1, we may invert the dependency of c(t, y) on y and write that
y is a function of c:

for 0 < c < 1, y ≡ f (t, c). (20)

Plugging this dependency into the two unknown correlations, we obtain that

for 0 < c < 1,
u′

3c′

VL
= F (t, c), and c(1 − c) = V (t, c). (21)

With u′
3c′ a function of c, the turbulent transport term of Eq. (18) can be recast in the form of

an advection term, with an advection velocity equal to F ′(t, c) = ∂cF (t, c). Then, in order for the
edges of the mixing zone to move at a nonzero finite velocity, F ′ must tend to a nonzero finite
value when c → 0 and c → 1. As a result, F must be proportional to c for c → 0 and to 1 − c for
c → 1. Furthermore, the Schwartz inequality implies that c(1 − c) is smaller than c(1 − c). Hence,
it goes to 0 at most like c for c → 0 and like 1 − c for c → 1. A general expansion satisfying these
boundary conditions can be written using associated Legendre polynomials of order 2:

F (t, c) = c(1 − c)[F0(t ) + F1(t )P̃1(c) + · · · + Fn(t )P̃n(c) + · · · ], (22a)

V (t, c) = c(1 − c)[V0(t ) + V1(t )P̃1(c) + · · · + Vn(t )P̃n(c) + · · · ], (22b)

where P̃n is a modified associated Legendre polynomial of second order and degree n:

P̃n(x) =
√

(2n + 5)n!

30(n + 4)!

P(2)
n+2(2x − 1)

x(1 − x)
, (23)

with P(2)
n+2 the actual associated Legendre polynomial of second order and degree n + 2.
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2. Truncation of the Legendre expansion

Expansion (22) does not involve any approximation, and injecting it as such in Eq. (18) would
not allow us to make any progress in our derivation: a simplification is needed. This is where we
introduce the first of the two major hypotheses mentioned at the beginning of this section. Namely,
we assume that the main order of these developments is much larger than the remaining terms:

for i � 1, Fi 	 F0, and Vi 	 V0. (24)

As a result, we propose to approximate the profile of u′
3c′ and c(1 − c) by keeping the sole

contribution of the main order. Reintroducing y as the dependent variable, this allows to write that

u′
3c′

VL
(t, y) = c(t, y)[1 − c(t, y)]F0(t ) and c(1 − c)(t, y) = c(t, y)[1 − c(t, y)]V0(t ). (25)

The coefficient V0 can be determined by integrating c(1 − c) over y. Given the definition of � in
Eq. (4), we straightforwardly find that:

V0(t ) = �(t ). (26)

As for F0, its expression will be the object of the next section. For the time being, this coefficient
can be put aside by introducing a new nondimensional coordinate z defined by

z = y

2F0
= 1

2F0

x3

L
. (27)

3. Self-similar profile of c

We now inject the truncated Legendre expansion (25) into the evolution equation (18) of c and
use the new coordinate z. But instead of handling directly the equation giving c as a function of
z, we consider the corresponding equation giving z as a function of c. As before, this operation is
possible because we restrict our attention to the domain c(1 − c) 
= 0 where c is a strictly monotonic
function of z. So, for 0 < c < 1, we derive that z(t, c) evolves as

τL∂t z + γL

2
c(1 − c) ∂cz = −

[
z(1 + τLḞ0/F0) + c − 1

2

]
+ 1

4F 2
0 Sc · ReL (∂cz)−2∂2

c cz. (28)

In the self-similar regime, the following relations hold:

∂t z(t, c) = 0, Ḟ0 = 0, ReL → ∞, and γL = γ . (29)

As a result, in the self-similar regime, Eq. (28) simplifies to

dz

dc
= − 2

γ

z + c − 1
2

c(1 − c)
. (30)

The solution of this equation is

zs(c; γ ) = 1

2
− 2c

2 + γ
2F1(1, 1; 2 + 2/γ ; c), (31)

where 2F1(a1, a2; b1; x) is the Gauss hypergeometric function with parameters a1, a2, b1 and vari-
able x. By inverting this expression, we eventually obtain cs, the self-similar profile of c, as a
function of z and γ :

cs(z; γ ) = z−1
s (z; γ ). (32)

In the general case, finding the inverse z−1
s of zs cannot be done analytically and requires numerical

means. Nonetheless, several remarkable properties of cs can still be put forward. In particular, the
range over which cs is strictly different from 0 and 1 extends symmetrically with respect to z = 0,
from z = −1/2 to z = +1/2. However, between these symmetric bounds, the self-similar profile
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FIG. 4. Self-similar profile of c and associated length scale ratio. (a) Self-similar profile of c as a function
of z for different values of γ . (b) Variation of G = L/H as a function of γ .

of c can be strongly asymmetric, depending on the value of γ . To illustrate this point, we may
consider two asymptotic limits : γ → 0 and γ → ∞. For γ → 0, the hypergeometric function
2F1(1, 1; 2 + 2/γ ; c) appearing in Eq. (31) tends to 1 so that the self-similar profile of c becomes
linear and symmetric with respect to z = 0:

for γ → 0, cs = 1
2 − z. (33)

By contrast, when γ → ∞, 2F1(1, 1; 2 + 2/γ ; c) tends to −(ln(1 − c))/c. As a result, we have

for γ → ∞, cs = 1 − e− γ

4 (1−2z). (34)

Thus, for large γ , cs is close to a step: it is almost equal to 1 over most of the interval [−1/2, 1/2]
and goes to 0 over a small subinterval located close to z = 1/2.

4. The length scales of cs and their ratio

Figure 4(a) shows how cs transitions from a linear to a steplike profile with increasing γ . Because
of this behavior, a single length scale is not sufficient to characterize the profile of cs. Indeed, as γ

increases, the size of the domain where cs is strictly different from 0 and 1 disconnects from the
size of the fast varying front of cs : the ratio between the latter and the former goes to 0.

More precisely, the support of cs extends from −1/2 to 1/2 in terms of the nondimensional
variable z = x3/(2F0L). In dimensional units, this means that the total extent of the concentration
profile is

H = 2F0L. (35)

The definition (4) of L entails that the latter scale measures only the part of the domain where cs is
significantly different from 0 and 1. In other words, L gives a measure of the fast varying front of
cs. The ratio between L and H can be evaluated by simply changing the integration variable from
x3 to z in the definition (4) of L. By doing so, we derive that

L

H
= G(γ ) = 6

∫ 1/2

−1/2
cs(z; γ )[1 − cs(z; γ )] dz. (36)

Changing again the integration variable, this time from z to c = cs(z; γ ), we obtain that

G(γ ) = 6
∫ 1

0
c(1 − c)

∣∣∣∣dzs

dc

∣∣∣∣(c) dc = 12

γ

∫ 1

0
zs(c; γ ) dc, (37)
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where, in the second equality, we used the definition (30) of dzs/dc and the fact that
∫ 1

0 (c −
1/2) dc = 0. Finally, injecting the hypergeometric expression (31) of zs into this equation, we reach
the following result:

G(γ ) = 6

γ

{
1 − 4

γ

[
1 − 2

γ
� (1)

(
1 + 2

γ

)]}
, (38)

where � (1)(x) = d2 ln �(x)
dx2 is the trigamma function.

The function G is displayed in Fig. 4(b). It is strictly decreasing and has values in the interval
[0, 1]. It verifies

G(0) = 1 and for γ � 1, G(γ ) = 6/γ .

Thus, the two length scales L and H only coincide for small values of γ . For large values of γ , L
becomes much smaller than H : a fast-varying front is formed with a size of order γ −1 relative to the
total extent of the mixing zone.

An important point is that H gives not only the size of the domain where c ∈]0, 1[. It also gives
the minimum extent of the region where the turbulent kinetic energy is not null. Otherwise, u′

3c′
could not be proportional to c(1 − c). As a result, for large γ , the size L of the front where c varies
rapidly becomes much smaller than the size occupied by the turbulent field itself. Also, for large γ ,
buoyancy production concentrates within the front, which has large mean concentration gradients,
and becomes almost null outside of it. Hence, turbulence can be thought to be generated within the
front and then left to decay and diffuse outside of it as the front advances.

C. Second assumption: Predominance of the enhanced buoyancy eigenmode

With Eq. (32), we have succeeded in deriving an expression for the self-similar profile cs of the
mean concentration c. This result is a step forward in our search for the value of I (α, γ , p) that will
eventually enable us to link α and γ . However, Eq. (32) alone is not sufficient to fulfill this objective.
The reason is that, in Eq. (32), cs is expressed as a function of the nondimensional variable z, and
not of the variable y appearing in the definition (16b) of I. With y = z/(2F0), this difference means
that F0 appears as an unknown parameter when combining Eqs. (32) and (16b). To overcome this
issue and derive a closed expression for F0, an additional assumption is required. The description of
this hypothesis and of its consequences is the subject of this subsection.

1. Predominance of the growing mode

To begin with, let us recall that F0 is the coefficient of the main order of the Legendre expansion
(22) of the concentration flux u′

3c′. Given our first approximation and the possibility to truncate this
expansion, F0 can also be recast as a function of the integral of u′

3c′. Integrating Eq. (25) over y, we
find that

F0 = 6〈u′
3c′〉

VL
with 〈·〉 =

∫
dy = 1

L

∫
dx3. (39)

So to find F0, we need to evaluate the spatial average of the concentration flux 〈u′
3c′〉.

