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Analysis of a turbulent round jet based on direct numerical
simulation data at large box and high Reynolds number
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We have conducted a direct numerical simulation of a turbulent round jet at a previously
unattained Reynolds number of Re = 3500 based on the jet diameter D and jet-inlet bulk
velocity Ub in a particularly long box of 75D. To achieve very fast convergence to self-
similarity, we used a turbulent pipe flow at the same Reynolds number and length 5D as
the upstream inflow boundary condition. This indeed results in a very rapid emergence
of self-similarity already at very small axial distances z compared to all turbulent jet data
published so far. Not only for the mean velocities and the Reynolds stresses as well as
the budgets of the Reynolds stress tensor and the turbulent kinetic energy, a nearly perfect
classical scaling based on the normalized radius η = r/z in the range z/D = 25 − 65 is
shown, but also for the probability density function (PDF) of the axial velocity Uz as well
as the associated skewness and kurtosis. All budget terms have been calculated directly,
resulting in a marginal error in the balance. An almost completely Gaussian behavior of
the PDF for the axial velocity is observed on the jet axis, while a clear deviation with
increasingly heavy tails is evident with increasing distance from the axis.

DOI: 10.1103/PhysRevFluids.9.074608

I. INTRODUCTION

Round jet flows describe fluid flows ejected from a circular inlet into a semi-infinite domain. At
a sufficiently high Reynolds number, this flow becomes turbulent, an important property that goes
beyond academic curiosity. In aerospace engineering, turbulent jets play a critical role in jet propul-
sion systems, where understanding and optimizing jet dynamics is essential to improving engine
performance and fuel efficiency. In addition, turbulent round jets serve as test beds for validating
turbulence models and simulation techniques, providing benchmarks for assessing the accuracy and
reliability of numerical predictions through its unique properties. In particular, turbulent round jet
flows exhibit self-similarity in the far field, i.e., radial profiles of different statistical quantities can
be scaled to converge to a single similarity function.

Universal self-similarity for turbulent round jets has long been discussed, where this state
should be reached asymptotically and independent of initial conditions [1]. Yet, theoretical analysis
shows that these self-similar profiles can depend on initial conditions [2]. Experimental results
have indicated that, although a single jet is self-similar, the profiles differ in various experiments
[3–5]. First assumptions have been inaccurate measurements due to disturbances by temperature
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or uncontrollable turbulence in the ambient region which could be regulated by numerical simu-
lations. However, since turbulent round jets grow in the axial direction, numerical simulations are
computationally expensive.

Therefore, until the 1980s, the detailed statistical study of turbulent jet flows relied primarily on
experimental methods. Wygnanski and Fiedler [3] conducted their experiment at a Reynolds number
of Re = 100 000, where the Reynolds number was defined as

Re = UbD

ν
, (1)

with Ub, D, and ν being the inlet bulk velocity, inlet diameter, and kinematic viscosity, respectively.
They took velocity measurements up to a normalized axial distance of z/D = 100 for first- to third-
order statistics, highlighting a substantial disparity in the distance where self-similarity is attained,
ranging from z/D = 20 for the first-order moment up to z/D = 70 for the second-order moment.
This is explained with the energy, where self-similarity is reached in steps. First, the mean velocity
reaches self-similarity, which amounts to a certain production of fluctuation which, in turn, allows
the reach of equilibrium for the second-order moments. Considerably later, Panchapakesan and
Lumley [4] conducted an experiment at Re = 11 000 taking velocity measurements in the range
of z/D = 30 − 150, showing self-similarity up to fourth-order moments. In parallel, Hussein et al.
[5] conducted their experiment at Re = 100 000, taking velocity measurements between z/D =
50 − 122, while the setup was based on Wygnanski and Fiedler [3]. Both groups were able to
describe the turbulent kinetic energy balance but made different assumptions for the dissipation and
pressure diffusion to close the turbulent kinetic energy (TKE) balance. Consequently, the results of
both show disagreement due to these assumptions. Xu and Antonia [6] conducted an experiment
measuring a jet exiting from a smooth contraction nozzle and from a pipe with a pipe flow profile
at Re = 86 000, taking measurements in the range z/D = 1 − 75. They showed that a contraction
jet reaches a state of self-preservation earlier than a fully developed pipe jet. This contrasts the
experiments of Ferdman et al. [7], where they stated that a pipe jet reaches self-preservation earlier.
However, both agree that for a fully developed pipe profile the far-field decay rate is smaller than
in a top-hat velocity distribution, attributing it to a lack of potential core and surrounding mixing
layer, which lead to a slower centerline mixing. Thus, the turbulence intensities on the centerline
are smaller than those of a top-hat profile, according to Ferdman et al. [7]. Recently, Darisse et al.
[8] collected results on a slightly heated round jet at Re = 140 000, where they also generated data
on scalar quantities gathered at z/D = 30. They measured pure and mixed moments up to the third
order, which allowed not only the determination of the turbulent kinetic energy balance, where,
again, the pressure diffusion term was modeled and dissipation is found by closing the balance, but
also the passive scalar transport balance, in which the dissipation is also calculated by closing the
balance.