In nonreactive Rayleigh-Taylor turbulence [12,17], this quantity is modeled by considering that
the dynamics of the mixing zone at energetic scales is driven by buoyancy production. For reactive
turbulence, we follow the same path. Even though reactions strongly modify the state of the mixture
by creating pockets of light and heavy fluids, we assume that the growth of the mixing zone is
determined by the way these pockets of pure fluids move relative to one another under the action of
buoyancy forces. As already noted, this assumption is coherent with the self-similar scalings (5) of
L and Xc which depend only on At g and t .

This phenomenological description about the role played by buoyancy production is translated
in quantitative terms as follows. In Boussinesq Rayleigh-Taylor turbulence, whether reactive or
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not, buoyancy production takes the form of a linear system acting on u′ and c′. Setting aside the
spatial variations of ∂3c, this system possesses three homogenized eigenmodes, a+, a0, and a−.
Among these modes, only a+ is associated with a positive eigenvalue and is consequently enhanced
by buoyancy production. The other two are either inhibited (a−) or neutral (a0). In nonreactive
Rayleigh-Taylor turbulence [12,17], this enhanced mode is found to be highly dominant over the
other ones for large and energetic scales. Our assumption—the second major assumption of this
work—is that it is also the case for reactive Rayleigh-Taylor turbulence. In particular, we assume
that the variance of the enhanced mode is large compared to the correlations involving the other
modes:

〈a2+〉 � 〈apaq〉 with p, q ∈ {0,−}. (40)

2. Relation between F0 and α

Now, the velocity and concentration fields u′ and c′ can be expressed as linear combinations
of a+, a−, and a0 in spectral space. This linear dependency extends to turbulent spectra and, from
there, to second-order correlations. Following [12], we can write that

〈u′
3c′〉
VL

= Mpq〈apaq〉 and 〈c′2〉 = Npq〈apaq〉, (41)

where p, q ∈ {+,−, 0} and where Mpq and Npq are matrices which depend on αL and on the angular
properties of the spectra of the eigenmodes [12]. Using assumption (40) and retaining only the
dominant term, we can then approximate these expressions by

〈u′
3c′〉
VL

= M++〈a2+〉 and 〈c′2〉 = N++〈a2+〉. (42)

Combining these two equalities and using the relation 〈c′2〉 = (1 − �)/6, we thus find that

〈u′
3c′〉
VL

= 1

6

M++
N++

(1 − �). (43)

In [12], the multiplicative factor in front of 1 − � was determined and found to be equal to

M++
N++

= dcc

αL +
√

4αL + α2
L

, (44)

where dcc ∈ [0, 1] is the exact same parameter as the one appearing in Eqs. (10) and (11). Let
us recall that dcc characterizes the directional anisotropy of the spectrum of a+ and tells whether
turbulent structures are flat or elongated.

Combining Eqs. (39), (43), and (44) we eventually arrive at the following expression for F0:

F0 = dcc

αL +
√

4αL + α2
L

(1 − �). (45)

This expression assumes only the predominance of the growing mode and is not restricted to the
self-similar regime of the flow. Whenever this regime is reached, we have αL → α and � → 0, so
that

Self-similar regime :F0 = dcc

α + √
4α + α2

. (46)

Note that Eq. (45) is valid for both reactive and nonreactive Rayleigh-Taylor turbulence. However,
its asymptotic self-similar expression (46) differs in both cases because the limits of α and � are
not the same.
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FIG. 5. Variations of α and β as a function of γ for dcc = 0.55.

D. Main results

1. Asymptotic relation between α and γ

So far, we have derived an expression for the self-similar profile of c as well as an expression
for the concentration flux prefactor F0. With the help of these two intermediate results, we are now
ready to express the integral I that serves as a basis for relating α and γ .

To start with, we make the change of variable z = y/(2F0) in the definition (16b) of I and inject
the value (32) of cs. This yields

I (α, γ , p) = 12F0

∫ 1/2

−1/2
cs(z; γ )[1 − cs(z; γ )] dz. (47)

Next, we replace the value of F0 by its expression (46) and the value of the integral over z by the
definition (36) of the length-scale ratio G = L/H . With these substitutions, we are able to express I
as

I (α, γ , p) = 2dcc

α + √
4α + α2

G(γ ), (48)

where G is the known function of γ given by Eq. (38) and shown in Fig. 4(b).
Thus, we have derived an expression for I that involves only α, γ and the same additional

parameter dcc that appears in the nonreactive relationships (10) and (11). All that remains to do is to
solve Eq. (16a), i.e., I = 1. This operation yields

α = [dccG(γ )]2

1 + dccG(γ )
. (49)

Because G is a decreasing function of γ , so is α. As shown in Fig. 5, the smaller γ is, the higher α is;
and since small values of γ correspond to less mixing, the main conclusion that can be drawn from
Eq. (49) is that the growth of the mixing zone is faster when the mixture is more heterogeneous. In
other words, Eq. (49) confirms the intuitive link between growth rate and mixing that was mentioned
in the introduction and that served as the main motivation for this work.

Another point worth mentioning is that α also depends on the anisotropy factor dcc and increases
with it. So, just as in nonreactive Rayleigh-Taylor turbulence, elongated structures are associated
with a faster growth of the mixing zone.
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2. Dynamic relation between αL, γL and �

Figure 3 shows an important feature of reactive Rayleigh-Taylor flows: the nearly horizontal line
observed in the (αL,�) graph indicates that the convergence of � towards its zero asymptotic value
is much slower than the convergence of αL towards α. Therefore, rather than a strict asymptotic state
where � is equal to 0, it may be useful to account for an intermediate state where � is small but
different from 0.

In this regard, most of the results derived so far can be used to analyze this intermediate state.
In particular, the value of F0 given by Eq. (45) does not depend on whether the asymptotic regime
is reached or not. It remains valid even with nonzero values of �. The same remark applies to the
truncation of the Legendre polynomial expansion of Sec. III B and by extension to Eq. (28). The
only question that we need to answer is how a finite value of � affects the self-similar profile cs
deduced from Eq. (28). Without further constraints to guide us, we propose to settle for the simplest
possible solution. Namely, we assume that z(t, c) and F0 remain stationary so that Eq. (30) still
applies. Then cs keeps its expression (32), save for one modification: the asymptotic parameter γ

in Eq. (32) must be replaced by the instantaneous value of the parameter appearing in Eq. (28) as a
prefactor of c(1 − c), i.e., by γL, the dynamic estimate of γ introduced in Eq. (6). Thus, replacing
Eq. (46) by Eq. (45) and γ by γL, we deduce the following dynamic estimate of αL:

αL = [dcc(1 − �)G(γL)]2

1 + dcc(1 − �)G(γL)
. (50)

The most striking property of Eq. (50) is that, even though it was derived in a reactive setting, its
validity extends to nonreactive Rayleigh-Taylor flows. Indeed, the absence of reaction corresponds
to the limit τ → ∞ and therefore to γL = 0. As a result, since G(0) = 1, we find that

for τ → ∞, αL = [dcc(1 − �)]2

1 + dcc(1 − �)
. (51)

This formula is identical to Eq. (10) which was derived in [11,12] for nonreactive Rayleigh-Taylor
turbulence. Let us also mention that with γL = 0, the profile cs(z, γL) given by Eq. (32) is linear,
just like was assumed in [11,12]. Thus, the reactive/nonreactive coincidence in the limit τ → ∞
applies not only to the end result [Eq. (50)] but also to the main assumptions that lead to it.

3. Displacement rate β

At the beginning of the derivation, in Sec. III A 1, we explained how the integration of Eq. (12)
leads to Eq. (14), i.e., to β = γα/12. Combining this relation with the expression (49) of α yields
the following expression of β:

β = γ

12

[dccG(γ )]2

1 + dccG(γ )
. (52)

The most salient feature of this expression is that β is not a monotonic function of γ . It is equal to
0 for γ = 0 and decays as 3d2

cc/γ for large γ . Between the two limits, β goes through a maximum.
For dcc on the order of 1, this maximum is reached for γ = γmax ≈ 6 and its value verifies

βmax ≈ dcc

12

(
dcc + 3

10

)
. (53)

For dcc = 0.55, a value observed in the simulation detailed in Sec. IV, we find that βmax ≈ 0.04, a
value obtained for γmax ≈ 6.5. These properties are illustrated in Fig. 5.

From a physical point of view, the reason why β attains a maximum can be understood as follows.
The quantity Xc = ∫

(c − c(0) ) dx3 not only traces the displacement of the center of the mixing zone.
It also corresponds to the total volume of reactant which has been burnt since initial time. Hence,
β can also be seen as a measure of the increase of the consumption rate of reactants by the mixing
zone. As shown by Eq. (13), this consumption rate is proportional to two factors. The first one is the
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width of the flame brush [L in Eq. (13)], the other the proportion of burning fluids found within this
brush [� in Eq. (13)]. These two factors vary in opposite directions with the level of mixing γ : L is
proportional to α and decreases with γ , while, by definition, � increases with γ .

To sum up, the dependency of β on the mixing level γ is controlled by two factors with opposing
effects. The maximum predicted by Eq. (52) corresponds to the optimal consumption rate that can be
achieved under these antagonizing conditions. Given the double interpretation of Xc, this maximum
also corresponds to the largest acceleration that the center of the mixing zone can achieve. The fact
that such a maximal value exists may be of importance for some applications. For instance, the
transition from deflagration to detonation of Rayleigh-Taylor driven flames in type Ia supernovae is
possibly influenced by the speed at which these flames travel [31].

To conclude on the displacement rate, we have hitherto discussed its asymptotic value β. A
dynamic estimate βL of this coefficient was introduced in Eq. (6), based on the same time scale τL

as the one appearing in the definitions of αL and γL. Because of this choice, Eq. (13) can be written
in a strictly equivalent form linking αL, βL, and γL:

βL = γL

12
αL = γL

12

[dcc(1 − �)G(γL)]2

1 + dcc(1 − �)G(γL)
. (54)

Just as Eq. (50) for αL, this prediction is valid in both reactive and nonreactive turbulence. In the
latter case, we recover the trivial result:

for τ → ∞, βL = 0. (55)

IV. SIMULATIONS

A. Simulation setting and initial conditions

In order to verify the validity of the results derived in the previous section, four direct numerical
simulations (DNS) and four implicit large eddy simulations (ILES) are carried out. The reason for
performing ILES in addition to DNS is that the former allows us to attain higher effective Reynolds
numbers. This gives more leeway for exploring the thickened-wrinkled flame regime (see Fig. 2)
and for attaining a state close to self-similarity. Another reason is that we are mostly interested
in the evolution of the large-scale features of the flows and do not need a detailed knowledge on
the evolution of small dissipative scales. These scales are of course captured by DNS. Thus, the
comparison between the two approaches allows us to verify that the role played by these scales is
not crucial for the issues at stake in this work and that no physical bias is introduced by using a
numerical dissipation instead of a physical one.

The DNS and ILES are performed with two different codes. The DNS are done with
STRATOSPEC, which is a spectral code solving the reactive Boussinesq equations (1). The com-
putationnal grid is a rectangular domain with regular spacing and dimensions Ldom × Ldom × 2Ldom

with Ldom = 2π . The simulations all have 20482 × 4096 cells [37].
The ILES are performed with TRICLADE, which is a finite-volume solver of the compressible

multimaterial Navier–Stokes equation [38,39]. The computational grid is subdivided in three ad-
jacent domains. The central domain is regular and has 10242 × 1280 cells. Its dimensions are
Ldom × Ldom × 1.25Ldom with Ldom = 1. The other domains have a geometric progression in the
inhomogeneous direction. Note that, even if the code is compressible, the simulations remains in
the Boussinesq limit. The Atwood number at the interface is small (At = 0.025) and the turbulent
Mach number also remains small at all times.

For both types of simulation, a random perturbation h corrugates the interface between the two
fluids. The prescribed spectrum for the perturbation takes the form

P(k) = h2
2
(

s
2

) s+1
2

�
(

s+1
2

) λ0

2π

(
kλ0

2π

)s

e
− s

2

(
kλ0
2π

)2

, (56)
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TABLE I. Initial Damköhler number Da0 of simulations.

DNS LES

Simulation name NR D1 D2 D3 D4 L1 L2 L3 L4
Da0 0 0.8 1.6 2.5 3.3 1.0 1.6 2.1 2.6

where h2 is the variance of the perturbation height, λ0 the peak length scale of the perturbation
spectrum, and s the infrared exponent of the spectrum. The following parameters are set for the
simulations:

DNS: s = 6,
λ0

Ldom
= 2.5 × 10−2,

√
h2

Ldom
= 1.3 × 10−3,

LES: s = 6,
λ0

Ldom
= 6 × 10−3,

√
h2

Ldom
= 3 × 10−3.

The typical time of growth associated with this perturbation spectrum is given by

TRT =
√

λ0

2πAt g
, (57)

This time can be compared against the reactive timescale τ , thus leading to the definition of a
dimensionless parameter called the initial Damköhler number Da0 :

Da0 = TRT

τ
=

√
λ0

2πAt gτ 2
. (58)

For each simulation, the initial Damköhler number is modified by changing the reaction timescale τ

while keeping other parameters unchanged. The value of Da0 for each simulation is given in Table I.
The initial Damköhler number Da0 is not expected to play a significant role in the self-similar

regime. However, Da0 plays a crucial role during the transient evolution of the flow. In particular, the
value of Da0 is the main factor that determines the delay after which the thickened-wrinkled flame
regime and the self-similar regime can be reached. In this respect, two limits can be put forward. If
Da0 � 1, the reaction is much faster than the Rayleigh-Taylor instability. The laminar flame front is
corrugated by the Rayleigh-Taylor instability and transitions from a flamelet to a thickened-wrinkled
flame. On the other hand, when Da0 	 1, the reaction is very slow compared to the Rayleigh-Taylor
instability. As a consequence, there may be a significant time during which the reaction does not
affect the evolution of the mixing zone. In that case, the flow goes transiently through the thickened
flame regime before reaching the thickened-wrinkled flame regime. Examples of these different
transients can be observed in Fig. 2.

Note that simulation NR has a Damköhler number equal to 0: the reaction time is infinite so that
the simulation is nonreactive. This simulation is used as a reference against which the remaining
reactive simulations can be compared.

B. Flow characteristics

The main predictions of this work concern three quantities: the width of the mixing zone L,
the displacement of its center Xc, and the mixing parameter � [see Eq. (4)]. Figure 6 illustrates
how these three quantities behave for the DNS D2 (Da0 = 1.6) and the LES L3 (Da0 = 2.1). As a
reference, the nonreactive simulation NR (Da0 = 0) is also plotted in this figure. As can be seen,
after a short transient, the width L and displacement Xc grow almost quadratically in time for
both reactive simulations, while the mixing parameter decays almost as the inverse of time. This
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FIG. 6. Mixing zone width L, flame displacement Xc and mixing parameter for simulations NR (Da0 =
0), D2 (Da0 = 1.6), and L3 (Da0 = 2.1). The fitted values are defined by Eq. (59) with parameters given by
Eq. (60).

is confirmed by comparing their evolution with fits of the form

Lfit (t ) = [
√

2αfitAt g(t − ts) +
√

L(ts)]2, Xc,fit (t ) = [
√

2βfitAt g(t − ts) +
√

Xc(ts)]2, (59)

and �fit (t ) = γfitτ

t − ts + γfitτ/�(ts)
,

where αfit, βfit and γfit are adjustable parameters and where ts is a time marking the onset of self-
similarity. Choosing ts

√
At g/Ldom = 1, a best fit of the DNS with Da0 = 1.6 is obtained by setting

αfit ≈ 0.037, βfit ≈ 0.031, and γfit ≈ 11. (60)

With these values, a close agreement is observed between the actual and fitted evolutions of L,
Xc, and �. This is consistent with the expected self-similar behavior predicted in Eq. (5). While not
shown here, a similar agreement is obtained for the LES with Da0 = 2.1, as well as for the remaining
reactive reactions, with values of αfit, βfit, and γfit close to those given here.

It is worth stressing that the value γfit ≈ 11, when reported in Eq. (49) and Fig. 5, leads to values
of α and β close to the fitted ones. This coherency gives a first hint as to the validity of Eq. (49). It
should also be emphasized that the estimate αfit is larger than the value αnr = 0.02 usually measured
in nonreacting Rayleigh-Taylor simulations [4,5,7]. This property will be confirmed below by
looking at the time evolution of αL (see Fig. 12). Note also that the quadratic time evolution of
L appears more clearly for the two reactive cases than the nonreactive one in Fig. 6(a). For the
latter, a longer transient is present. Figure 6(c) also shows that in the nonreactive case, � tends to a
constant approximately equal to 0.8. As mentioned in the introduction and in Sec. II C, this is one
of the major differences distinguishing reactive and nonreactive Rayleigh-Taylor turbulence.

This major difference is also illustrated in Fig. 7, which displays vertical cuts of the concentration
and vorticity fields for the reactive DNS D2 (Da0 = 1.6) and the nonreactive DNS NR (Da0 = 0) at
a time such that L/Ldom = 0.7. The concentration field displayed for the reactive simulation shows
a domain mostly filled by pure fluids: the red and blue colors are predominant. By contrast, the
nonreactive cut essentially shows intermediate colors within the mixing zone suggesting a high
level of mixing.

Figure 7 also shows another property of reactive Rayleigh-Taylor turbulence worth mentioning.
First, looking at the two cuts on the left of this figure, one can see that, in the Boussinesq limit,
a nonreactive Rayleigh-Taylor mixing zone develops symmetrically with respect to the position of
the initial interface separating the two fluids. Also, the extent of the vorticity field roughly coincides
with that of the concentration field. By contrast, the concentration and vorticity fields of the reactive
case are highly asymmetrical: with respect to the layer center, their extension is greater in the
direction of light products than in the direction of heavy reactants. Furthermore, one can note that
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FIG. 7. Vertical slices of the concentration field and of the longitudinal vorticity magnitude log ω2
x for

the reactive DNS D2 (Da0 = 1.6) and the nonreactive DNS NR (Da0 = 0) at a time such that L/Ldom = 0.7.
The nonreactive DNS is shown in the left-half and the reactive DNS in the right-half of the figure. In each
half, vorticity is shown in the outer panel and concentration in the inner one. For the concentration field, red
corresponds to c = 1 (light products) and blue to c = 0 (heavy reactants). For the vorticity field, a brighter
color means a higher intensity.

the vorticity field extends below the mixing region down to the position of the initial interface and
even somewhat below. To understand the origin of this observation, the interplay between vorticity
production and flame displacement has to be considered. At any time, the flame is the locus of
the strongest concentration gradients and hence of the strongest density gradients in the present
Boussinesq flow. Due to the baroclinic torque, it means that most of the instantaneous vorticity
production occurs inside the reacting zone. Then the deposited vorticity remains attached to the
fluid, and more precisely to the products, whereas the flame propagates toward the reactants. This
is different from the nonreacting case, where density gradients and vorticity are both carried by the
fluid, leading to persistent amplification at the same place. By contrast, in the reacting case, the
vorticity deposited at any time at the instantaneous flame location decays later in the light products,
whereas the baroclinic production zone propagates upward toward the reactants. Would no vortex
dynamics be at work, the vorticity field would be confined between the initial and the final position
of the flame front. In the right half of Fig. 7, it would correspond to the red region of products above
the dashed line. However, this trailing field is not passive, and turbulent motions may entrain some
fluid with its vortical content below the initial flame location as seen in Fig. 7. This is also seen in
Fig. 1, which shows a volume rendering of the concentration field.