One of the early direct numerical simulations (DNSs) of a spatially developing turbulent round
jet was by Boersma et al. [9]. They studied the effect of inflow conditions on the self-similarity
scaling up to a box length of z/D = 45 at Re = 2400, showing that self-similarity is dependent on
initial conditions. However, they were unable to resolve the far field due to limited computational
resources, so the fluctuations did not yet fully reach self-similarity. Taub et al. [10] conducted a
DNS at Re = 2000 at the same box length where they extracted statistics up to the third order,
including the TKE terms and the terms of the Reynolds stress transport equations terms, directly.
The data was extensively compared to previous studies. They also come to the conclusion that
due to different approximations in previous experimental studies, there have been inconsistencies
in the dissipation profiles and which may also be due to the Reynolds number dependence of the
dissipation [11]. Later, Shin et al. [12] found self-similarity in a DNS at Re = 7290 after z/D =
15 for the first and after z/D = 25 for the second moment in a box length of z/D = 60. Only in
their study, the profiles of the moments of second order were shown at various distances z but the
collapse is rather unsatisfactory since the statistics have only been taken over 80D/Ub units. They
showed that moments up to the fourth order and the one-point probability density function (PDF) of
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FIG. 1. Cross-sectional view of the computational domain for the pipe. The N = 7 GLL points has been
included in the mesh.

mass-weighted stream-age, the product of the jet fluid residence time, and the jet fluid mass fraction
are self-similar.

Currently, we present high quality statistics of a round jet DNS at a comparably large Re, a long
box of z/D = 75, and statistics taken over 75 000D/Ub time units where the velocity profile of a
turbulent pipe flow is utilized as an inlet. The statistics are compared to the aforementioned studies
and the collapse at various distances from the orifice are shown, which most studies omit. Also, the
TKE budget terms are calculated directly from the simulation and the PDF of the axial velocity is
discussed.

II. NUMERICAL METHOD

Presently, we employ the Navier-Stokes equations (NSEs) for an incompressible fluid consisting
of the continuity equation

∇ · U = 0 (2)

and the momentum balance equations

∂U
∂t

+ (U · ∇)U = −∇P + 1

Re
∇2U , (3)

with U , P, t being the nondimensionalized velocity vector, pressure, time, and the Reynolds number
Re defined in (1).

The NSEs (2) and (3) are solved numerically using NEK5000 developed by Fischer [13], and
which is based on a high order spectral element method (SEM) (see, e.g., [Ref. [14]]). NEK5000 has
a highly efficient parallel implementation and for optimal efficiency the polynomial order N = 7
and the BDF2 scheme has been used for time stepping.

We presently adopt a fully developed turbulent pipe flow as an inlet condition, since this leads to
self-similarity occurring closer to the inlet. For this, the computational domain has been split into
two domains, i.e., a periodic pipe flow to generate the inlet condition and the main computational
domain to capture the turbulent jet flow. A bulk Reynolds number of Re = 3500 has been chosen
since it lies in the range of a fully turbulent pipe flow and still is computationally feasible with the
available computational resources.