C. Verification of the assumptions

To derive the results presented in Sec. III D, we made two major assumptions. First, we assumed
that the flux and variance of the concentration can be approximated by a truncated Legendre
approximation. Second, we assumed that the growing mode of the buoyancy production term is
large compared to the other ones and is dominant in the expressions of the concentration flux and
variance. The relevance of these two assumptions is assessed below.

We also check whether the anisotropy coefficient dcc remains constant and close to the same value
in the different simulations. This condition is not a requirement for the derivation of Eqs. (49)– (50)
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dom

FIG. 8. Dependency of the spatial profiles of u′
3c′ and c(1 − c) on the mean concentration c. Results taken

from simulation D4, at the time for which L/Ldom = 0.2 for (b). (a) Legendre polynomial coefficients Fn (solid
lines) and Vn (dashed lines) of u′

3c′ and c(1 − c) [Eq. (22)]. (b) Correlations u′
3c′ and c(1 − c) normalized by

their maxima as a function of the mean concentration c.

and (52)– (54). However, if it is not verified, dcc cannot be regarded as a fixed parameter, and some
additional considerations would be needed to make full sense of Eqs. (49)–(50) and (52)– (54).

1. Spatial profiles of the flux and variance of concentration

The first pivotal hypothesis made in this work is expressed by Eq. (25). It consists in assuming
that the correlations u′

3c′ and c(1 − c) = c(1 − c) − c′2 are proportional to c(1 − c) and to a
time-dependent constant. This assumption can be understood as the result of the truncation of the
Legendre polynomial expansion (22) and may be justified provided the higher-order coefficients of
this expansion are much smaller than its zeroth order [Eq. (24)].

To verify these elements, we plot in Fig. 8(a) the first three Legendre polynomial coefficients of
u′

3c′ and c(1 − c) for simulation D4 as a function of time. These coefficients are computed according
to the formulas

Fn(t ) =
∫ 1

0

u′
3c′

4 max (u′
3c′)

c(1 − c)P̃n(c)dc and Vn(t ) =
∫ 1

0

c(1 − c)

4 max [c(1 − c)]
c(1 − c)P̃n(c)dc.

(61)

The first observation is that F0 and V0 are indeed much larger than their respective higher order
coefficients Fi and Vi with i ∈ {1, 2, 3}. This is coherent with Eq. (24) and with the possibility of
truncating expansion (22). A second observation worth mentioning is that the first three coefficients
of the expansion vary little in time. This implies that almost from the start of the simulation, way
before the self-similar turbulent regime has begun, the profiles of u′

3c′ and c(1 − c) expressed as a
function of c have already almost settled to their asymptotic shapes. The larger fluctuations observed
for F3 and V3 might be assigned to the statistical fluctuations that inevitably deform correlation
profiles.

To provide a more direct verification of Eq. (25), we display in Fig. 8(b) the correlations u′
3c′ and

c(1 − c) normalized by their maxima as a function of c. These profiles are shown for simulation D4
at the time for which L/Ldom = 0.2. For u′

3c′, a close agreement is observed with the parabola 4c(1 −
c), as expected from Eq. (25). However, for c(1 − c), a non-negligible asymmetry of the normalized
shape is observed. Its peak is indeed reached for c ≈ 0.35 instead of 0.5. This asymmetry comes
from the coefficient V1 of the Legendre expansion, and, even though it appears significant, its effects
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FIG. 9. Illustration of the predominance of the growing eigenmode. (a) Spectra of the homogeneous
eigenmodes a+, a−, and a0 for simulation D4 at a time such that L/Ldom = 0.14. (b) Relative contribution
of the growing eigenmode a+ to the total energy for simulations D2 and L3.

on the results presented so far are not. To check it, the derivation of Sec. III has been performed
again keeping the contribution of V1. While this modified derivation is not detailed here, we found
no important changes to the self-similar concentration profile cs nor to the eventual dependency of
α and β on γ , provided V1/V0 remains small as is the case in our simulations. In particular, with the
ratio V1/V0 displayed in Fig. 8(a), the formula accounting for V0 and V1 differs only by a few percent
from Eqs. (49) and (52), which account only for V0.

Thus, as whole, the results displayed in Figs. 8(a) and 8(b) appear compatible with the assump-
tion given in Sec. III B.

2. Predominance of the growing mode

The second major hypothesis of this work is described in Sec. III C and consists in assuming that,
among the three eigenmodes of the homogenized linear buoyancy production term, the growing one,
a+, is much larger than the other two, a− and a0. This condition is expressed by Eq. (40).

To verify this assumption, we begin by comparing the three-dimensional spectra A++, A00, and
A−− of each of these modes. Figure 9(a) shows this comparison for simulation D4 at a time such
that L/Ldom = 0.14. It can be seen that A++ is indeed much larger than A00 and A−− at large and
energetic scales. A more direct verification of Eq. (40) is obtained by plotting the ratio 〈a2+〉/〈a ja j〉
as a function of time. This is done in Fig. 9(b) for simulations D2 and L3. It can be seen that 〈a2+〉
throughout the simulations represents more than 75% of the sum 〈aja j〉 which measures the total
energy, i.e., the sum of the kinetic and potential energies. Overall, the results displayed in Figs. 9(a)
and 9(b) are consistent with assumption (40).

3. Anisotropy parameter dcc

Even though it is not required for their derivations, we still interpreted and manipulated relations
(49)–(50) and (52)–(54) with the implicit expectation that dcc attains a constant value independent
from initial conditions. Otherwise, relations (49)– (50) and (52)–(54) would still be valid but
unknown dependencies would remain hidden in the value of dcc. To verify that this is not the case,
we invert relation (45) and express dcc as

dcc = F0

1 − �

(
αL +

√
4αL + α2

L

)
. (62)

This expression is plotted as function of time for the DNS and LES simulations in Fig. 10. It can
be seen that dcc indeed reaches a constant value and that this value varies by less than 10% in the
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FIG. 10. Evolution of dcc given by formula (62) as a function of L/Ldom for the DNS and LES simulations.

different simulations. More precisely, we observe that for L/Ldom > 0.2, we have

dcc ≈ 0.55 ± 10%. (63)

D. Main predictions

1. Mean concentration profile

Assumptions (25) and (40) lead to several predictions and in particular to the derivation of the
analytic formula (32) giving the mean concentration profile as a function of the reduced coordinate
z = x3/(2F0L). This expression is valid at asymptotically large times. However, for the simulations
performed in this work, the transient preceding the self-similar regime induces an offset of the
profiles that survives until the simulations end. This offset prevents a direct comparison of Eq. (32)
with simulation results.

To circumvent this difficulty, we propose to account for the transient part of the simulation in
the expression of z. Namely, in the preceding subsection, we observed in Figs. 8(a) and 9(b) that
assumptions (25) and (40) are valid almost from the start of the simulations. This means that the
unstationary equation (28) giving the evolution of z as a function of time and c is also valid at these
early times. As a result, the transient evolution of z can be computed from Eq. (28). This can be
done by using the method of characteristics, assuming that the viscous terms are negligible. This
yields

z(t∗, c) = zoff(t
∗, c) + Cz(t∗)zcent(t

∗, c) (64a)

with zoff(t
∗, c) = zinit

(
ce−��(0,t∗ )/2

1 − c + ce−��(0,t∗ )/2

)
F0,init

F0(t∗)
e−t∗

, (64b)

zcent(t
∗, c) = − 1

2Cz(t∗)

∫ t∗

0
e−(t∗−s) F0(s)

F0(t∗)

ce−��(s,t∗ )/2 − (1 − c)

ce−��(s,t∗ )/2 + (1 − c)
ds, (64c)

Cz(t∗) =
∫ t∗

0
e−(t∗−s) F0(s)

F0(t∗)
ds, (64d)

and t∗ =
∫ t

0

dt ′

τL(t ′)
, ��(s, t∗) =

∫ t∗

s
γL(t ′) dt ′. (64e)
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FIG. 11. Mean concentration profile as a function of the reduced coordinate zcent [Eq. (64)]. Comparison
between the reactive DNS D3, the nonreactive DNS NR, and the analytical prediction (32) at a time such that
L/Ldom = 0.4. For the nonreactive prediction, the value γ = 0 is used in Eq. (32), and for the reactive one, the
value γ = 9 measured in the simulation is used.

The different terms of these expressions can be computed using the values of F0 and γL extracted
from the simulations. This allows us to separate the contribution of the offset due to the initial
condition, zoff, from the contribution converging to the self-similar solution (31) in a symmetric
fashion at large times, zcent.

Figure 11 shows the value of c as a function of zcent for simulation D3 at a time for which
L/Ldom = 0.4. This simulation result is compared against the expression of cs given by Eq. (32)
with γ = 9 set to the measured value of γL at L/Ldom = 0.4. A good agreement is observed between
prediction and simulation. The most salient difference is observed at the foot of the concentration
profile. In the simulation, a small overshoot extends beyond the limit z = 0.5, which is not predicted
by Eq. (32). Similar observations are made at different times and also for the other simulations,
whether they are DNS or LES.

To insist on the difference between the reactive and nonreactive cases, we also plotted in Fig. 11
the profile obtained for the nonreactive Rayleigh-Taylor simulation NR. It can be seen that the
nonreactive profile remains mostly symmetric and varies almost linearly for zcent ∈ [−0.5, 0.5]. By
contrast, the reactive profile is highly asymmetric and varies rapidly close to zcent = 0.5. Note that
deviations from linearity appear close to the edges of the nonreactive zone.

2. Growth and displacement rates, α and β

In Sec. III D we derived formulas relating the asymptotic parameters α, β, and γ as well
as formulas relating instantaneous estimates of these parameters denoted by αL, βL, and γL. In
simulations, only the latter quantities can be extracted so that the main predictions that can be
checked are Eqs. (50) and (54).

A first way of assessing these predictions is by injecting into the right-hand side of Eqs. (50) and
(54) the instantaneous values of dcc, �, and γL computed in the simulations and by comparing the
outcome against the values of αL and βL, also computed in the simulations by using their definitions
(6). This comparison is shown in Fig. 12 for simulations D2 and L4. A good agreement is obtained
between simulation and prediction. This agreement occurs early in the simulation, before the onset
of the self-similar regime. This is coherent with the previous observations according to which
assumptions (25) and (40) are verified at early times [see Fig. 8(a) and 9]. Similar outcomes are
observed for the remaining simulations. Another way of verifying Eqs. (50) and (54) is by focusing
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(a) αL as a function of time. (b) βL as a function of time.

FIG. 12. Time evolution of αL and βL for simulations D2 and L4. Comparison between the instantaneous
estimates of αL and βL (Eq. (6)) and their theoretical predictions [Eqs. (50) and (54)]. Plain lines: simulations;
dashed lines: predictions.

on the late times of the simulations, when the flow is close to its self-similar state and still far from
being confined. This “self-similar” interval of time is observed when 0.1 < L/Ldom < 0.4 for LES
and when 0.2 < L/Ldom < 0.4 for DNS. For these intervals of time, dcc is approximately constant
and equal to its asymptotic value of 0.55 [see Fig. 10 and Eq. (63)]. Then Eqs. (50) and (54) can be
assessed by enforcing this constant value in their right-hand sides.

However, even with this specification, Eqs. (50) and (54) remain hybrid relations that combine
two different metrics of the mixing level: � and γL. Even though � tends to 0, its influence lingers.
To cast this influence aside and isolate the dependency on γL, we therefore propose to introduce the
following modified values of αL and βL:

α�
L = [sα/(1 − �)]2

1 + sα/(1 − �)
and β�

L = [sβ/(1 − �)]2

γL/12 + sβ/(1 − �)
(65)

with sα = αL +
√

4αL + α2
L

2
and sβ = βL +

√
γLβL/3 + β2

L

2
.

When � = 0, one has α�
L = αL and β�

L = βL so that the two sets of quantities carry the same
asymptotic information. However, they differ at intermediate times when � 
= 0. The interest of
defining α�

L and β�
L is the following. Injecting Eqs. (50) and (54) into these expressions, we find the

following prediction for the values of α�
L and β�

L:

α�
L = [dccG(γL)]2

1 + dccG(γL)
and β�

L = γL

12

[dccG(γL)]2

1 + dccG(γL)
. (66)

Thus, even when � 
= 0, the predicted values of α�
L and β�

L depend only on γL. These predicted
values can thus be compared more easily against simulation results.

This comparison is shown in Fig. 13. Simulation results are displayed for the “self-similar”
interval of time mentioned above and correspond to a direct evaluation of α�

L and β�
L as given by

Eq. (65). The theoretical curve shown as a black line corresponds to Eq. (66) with dcc = 0.55. As
can be seen, the simulation points align along the theoretical curve for values of γL ranging from 8
to 20, the largest differences being on the order of 15%. It is worth highlighting that, for this range
of γL, α�

L has ample variations spreading in between 0.015 and 0.06. By contrast, β�
L varies only

between 0.027 and 0.042.
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FIG. 13. Variations of α�
L and β�

L defined by Eq. (65) as a function of γL. Comparison between simulations
results (colored points) and the theoretical prediction (66) with dcc = 0.55 (black lines). The simulation points
are plotted at different times such that 0.3 < H/Ldom < 0.75 for DNS and 0.2 < H/Ldom < 0.75 for LES. The
timeline of the simulation is indicated by the opacity of the symbols: the more opaque, the farther in time.
(a) Variations of α�

L as a function of γL. (b) Variations of β�
L as a function of γL.

Another point worth mentioning is that, as time increases, the simulation points, whether DNS
or LES, converge towards a small region centered around

γ∞ ≈ 12, α∞ ≈ 0.037, β∞ ≈ 0.037. (67)

These values are coherent with the fitted parameters (60).
The reason why a convergence occurs towards these values cannot be answered by the analysis

presented in this work. Nor can it be said whether this convergence is universal or not. Concerning
this last point, we recall that the asymptotic value of αnr obtained in nonreactive Rayleigh-Taylor
turbulence is predicted to be independent from large-scale initial conditions [17] : the latter are
superseded by nonlinear back-scattering processes and are eventually forgotten. To determine
whether a similar conclusion applies for the reactive case, an analysis of the large-scale part of
the turbulent spectra of concentration and velocity would be required.

V. CONCLUSIONS

In this work, we studied the relation between the mixing level and the growth of a reactive
Rayleigh-Taylor mixing zone. We showed that with less mixing, the width of the mixing zone grows
faster. This conclusion is qualitatively the same as the one obtained in the nonreactive case. We also
showed that an optimal value of the mixing level exists that maximizes the displacement of the
mixing zone center, also congruent with the consumption rate of the reactants. As a result, the
flame speed cannot exceed a maximal value determined by the directional anisotropy of turbulent
structures.

Quantitative formulas relating the growth and displacement rates, α and β, to the mixing level
prefactor γ were derived. In doing so, we also obtained a prediction for the shape of the mean
concentration profile. The latter is far from trivial: it is asymmetric and displays two distinct zones,
a fast varying one close to reactants and a slow varying trailing edge. All of these predictions were
assessed using DNS and LES with a resolution high enough to reach states close to the self-similar
regime but still unconfined.

As a perspective, we note that, despite their intrinsic interest, the formulas relating α, β, and γ

do not allow us to determine a particular value of these coefficients. Some additional information
is required. It could possibly be obtained by studying the very large scales of the flow, as was
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done in the nonreactive case [17]. This will be the object of future work. As another perspective,
we would like to stress that the dominant mode assumption used in this work impacts not only the
concentration field but also the velocity field. Thus, additional relation can in principle be obtained to
link some properties of the velocity field to the level of mixing. Some of these aspects are discussed
in Appendix B. In particular, the value of the constant appearing in turbulent flame speed models is
shown to depend on the mixing parameter prefactor γ .

APPENDIX A: ABOUT THE DEFINITIONS OF α AND L

From the start of this study, we focused on the particular definition of L given by Eq. (4): L =
6
∫

c(1 − c) dx3. This definition involves a numerical parameter, 6, and one may wonder why this
specific value is important. This question is all the more pressing because α is directly proportional
to this prefactor and establishing a relation between α and γ would be pointless if α was defined up
to an arbitrary multiplicative constant.

What constrains α in our derivation is the eigenmode analysis detailed in this very section. For
the definition of the eigenmodes a+, a−, and a0 to be valid and for relations (44) and (45) to hold,
the buoyancy production terms must emulate those of a homogeneous flow. In particular, we must
have

〈u′
3c′∂3c〉 = − 1

L
〈u′

3c′〉, (A1)

with a similar relationship for c′2. So let us assume temporarily that L = δ
∫

c(1 − c) dx3 with δ

an unknown constant. Then, using the truncated Legendre expansion (25) of u′
3c′ and knowing that

∂3c < 0, we find that

〈u′
3c′∂3c〉 = F0VL

L

∫
c(1 − c)∂3c dx3 = −F0VL

L

∫ 1

0
c(1 − c) dc = −F0VL

6L
(A2a)

and
1

L
〈u′

3c′〉 = F0VL

L

∫
c(1 − c) dx3

L
= F0VL

δL
. (A2b)

Thus, to satisfy Eq. (A1), we must have δ = 6. This removes any ambiguity in the definitions of
α and L used in this work: they are necessarily associated with the numerical prefactor 6 appearing
in the definition (4) of L.

APPENDIX B: ENERGY BUDGET AND FLAME SPEED

In the main text, our analysis has focused almost entirely on the properties of the concentration
field and of its mean value c. This restricted scope was indeed sufficient to achieve our main
objective, i.e., deriving Eqs. (49)–(50) and (52)–(54), which link α and β to γ . Still, further
interesting information can be gathered by looking at other quantities and in particular at the velocity
field and at the turbulent kinetic energy.

Expanding on the results of Ref. [12], the turbulent kinetic energy can be related to the growing
mode and by extension to the mixing level γ , just as the concentration flux was in Sec. III C 1.
This operation leads to two main outcomes. First, it allows us to examine the energy budget and
the dependency of its constitutive terms on γ . Several particular values of γ can thus be identified.
Second, it allows us to express the velocity of the flame center as a function of the turbulent velocity:
a turbulent flame speed model can thus be formulated.