The computational domain for the pipe in radial and axial directions is 0.5D × 5D with 132 and
30 cells in the r, ϕ plane (see Fig. 1) and z direction, respectively, and with the usual refinement
towards the near-wall region. Factoring in the N = 7 Gauss-Lobatto-Legendre (GLL) points, the
pipe mesh has around 5 400 000 grid points. The boundary conditions at the wall are no-slip
and impermeable wall while at z = −5D and z = 0 periodicity has been employed. To generate
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FIG. 2. Cross-sectional view of the main computational box at z/D = 0 (left) which is scaled linearly in z
direction to obtain the whole main computational box (right). The GLL points are omitted for better visibility.

a turbulent flow field in the pipe, a small disturbance in all three directions is superposed to the
initially laminar pipe flow profile Uz = 6/D2(1/4 − r2). Pressure gradient and viscosity are set,
such that the bulk velocity is 1 and Re = 3500. After running the simulation until a fully developed
turbulent pipe flow has been reached, the velocities at the cross section z = 0 are interpolated onto
the inlet of the computational domain of the jet flow at each time step.

The main computational box of the jet DNS at the inlet z/D = 0 is 4D and at the outlet z/D = 75
is 64D to investigate the near and far-field behavior of self-preservation (see Fig. 2). This ensures
capturing the spreading of the jet and to prevent interactions with the lateral far-field boundaries to
ensure high-quality statistics. The boundary condition at z/D = 0 outside of the jet inlet has been
set as a no-slip wall while the lateral boundaries and the jet exit at z/D = 75 have been configured
as open boundaries following the approach introduced by Dong et al. [15]. This open boundary is
designed to locally prevent the kinetic energy influx into the domain at the outflows, addressing
a key challenge in DNS of jet flows that leads to instabilities. This is achieved by balancing the
energy influx with the effective stress. Otherwise, it functions as a standard open outflow boundary
condition with zero pressure, thereby enabling entrainment. Additionally, special attention was paid
to obtaining very accurate statistics, and for all moments shown below, averages were taken over
75 000D/Ub times. Despite the significantly larger box, this corresponds to nearly 200 passes of
a particle through the entire computational domain of the jet and is a factor of 25 longer than
the largest simulations to date. The computational mesh consists of an inner pipe-type mesh and
an outer conical mesh. Both are scaled linearly in the radial direction when moving axially. In
the axial direction, the cells of both the pipe and the outer part are stretched geometrically with
the factor of 1.006 with 234 cells. Around the inner part, the cells are stretched geometrically in
the transverse direction with the factor of 1.06 with 25 cells. Considering the N = 7 GLL points,
the main computational mesh has around 180 000 cells, which amounts to 240 000 000 degrees of
freedom. All simulations were performed on the GCS supercomputer SUPERMUC-NG at Leibniz
Supercomputing Centre, Garching, Germany, using a total of 24 000 000 CPUh and around 25 000
cores in parallel. Figure 3 shows a snapshot of isosurfaces of the q criterion [16], a quantity used to
capture vortices, at q = 0.01. It can be observed that the transition to turbulence and therefore the
spreading of the jet occurs close to the orifice compared to earlier studies (see Fig. 4), resulting in
z0 = 0 in (4) below.

III. ONE-POINT STATISTICS

Classically, the mean velocities of a self-preserving jet are scaled with the centerline velocity [9]

U z,c(z)

U 0
= BuD

z − z0
, (4)
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FIG. 3. A cross section of q-criterion isosurfaces at q = 0.01 of the conducted jet DNS colored with the
velocity magnitude.