1. Kinetic energy, potential energy, and dissipation

From Eq. (1b), we derive the following evolution equation for the kinetic energy k = 1
2 uiui:

∂t k + ∂3
(

1
2 u3uiui + u3 p − ν∂3k

) = 2At gu3c − ε, (B1)
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with ε = ν∂ jui∂ jui the dissipation rate of the kinetic energy. Integrating this equation over x3, the
flux term vanishes, and we are left with the following global energy budget:

EK + DK = EP, (B2)

where EK is the total kinetic energy, EP is the potential energy released into the flow, and DK is
the energy dissipated into heat. These energies are hereafter defined per unit volume of the mixing
zone:

EK (t ) = 1

H (t )

∫
k(t, x3) dx3, DK (t ) = 1

H (t )

∫ t

0

∫
ε(t ′, x3) dx3 dt ′,

and EP(t ) = 2At g

H (t )

∫ t

0

∫
u3c(t ′, x3) dx3 dt ′, (B3)

where we recall that H = L/G > L measures the full extent of the turbulent mixing zone, which is
larger than the front of size L where the mean concentration varies rapidly. The value of EP can be
deduced from the previous results by substituting u3c with its assumed expression F0(L̇)c(1 − c).
In the self-similar regime, we find that

EP = (2At gt )2 × 1

24

[dccG(γ )]2

1 + dccG(γ )
. (B4)

As for the kinetic energy EK , it can be expressed by exploiting further the assumption already
introduced in Sec. III C and according to which the unstable eigenmode of the Rayleigh-Taylor
instability is much larger than the other ones. As shown in [12], this assumption allows us to relate
not only α but also the kinetic energy to the mixing level. Extending the results of [12] to the reactive
context of this study, we find that, in the self-similar regime, EK is equal to

EK = (2At gt )2 × 1

12d j j

[dccG(γ )]3

[1 + dccG(γ )]2
, (B5)

where d j j ∈ [0, 1] is a parameter measuring the anisotropy of the turbulent structures, just as dcc

does. As for the total dissipation DK , its expression can be deduced from the energy budget (B2):

DK = (2At gt )2 × 1

24

[dccG(γ )]2

1 + dccG(γ )

[
1 − 2

d j j

dccG(γ )

1 + dccG(γ )

]
. (B6)

2. Maximum dissipation, equipartition of energy, and realizability interval

By linking α and β to γ , Eqs. (49)–(50) and (52)–(54) show that the knowledge of only one
of these three parameters is sufficient to define the asymptotic self-similar state of a reactive
Rayleigh-Taylor flow. Still, they do not provide any information on the value of this independent
parameter. To this end, a study of the large scales of reactive Rayleigh-Taylor turbulence, similar to
the one performed in [17], would most probably be required. A particular value of γ was nonetheless
identified in the previous analysis: γmax ≈ 6 is the value of γ for which β reaches its maximum. This
value is of course not constraining. However, it still offers a point of reference with which one may
assess simulation results. In this regard, the energy budget (B2) allows us to identify additional
particular values of γ and to further map out the otherwise indiscriminate interval of γ which
extends from 0 to ∞.

Both EP and EK are decreasing functions of γ : for higher levels of mixing, less potential energy
can be released into the flow and less kinetic energy can be generated. As for the dissipation DK , it is
not necessarily monotonic. Whenever dj j < 2 − 4

2+3dcc+d2
cc

, a mild condition that is always satisfied
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when dcc >
√

17/2 − 3/2 ≈ 0.56, DK reaches a maximum for γ = γD with

γD = G−1

[
1

2dcc

(√
1 + 16

2 − d j j
− 3

)]
. (B7)

For the values of dcc and d j j observed in the simulations detailed in Sec. IV, i.e., dcc ≈ d j j ≈ 0.55,
this maximum is located at γD = 9.4.

Another point of interest corresponds to the value of γ where as much potential energy is
converted into kinetic energy as it is dissipated into heat. This point is reached for EK/EP = 1/2,
i.e., for

γequi = G−1

(
1

dcc

d j j

4 − d j j

)
. (B8)

For dcc ≈ d j j ≈ 0.55, this yields γequi ≈ 16. Below this value, the transfer of potential energy to EK

is predominant, while above it, it is the transfer to heat that is larger.
Let us stress that the system we are considering is not at equilibrium and that there is no reason

why it should settle to a maximum dissipative state. There is no reason either why an equipartition
of energy transfer should exist. Nonetheless, it is still interesting to point out the existence of these
two particular states. Their associated γ values, γD and γequi, can indeed serve as references for
analyzing simulations. In this regard, it is worth mentioning that, in the nonreactive case, the total
dissipation as a function of �∞ reaches a maximum for �∞ ≈ 0.7 and that the equality between
EK and DK is reached for �∞ = 0.8 (see Ref. [12]). In most simulations, the observed self-similar
value of � is found to lie between those two values. Given the proximity between the reactive and
nonreactive cases which we have identified so far, one may wonder whether this observation also
holds in the reactive case, i.e., whether the asymptotic value of γ lies in between γD and γequi. The
DNS and LES performed in Sec. IV suggest that this is indeed the case: in Fig. 13, γ appears to
converge to a value close to 12.

A last point we would like to mention is that not all values of γ are allowed. Indeed, the
kinetic energy EK cannot exceed the potential energy EP released into the flow. Or equivalently,
the dissipation DK must always be positive. This condition may be verified for all γ provided
dcc < d j j/(2 − d j j ) < d j j . However, the expressions of dcc and d j j obtained in [12] [Eq. (9) in
this reference] suggest that we should rather have dj j � dcc. In that case, a constraint applies on the
value of γ . The latter must verify

γ > γlim with γlim = G−1

(
d j j

dcc

1

2 − d j j

)
. (B9)

For dcc ≈ d j j ≈ 0.55, we find that γlim = 3.8. Below this value, no asymptotic state based on the
assumptions developed in this work is possible.

3. Dynamical estimate of kinetic energy, potential energy, and dissipation

The results presented so far in this appendix apply at very large times when the mixing rate �

is asymptotically small. At intermediate times, when � is small but not negligible, a prediction of
the kinetic energy, of the potential energy, and of the dissipation rate can also be established by
considering the dynamical estimates αL, γL and by assuming the predominance of the Rayleigh-
Taylor unstable eigenmode, as discussed in Sec. III C. In addition to this central assumption, the
anisotropy constants dcc and d j j and the dynamic estimate γL are also assumed to reach a constant
value at large times. Using the definition αL = (L̇)2/(8At gL) along with Eqs. (36), (45), and (50)
and the relation that links the turbulent kinetic energy and concentration variance exposed in [12],
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one arrives at

EK = 1

48d j jdccG(γL)

L̇2

1 − �
, (B10)

EP = 1 + (1 − �)dccG(γL)

96d2
ccG(γL)2

L̇2

(1 − �)2
. (B11)

As for the dissipation, it is deduced from Eqs. (B10) and (B11) due to the global energy budget
[Eq. (B2)]:

DK = d j j + (1 − �)dccG(γL)(d j j − 2)

96d j jd2
ccG(γL)2

L̇2

(1 − �)2
. (B12)

Overall Eqs. (B10), (B11), and (B12) involve � and γL, two quantities measuring the mixing level.
Since our attention is focused on the dependency of EK , EP, and DK on γL, we account for the
persistent influence of � by introducing the following dimensionless version of EK , EP, and DK :

E �
K = (1 − �)

EK

L̇2
, (B13)

E �
P = (1 − �)2 EP

L̇2
, (B14)

D�
K = (1 − �)2 DK

L̇2
. (B15)

Note that there remains an influence of � through higher order terms in E �
P, D�

K . Even so, the main
advantage of introducing E �

K , E �
P, and D�

K is that to the main order, they are given by

E �
K = 1

48d j jdccG(γL)
, (B16)

E �
P ≈ 1 + dccG(γL)

96d2
ccG(γL)2

, (B17)

D�
K ≈ d j j + dccG(γL)(d j j − 2)

96d j jd2
ccG(γL)2

. (B18)

As can be seen, the prediction of E �
K , E �

P, and D�
K involves only γL. This makes it easier to check

the consistency of Eqs. (B10), Eqs. (B11), and Eqs. (B12) with simulations. Figure 14 illustrates
the evolution of E �

K , E �
P, and D�

K with γL during the “self-similar” interval of time mentioned
in Sec. IV D 2. The black curves in Figs. 14(a), 14(b), and 14(c) correspond, respectively, to
the theoretical predictions Eqs. (B16), (B17), and (B18). The curves are drawn for dcc = 0.55
and dj j = 0.52, which are the values found in simulations. Figure 14 shows that, for LES, the
trajectories followed by the simulation points are aligned with the theoretical curves. Note also that
the simulation points end up concentrating in a small area centered on the values

E �
K ≈ 0.2, E �

P ≈ 0.3, D�
K ≈ 0.1. (B19)

with γL ≈ 12 as previously noted. Concerning the DNS, the agreement between simulation points
and predictions can also be observed for the potential energy and total dissipation. Final values are
roughly the same. However, a discrepancy between the evolution of kinetic energy and prediction
can be noted for the cases D3 and D4. A statistical effect might be at the origin of this discrepancy,
but further investigation would be required to confirm this possible explanation. Note that, unlike
the cases D3 and D4, the case D2, shows a good agreement between the value of E �

K computed
by Eqs. (B13) and its prediction (B16). Overall, a reasonable agreement is observed between
Eqs. (B16), (B17), and (B18) and the kinetic energy, potential energy and total dissipation observed
in simulations.
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(a) Kinetic energy (b) Dissipation (c) Potential energy

FIG. 14. Variations of E �
K , D�

K , and E �
P, respectively defined by Eqs. (B13), (B15), and (B14), as a function

of γL. Comparison between simulation results (colored points) and the theoretical predictions (B16), (B18),
and (B17) with dcc = 0.55 and dj j = 0.52 (black lines). The simulation points are plotted at different times
such that 0.3 < H/Ldom < 0.75 for DNS and 0.2 < H/Ldom < 0.75 for LES. The timeline of the simulation is
indicated by the opacity of the symbols: the more opaque, the farther in time.

4. Flame speed

The flame speed associated with the displacement of the mixing zone center is defined by

sc = Ẋc. (B20)

A turbulent velocity representative of the maximum value of the kinetic energy profile is

υ ′ =
√

〈k〉 =
√

H

L
EK . (B21)

Using Eqs. (5), (52), and (B5), we then deduce that, at asymptotic times when � can be neglected,
we have

sc = Cf υ
′ with Cf =

√
d j jdcc

3
γG(γ ). (B22)

Thus, the burning velocity sc scales linearly with the turbulent velocity υ ′ in the self-similar regime.
This is consistent with Damköhler’s theory [40].

As can be seen, in Fig. 15, the prefactor Cf of this proportionality law increases with γ . Note
also that the prefactor Cf is bounded by

Cf <
√

12d j jdcc. (B23)

With dcc ≈ d j j ≈ 0.55, this corresponds to a maximum value of approximately 2.
At intermediate times, when � is not yet negligible, Eq. (B22) still holds but Cf is modified. The

dominant mode assumption [Eq. (40)] along with Eqs. (13)–(50) leads to

Cf (t ) =
√

(1 − �)d j jdcc

3
γLG(γL). (B24)

The dependency of this expression on � can be set apart by introducing a reduced version of the
turbulent flame speed:

s�
c = sc√

1 − �
. (B25)
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FIG. 15. Evolution of Cf with γ for dcc = 0.55 and dj j = 0.52.

This reduced flame speed s∗
c is predicted to be proportional to υ ′, with a constant C�

f that depends
on γL but not on �:

s�
c = C�

f υ
′ with C�

f =
√

d j jdcc

3
γLG(γL). (B26)

Figure 16 shows the evolution of C�
f extracted from simulations using Eq. (B25) with respect to

γL computed with Eq. (6). The black curve corresponds to the prediction Eq (B26). The latter is
plotted for dcc = 0.55 and d j j = 0.52. The comparison between simulations and prediction is done
for DNS, D2, D3, D4 and LES L2,L3, L4. As can be seen, the simulation points of D2, L2, L3,

FIG. 16. Variations of C�
f = s�

c/υ
′, defined by Eq. (B25), as a function of γL. Comparison between sim-

ulation results (colored points) and the theoretical prediction (B26) with dcc = 0.55 and dj j = 0.52 (black
lines). The simulation points are plotted at different times such that 0.3 < H/Ldom < 0.75 for DNS and
0.2 < H/Ldom < 0.75 for LES. The timeline of the simulation is indicated by the opacity of the symbols:
the more opaque, the farther in time.
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L4 all tend to the black curve. On the contrary, there remains a small deviation for simulations D3
and D4. This deviation is less than 15% of the value that would be obtained with Eq. (B26). To
explain this deviation, there might be a statistical effect at play which is already manifest for the
kinetic energy (see Sec. B 3). Even so, Fig. 16 seems to indicate that the result of Eq. (B26) agrees
well with simulations. An another important remark that can be made is that the simulation points
accumulate on a small region where the prefactor C�

f takes the value

C�
f = 1.35. (B27)

To conclude the discussion on this topic, we would like to point out that the turbulent flame speed
model determined for the self-similar regime Eq. (B22) can be recast in the form

sc = dccγG(γ )

6
√

1 + dccG(γ )

√
2At gL ≈

√
0.138 × 2At gL, (B28)

where the last approximation is obtained by replacing γ and dcc with their asymptotic values
observed in simulations. This alternative formulation of Eq. (B22) is almost similar to the one
proposed in Refs. [27,32]. However, it should be noted that, in these references, the size Ldom of the
domain is used instead of the size L of the mixing zone. This is possible because the configuration
studied in these references is confined, as opposed to the one studied here.

APPENDIX C: SOURCE TERM MODIFICATION

In this appendix, we assume that the c(1 − c) dependency of the F-KPP reactive source term is
replaced by a general function R(c) verifying

for c ∈]0, 1[, R(c) > 0, and R(0) = R(1) = 0. (C1)

In system (1), the evolution (1a) of the concentration field would then be replaced by

∂t c + uk∂kc = νc∂
2
kkc + 1

τ
R(c). (C2)

The core assumption of this appendix is that this substitution does not modify the main character-
istics of the flow in the self-similar regime. In particular, we assume that L and Xc still grow as the
square of time and that a thickened-wrinkled flame regime is reached, such that the flow becomes
more and more segregated.

To extend the results of this work to this situation, the idea is to introduce another measure of the
mixing level. Instead of �, we define

��(t ) =
∫

R(x3, t ) dx3∫
c(1 − c)(x3, t ) dx3

> 0. (C3)

This quantity is positive but has an upper bound which is not necessarily equal to 1, as opposed to �.
Nonetheless, like �, �� tends to 0 when the mixture tends to a fully segregated state. In particular,
it should verify the same self-similar asymptotic scaling as �, but with a different constant:

self-similar regime: ��(t ) = γ � τ

t
. (C4)

The interest of introducing �� is that all the steps of the derivation detailed in the main text can be
repeated by simply replacing � with �� and γ with γ �. Thus, the main predictions of this work,
Eqs. (49) and (52), would become

α = [dccG(γ �)]2

1 + dccG(γ �)
and β = γ �

12

[dccG(γ �)]2

1 + dccG(γ �)
. (C5)
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Their dynamic versions, Eqs. (50) and (54), would be transformed alike:

αL = [dcc(1 − ��)G(γ �
L )]2

1 + dcc(1 − ��)G(γ �
L )

and βL = γ �
L

12

[dcc(1 − ��)G(γ �
L )]2

1 + dcc(1 − ��)G(γ �
L )

, (C6)

with γ �
L (t ) = 2��(t ) τL (t )

τ
.

The comparison with the main text results can be pushed further by introducing an additional
hypothesis. The probability density function (PDF) of a scalar bounded between 0 and 1 is usually
well described by a β-PDF. We assume that this is the case for reactive RayleighTaylor turbulence,
that is to say, we assume that the PDF of c is

fβ (c) = ca−1(1 − c)b−1

B(a, b)
with a = c

c(1 − c)

c′2 , b = (1 − c)
c(1 − c)

c′2 ,

B(a, b) =
∫ 1

0
ca−1(1 − c)b−1 dc. (C7)

The function B(a, b) is the β-function and is equal to �(a)�(b)/�(a + b), with � the extension of
the factorial to positive reals. In the limit � 	 1 and with the assumption that c(1 − c) varies like
c(1 − c), the two parameters a and b tend to

for � 	 1, a ≈ c�, and b ≈ (1 − c)�. (C8)

As a result, the average of R can be expressed as

for � 	 1, R =
∫ 1

0
R(c) fβ (c) dc ≈ R(c,�)

B(c�, (1 − c)�)
with

R(c,�) =
∫ 1

0
R(c)ca−1(1 − c)b−1 dc. (C9)

For small values of �, the β-function B(a, b) diverges as

for � 	 1, B(a, b) ≈ [c(1 − c)�]−1. (C10)

By contrast, with R(0) = R(1) = 0, the integral R(c,�) tends to a finite value:

for � 	 1, R(c,�) ≈ R(c, 0). (C11)

Therefore, injecting the above expression into the definition of ��, one deduces that

for � 	 1, R ≈ �c(1 − c)R(c, 0), (C12)

and that

for � 	 1, �� ≈ η�� with η� =
∫

c(1 − c)R(c, 0) dx3∫
c(1 − c) dx3

. (C13)

Thus, � and �� are proportional to one another, with a prefactor that depends on the shape R(c) of
the source term and that can be determined analytically or numerically depending on the complexity
of R(c). This proportionality relationship can be used to replace �� and γ � in Eqs. (C5) and (C6).
One finds that

α = [dccG(η�γ )]2

1 + dccG(η�γ )
and β = η�γ

12

[dccG(η�γ )]2

1 + dccG(η�γ )
, (C14a)

αL = [dcc(1 − η��)G(η�γL)]2

1 + dcc(1 − η��)G(η�γL)
and βL = η�γL

12

[dcc(1 − η��)G(η�γL)]2

1 + dcc(1 − η��)G(η�γL)
. (C14b)
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To illustrate how η� depends on the shape of R, we may look at the particular case where R varies
like

R(c) = cm(1 − c)n. (C15)

Then, in the limit � 	 1, we have R = c(1 − c)�B(m, n) so that η� is equal to

η� = B(m, n). (C16)

With m and n decreasing below 1, the profile of R(c) becomes flatter than in the F-KPP case (m =
n = 1) (ultimately, it tends to a steplike profile when m and n tend to 0). In that case, Eq. (C16)
shows that η� becomes larger than 1 and increases as m and n decrease. For a given level of mixing
measured by γ , α is then smaller than in the F-KPP case. By contrast, with m and n increasing above
1, the profile of R(c) becomes more peaked and η� decreases. For a given level of mixing measured
by γ , α is then higher than in the F-KPP case.