where U 0 = 1.38 refers to the mean axial centerline velocity at the orifice, Bu to the decay constant,
and z0 to the virtual origin. In Fig. 4, the inverse of the mean axial centerline velocity according
to (4) is compared to other DNS and experimental data. Presently, the Reynolds decomposition
U = U + u is adopted, with U and u, respectively, the mean velocity and the fluctuations. Values
for the present DNS and other works are given in Table I. The present values for the parameters have
been determined by minimizing the sum of the squares of the residuals relative to the DNS data on
the conservative interval z/D = 15 − 65. We purposely do not include the last part of the box due
to boundary effects. Nevertheless, the average relative residual on the interval z/D = 15 − 75 is
0.2%. The decay rate Bu of the present DNS is slightly lower compared to previous results, while
the virtual origin z0 is zero, which may be due to early mixing caused by our fully turbulent inlet.
In classical jet theory, the radial coordinate is nondimensionalized with

η = r

z − z0
. (5)

For the jet half-width η1/2, we find η1/2 = 0.089 (see Fig. 5), and which is in the range of what
has been observed previously to be taken from Table I. The differences are due to the different
inlet conditions. In Fig. 6, the mean radial velocity Ur/U z,c reaches a maximum outward velocity
of Ur ,max/U z,c = 0.017 at η = 0.056, while the maximum inward velocity is at η = 0.22 with
Ur ,min/U z,c = −0.022. The values of Ur on the centerline and of Uϕ in the whole domain are very
small and in the order of 10−4. Figures 5 and 6 show an excellent collapse of the DNS data according
to the classical scaling

Ui(r, z) = Ũi(η)

(z − z0)
(6)

for the mean velocity in the range z/D = 25 − 65, where Ũi(η) refers to the invariant or similarity
variable, i.e., the collapsed profiles only dependent of η. Subsequently, this is also observed for

velocity moments up to n = 10. Furthermore, Fig. 7 showcases the invariant Ũz(η = 0) = BuDU 0

FIG. 4. Inverse of the mean axial centerline velocity according to Eq. (4) plotted over the distance from the
orifice. Present DNS ( ), Boersma [9] ( ), Babu [17] ( ), Taub [10] ( ).
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FIG. 5. Mean axial velocity profiles normalized with the axial centerline velocity according to Eq. (6) as
functions of η at different distances from the orifice: z/D = 25 ( ), 35 ( ), 45 ( ), 55 ( ), 65
( ).

FIG. 6. Mean radial velocity profiles normalized with the axial centerline velocity according to Eq. (6) as
functions of η at different distances from the orifice: z/D = 25 ( ), 35 ( ), 45 ( ), 55 ( ), 65
( ).

FIG. 7. The invariant Ũz(η = 0) plotted over the distance from the orifice. Present DNS ( ), Boersma
[9] ( ), Babu [17] ( ), Taub [10] ( ).
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TABLE I. Various jet parameters of DNS and experiments.

Reference Re Bu z0 η1/2

Wygnanski [3] 105 5.7 3.0 0.085
Panchapakesan [4] 1.1 × 104 6.06 0.0 0.096
Hussein [5] 105 5.8 4.0 0.094
Boersma [9] 2400 5.9 4.9 0.091
Taub [10] 2000 5.4 1.3 0.096
Present DNS 3500 5.15 0.0 0.089

according to (6) being valid in the far field, which further supports the 1/z decay depicted in Fig. 4.
It can be observed that the statistics of the present DNS are very well converged up to the end of the
domain compared to previous studies. The lower value compared to the other studies is due to the
lower decay rate Bu.

Figures 8 and 9 compare the components of the turbulence intensity on the centerline with
the DNS from Taub et al. [10], large eddy simulation (LES) from Bogey and Bailly [18], and an
experiment from Panchapakesan and Lumley [4]. In Fig. 8, a fast increase of the radial component
of the turbulence intensity is observed starting at z/D = 70, which is due to the boundary effects
which we have tried to counteract by employing the outflow boundary condition by Dong et al.
[15], preventing an uncontrolled growth in the energy imposed by the boundary. This increase is
transported by the large eddies from the boundary into the domain at the end of the box. This effect,
if ever so slightly, can also be observed in Fig. 7 close to z/D = 75. In Fig. 9, this effect does not
become apparent, although it can be assumed that it does marginally.