[1] D. H. Sharp, An overview of Rayleigh-Taylor instability, Physica D 12, 3 (1984).
[2] H.-J. Kull, Theory of the Rayleigh-Taylor instability, Phys. Rep. 206, 197 (1991).
[3] G. Boffetta and A. Mazzino, Incompressible Rayleigh-Taylor turbulence, Ann. Rev. Fluid Mech. 49, 119

(2017).
[4] Y. Zhou, Rayleigh–Taylor and Richtmyer–Meshkov instability induced flow, turbulence, and mixing. I,

Phys. Rep. 720–722, 1 (2017).
[5] Y. Zhou, Rayleigh–Taylor and Richtmyer–Meshkov instability induced flow, turbulence, and mixing. II,

Phys. Rep. 723–725, 1 (2017).
[6] D. L. Youngs, Numerical simulation of turbulent mixing by Rayleigh-Taylor instability, Physica D 12, 32

(1984).
[7] G. Dimonte, D. L. Youngs, A. Dimits, S. Weber, M. Marinak, S. Wunsch, C. Garasi, A. Robinson, M. J.

Andrews, P. Ramaprabhu et al., A comparative study of the turbulent Rayleigh-Taylor instability using
high-resolution three-dimensional numerical simulations: The Alpha-Group collaboration, Phys. Fluids
16, 1668 (2004).

[8] P. Ramaprabhu and M. J. Andrews, Experimental investigation of Rayleigh–Taylor mixing at small
Atwood numbers, J. Fluid Mech. 502, 233 (2004).

[9] G. Dimonte, Dependence of turbulent Rayleigh-Taylor instability on initial perturbations, Phys. Rev. E
69, 056305 (2004).

[10] P. Ramaprabhu, G. Dimonte, and M. J. Andrews, A numerical study of the influence of initial perturbations
on the turbulent Rayleigh-Taylor instability, J. Fluid Mech. 536, 285 (2005).

[11] B.-J. Gréa, The rapid acceleration model and growth rate of a turbulent mixing zone induced by Rayleigh-
Taylor instability, Phys. Fluids 25, 015118 (2013).

[12] O. Soulard, J. Griffond, and B.-J. Gréa, Influence of the mixing parameter on the second order moments
of velocity and concentration in Rayleigh-Taylor turbulence, Phys. Fluids 28, 065107 (2016).

[13] W. H. Cabot and A. W. Cook, Reynolds number effects on Rayleigh-Taylor instability with possible
implications for type Ia supernovae, Nat. Phys. 2, 562 (2006).

[14] O. Poujade and M. Peybernes, Growth rate of Rayleigh-Taylor turbulent mixing layers with the foliation
approach, Phys. Rev. E 81, 016316 (2010).

[15] D. Livescu, T. Wei, and M. R. Petersen, Direct numerical simulations of Rayleigh–Taylor instability, J.
Phys.: Conf. Ser. 318, 082007 (2011).

[16] D. L. Youngs, The density ratio dependence of self-similar Rayleigh–Taylor mixing, Phil. Trans. R. Soc.
A 371, 20120173 (2013).

[17] O. Soulard, J. Griffond, and B.-J. Gréa, Large-scale analysis of unconfined self-similar Rayleigh-Taylor
turbulence, Phys. Fluids 27, 095103 (2015).

074609-34

https://doi.org/10.1016/0167-2789(84)90510-4
https://doi.org/10.1016/0370-1573(91)90153-D
https://doi.org/10.1146/annurev-fluid-010816-060111
https://doi.org/10.1016/j.physrep.2017.07.005
https://doi.org/10.1016/j.physrep.2017.07.008
https://doi.org/10.1016/0167-2789(84)90512-8
https://doi.org/10.1063/1.1688328
https://doi.org/10.1017/S0022112003007419
https://doi.org/10.1103/PhysRevE.69.056305
https://doi.org/10.1017/S002211200500488X
https://doi.org/10.1063/1.4775379
https://doi.org/10.1063/1.4954213
https://doi.org/10.1038/nphys361
https://doi.org/10.1103/PhysRevE.81.016316
https://doi.org/10.1088/1742-6596/318/8/082007
https://doi.org/10.1098/rsta.2012.0173
https://doi.org/10.1063/1.4930003


REACTIVE RAYLEIGH-TAYLOR TURBULENCE: …

[18] C. Almarcha, P. Trevelyan, P. Grosfils, and A. De Wit, Chemically driven hydrodynamic instabilities,
Phys. Rev. Lett. 104, 044501 (2010).

[19] C. Almarcha, Y. R’Honi, Y. De Decker, P. M. J. Trevelyan, K. Eckert, and A. De Wit, Convective mixing
induced by acid-base reactions, J. Phys. Chem. B 115, 9739 (2011).

[20] A. De Wit, Miscible density fingering of chemical fronts in porous media: Nonlinear simulations, Phys.
Fluids 16, 163 (2004).

[21] M. De Paoli, V. Giurgiu, F. Zonta, and A. Soldati, Universal behavior of scalar dissipation rate in confined
porous media, Phys. Rev. Fluids 4, 101501(R) (2019).

[22] P. Trevelyan, C. Almarcha, and A. De Wit, Buoyancy-driven instabilities around miscible A + B → C
reaction fronts: A general classification, Phys. Rev. E 91, 023001 (2015).

[23] A. De Wit, Chemo-hydrodynamic patterns and instabilities, Ann. Rev. Fluid Mech. 52, 531 (2020).
[24] N. Attal and P. Ramaprabhu, The stability of reacting single-mode Rayleigh–Taylor flames, Physica D

404, 132353 (2020).
[25] B. E. Morgan, B. J. Olson, W. J. Black, and J. A. McFarland, Large-eddy simulation and Reynolds-

averaged Navier-Stokes modeling of a reacting Rayleigh-Taylor mixing layer in a spherical geometry,
Phys. Rev. E 98, 033111 (2018).

[26] B. E. Morgan, Simulation and Reynolds-averaged Navier-Stokes modeling of a three-component
Rayleigh-Taylor mixing problem with thermonuclear burn, Phys. Rev. E 105, 045104 (2022).

[27] A. M. Khokhlov, Propagation of turbulent flames in supernovae, Astrophys. J. 449, 695 (1995).
[28] M. Zingale, S. E. Woosley, C. A. Rendleman, M. S. Day, and J. B. Bell, Three-dimensional numerical

simulations of Rayleigh-Taylor unstable flames in type Ia supernovae, Astrophys. J. 632, 1021 (2005).
[29] N. Vladimirova, Model flames in the Boussinesq limit: rising bubbles, Combust. Theory Model. 11, 377

(2006).
[30] M. Chertkov, V. Lebedev, and N. Vladimirova, Reactive Rayleigh-Taylor turbulence, J. Fluid Mech. 633,

1 (2009).
[31] E. P. Hicks and R. Rosner, Gravitationally unstable flames: Rayleigh–Taylor stretching versus turbulent

wrinkling, Astrophys. J. 771, 135 (2013).
[32] E. P. Hicks, Rayleigh–Taylor unstable flames—Fast or faster?, Astrophys. J. 803, 72 (2015).
[33] E. P. Hicks, Rayleigh-Taylor unstable flames at higher Reynolds number, Mon. Not. R. Astron. Soc 489,

36 (2019).
[34] M. Liu and E. P. Hicks, Rayleigh–Taylor unstable flames: The coupled effect of multiple perturbations,

arXiv:2309.15046.
[35] D. T. Casey, V. A. Smalyuk, R. E. Tipton, J. E. Pino, G. P. Grim, B. A. Remington, D. P. Rowley, S. V.

Weber, M. Barrios, L. R. Benedetti et al., Development of the CD Symcap platform to study gas-shell
mix in implosions at the National Ignition Facility, Phys. Plasmas 21, 092705 (2014).

[36] R. Borghi and M. Destriau, La combustion et les flammes (Éditions Technip, Paris, 1995).
[37] A. Briard, L. Gostiaux, and B.-J. Gréa, The turbulent faraday instability in miscible fluids, J. Fluid Mech.

883, A57 (2020).
[38] S. Shanmuganathan, D. L. Youngs, J. Griffond, B. Thornber, and R. J. R. Williams, Accuracy of high-

order density-based compressible methods in low Mach vortical flows, Int. J. Numer. Meth. Fluids 74,
335 (2013).

[39] B. Thornber, J. Griffond, O. Poujade, N. Attal, H. Varshochi, P. Bigdelou, P. Ramaprabhu, B. Olson, J.
Greenough, Y. Zhou et al., Late-time growth rate, mixing, and anisotropy in the multimode narrowband
Richtmyer-Meshkov instability: The θ -group collaboration, Phys. Fluids 29, 105107 (2017).

[40] G. Damköhler, Der Einfluss der Turbulenz auf die Flammengeschwindigkeit in Gasgemischen, Z.
Elektrochem. Angew. Phys. Chem. 46, 601 (1940).

074609-35

https://doi.org/10.1103/PhysRevLett.104.044501
https://doi.org/10.1021/jp202201e
https://doi.org/10.1063/1.1630576
https://doi.org/10.1103/PhysRevFluids.4.101501
https://doi.org/10.1103/PhysRevE.91.023001
https://doi.org/10.1146/annurev-fluid-010719-060349
https://doi.org/10.1016/j.physd.2020.132353
https://doi.org/10.1103/PhysRevE.98.033111
https://doi.org/10.1103/PhysRevE.105.045104
https://doi.org/10.1086/176091
https://doi.org/10.1086/433164
https://doi.org/10.1080/13647830600960043
https://doi.org/10.1017/S0022112009007666
https://doi.org/10.1088/0004-637X/771/2/135
https://doi.org/10.1088/0004-637X/803/2/72
https://doi.org/10.1093/mnras/stz2080
https://arxiv.org/abs/2309.15046
https://doi.org/10.1063/1.4894215
https://doi.org/10.1017/jfm.2019.920
https://doi.org/10.1002/fld.3853
https://doi.org/10.1063/1.4993464
https://doi.org/10.1002/bbpc.19400461102