In Taub et al. [10], it is mentioned that both in theirs and in the study of Bogey and Bailly [18], an
almost constant value is reached after the transition region and that experiments reach an asymptotic
value gradually. This seems, however, only a first approximation, as the variance in the turbulence
intensity of the study by Taub et al. [10] is still quite high and the LES by Bogey and Bailly [18]
only covers a small axial distance.

There are mainly two methods to shorten the transition region, the first being a smaller Re
[18] and the second being a faster initiation of the turbulent behavior. The incline of the present
DNS in Fig. 7 starts at z/D = 0 compared to other DNS studies showing that the transition begins
earlier. However, it is not apparent that a constant value is achieved earlier, which might be due
to the higher Re of the present DNS at Re = 3500 compared to other studies where the range
is Re = 2000 − 2400. Additionally, in Figs. 8 and 9, we observe a nonzero turbulence intensity
at z/D = 0 which has not been achieved by the other studies shown in those figures. Taub et al.
[10] superimposed small nonphysical perturbations onto a top-hat profile while Bogey and Bailly
[18] used divergence-free vortex rings near the inlet. We conclude that using a turbulent velocity

FIG. 8. Radial component of the turbulence intensity on the centerline compared to previous studies:
Present DNS ( ), Taub [10] ( ), Bogey [18] ( ), Panchapakesan [4] ( ).
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FIG. 9. Axial component of the turbulence intensity on the centerline compared to previous studies: Present
DNS ( ), Taub [10] ( ), Bogey [18] ( ), Panchapakesan [4] ( ).

profile may shorten the transition region. However, a study to confirm this by comparing different
inlet conditions at a constant Re would be beneficial. The DNS in Taub et al. [10], where random
perturbations have been introduced on the axial velocity profile, seems therefore not sufficient
to initiate fully turbulent behavior. The far-field behavior of the present DNS is closer to the
experimental study by Panchapakesan and Lumley [4] as the turbulence intensities slowly increases.

According to the classical scaling, all Reynolds stresses of the present DNS are scaled with
U

2
z,c, i.e.,

uiu j (r, z) = ũiu j (η)

(z − z0)2
, (7)

and are shown in Fig. 10, where ũiu j (η) refers to the invariant or similarity variable in accord
with Eq. (6). The profiles are presented for different axial distances from the orifice exhibiting an
excellent collapse. As mentioned by previous works [4,5,10], the off-center maxima are due to the
strong interaction of the jet with the ambient fluid in that region.

IV. TURBULENT BUDGETS

The budget equations of the Reynolds stresses read

Ci j + �i j + Pi j + Ti j + εi j + Vi j = 0, (8)

see, e.g., Refs. [19,20], with i, j = r, ϕ, z, where, from the right, the terms, respectively, denote
convection, velocity-pressure gradient correlation, production, turbulent diffusion, dissipation, and
viscous diffusion. Due to the statistical axisymmetry of the flow, all terms ( · )ϕz and ( · )rϕ are
zero and the same holds for the unsteady term. Further, the viscous diffusion is negligible due to
a high Reynolds number [10]. The five nonzero transport equations are shown in (9)–(12), while

FIG. 10. Reynolds stresses uiu j normalized with the axial centerline velocity U
2
z,c according to Eq. (7) at

different distances from the orifice: z/D = 25 ( ), 35 ( ), 45 ( ), 55 ( ), 65 ( ).

074608-8



ANALYSIS OF A TURBULENT ROUND JET BASED ON …

the brackets refer to the terms in Eq. (8), respectively, where the viscous term has already been
neglected as the DNS also shows that the term is close to zero: urur transport equation:

0 = −
[
U z

∂

∂z
urur + U r

∂

∂r
urur

]
−

[
2ur

∂ p

∂r

]
−

[
2urur

∂U r

∂r
+ 2uzur

∂U r

∂z

]

−
[

∂uzu2
r

∂z
+ 1

r

∂

∂r

(
ru3

r

) − 2
uru2

ϕ

r

]
− 2

Re

⎡⎣(
∂ur

∂z

)2

+
(

∂ur

∂r

)2

+ 1

r2

(
∂ur

∂ϕ

)2
⎤⎦; (9)

uϕuϕ transport equation:

0 = −
[
U z

∂

∂z
uϕuϕ + U r

∂

∂r
uϕuϕ

]
−

[
2

uϕ

r

∂ p

∂ϕ

]
−

[
2

U r

r
uϕuϕ

]

−
[

∂uzu2
ϕ

∂z
+ 1

r

∂

∂r

(
ruru2

ϕ

) + 2
uru2

ϕ

r

]
− 2

Re

⎡⎣(
∂uϕ

∂z

)2

+
(

∂uϕ

∂r

)2

+ 1

r2

(
∂uϕ

∂ϕ

)2
⎤⎦; (10)

uzuz transport equation:

0 = −
[
U z

∂

∂z
uzuz + U r

∂

∂r
uzuz

]
−

[
2uz

∂ p

∂z

]
−

[
2uzuz

∂U z

∂z
+ 2uzur

∂U z

∂r

]

−
[

∂u3
z

∂z
+ 1

r

∂

∂r

(
ru2

z ur
)] − 2

Re

⎡⎣(
∂uz

∂z

)2

+
(

∂uz

∂r

)2

+ 1

r2

(
∂uz

∂ϕ

)2
⎤⎦; (11)

uruz transport equation:

0 = −
[
U z

∂

∂z
uruz + U r

∂

∂r
uruz

]
−

[
ur

∂ p

∂z
+ uz

∂ p

∂r

]

−
[

uruz
∂U z

∂z
+ urur

∂U z

∂r
+ uzuz

∂U r

∂z
+ uruz

∂U r

∂r

]

−
[

∂u2
z ur

∂z
+ 1

r

∂

∂r

(
ruzu2

r

) − uzu2
ϕ

r

]
− 2

Re

[
∂ur

∂z

∂uz

∂z
+ ∂ur

∂r

∂uz

∂r
+ 1

r2

∂ur

∂ϕ

∂uz

∂ϕ

]
. (12)

The velocity-pressure gradient correlation term offers more information when split into a pressure
diffusion and pressure strain term �i j = �d

i j − �s
i j . The terms on the right side in brackets in (13)

correspond to pressure diffusion and pressure strain, respectively:

2ur
∂ p

∂r
=

[
2

∂

∂r
pur

]
−

[
2p

∂ur

∂r

]
,

2

r
uϕ

∂ p

∂ϕ
=

[
2

r

∂

∂ϕ
puϕ

]
−

[
2

r
p
∂uϕ

∂ϕ

]
,

2uz
∂ p

∂z
=

[
2

∂

∂z
puz

]
−

[
2p

∂uz

∂z

]
,

ur
∂ p

∂z
+ uz

∂ p

∂r
=

[
∂

∂z
pur + ∂

∂r
puz

]
−

[
p
∂ur

∂z
+ p

∂uz

∂r

]
. (13)
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FIG. 11. Budgets of the Reynolds stresses scaled with U
3
z,c/z at z/D = 25: production ( ), dissipation

( ), turbulent diffusion ( ), velocity-pressure gradient correlation ( ), convection ( ), pressure
diffusion ( ), pressure strain ( ).

Each term in (8), i.e., the four transport equations (9)–(12) scale as

Ẽi j = Ei jz

U
3
c,z

, (14)

where Ei j defines any tensor in (8). All terms evaluated employing the present DNS data can be
viewed in Fig. 11. The terms have all been calculated in Cartesian coordinates which were then
transformed to its cylindrical form and have been averaged in the azimuthal direction, subsequently.
In Fig. 11, quite deliberately only the curves for z/D = 25 are shown, although budgets also possess
an excellent self-similarity. The background is that, as visible in Fig. 10, for the second moments
of the fluctuations weak deviations near the jet axis are observed despite the presently conducted
extensive statistics. The abundance of curves would make Fig. 11 less readable.

From (8), we derived the equation for the TKE k = 1/2 uiui:

Ck + �k,d + Pk + T k + εk + V k = 0. (15)

The TKE budget terms and their sum are shown in Fig. 12 and, for the same reasons as for the
budgets of the Reynolds stresses, here too we focus only on values at z/D = 25. All terms have
been again calculated directly from the DNS according to (14). The sum of the budget terms, i.e., the
error in the TKE balance, is below 0.0126 and corresponds to 6% error compared to the maximum
value of the dissipation for all values of η in the same scaling as in Fig. 12, which is contrasted to the

FIG. 12. Turbulent kinetic energy budgets at z/D = 25: production ( ), dissipation ( ), turbulent
diffusion ( ), convection ( ), pressure diffusion ( ), sum of the budget terms ( ).
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FIG. 13. The dissipation of the turbulent kinetic energy comparing the present DNS at Re = 3500 to the
DNS of Taub et al. [10] at Re = 2000, the experiments of Panchapakesan and Lumley [4] at Re = 11 000,
Hussein et al. [5] at Re = 100 000, and a LES of Bogey and Bailly [18] at Re = 11 000.

error of 0.02 in the DNS of Taub et al. [10]. The viscous diffusion is close to zero and is therefore
not included in the figure.

The Kolmogorov length scale is ηK = (ν3/ε)1/4 = 0.0012z, where the dissipation ε has been
taken from Fig. 12 and dissipation scales as (14). We can see, e.g., for z = 25D the Kolmogorov
length scale is ηK = 0.03D and the grid spacing on the centerline is 	x,	y = 0.061D while at
z = 65D, ηK = 0.078D, and 	x,	y = 0.14D. The criterion for a good resolution of the smallest
scales is 	x/η = 2.1 [21], which we satisfy here for the entire domain.

The dissipation on the centerline is about twice as large as the convection term. This agrees with
Hussein et al. [5], Wygnanski and Fiedler [3], and Darisse et al. [8], whereas Panchapakesan and
Lumley [4] and Taub et al. [10] found that the values are about the same. In some works [10,11],
it is speculated that this might be due to the difference in Reynolds number even for high Reynolds
numbers. However, the magnitude of the Reynolds number of the present DNS is closer to the latter
mentioned studies (see Table I). Since the studies above used top-hat profiles as the inlet condition,
this could mean that the fully turbulent velocity profile at the inlet of the present DNS influences
the dissipation similarly to a higher Re. Further, in Fig. 13, the dissipation of the present DNS is
compared to some of these studies where the dissipation has a similar profile but reaches different
magnitudes. Only the studies of Taub et al. [10], Bogey and Bailly [18], and the present paper have
calculated the dissipation directly, while Hussein et al. [5] approximated the dissipation by assuming
local isotropy. Taub et al. [10] also calculated the dissipation using the approximation by Hussein
et al. [5] where the dissipation has been overestimated. It is important to note that Taub et al. [10]
used a second-order finite volume scheme which yields different results than the high-order scheme
employed in this paper [22,23]. Also, Bogey and Bailly [18] conducted a LES, which in itself
already contains models. The dissipation of the present DNS is clearly very similar to the studies
of Panchapakesan and Lumley [4] and Bogey and Bailly [18], both at Re = 11 000, which further
supports this assumption of a turbulent inlet influencing the dissipation, similar to a higher Re.

The previous results may now be used to evaluate Kolmogorov‘s relation

ε = Cε

k
2
3

l
, (16)

where l is the integral length scale l = 1
4πk

∫∫∫ Rmm (r)
|r|2 d3r, Rmm(r) is the two-point correlation, and r

the distance between two points. Implementing (7) and (14) into Kolmogorov‘s relation (16), where
we extended (7) to two-point correlations, we find that z drops out on both sides and hence Cε does
not depend on the local Reynolds number as was found for certain other flows [24].
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FIG. 14. PDFs of Uz(η = 0, z)/U z,c(z) at z/D = 15 ( ), 25 ( ), 35 ( ), 45 ( ), 55 ( ), 65
( ) compared to a Gaussian ( ).

V. PROBABILITY DENSITY FUNCTIONS

In addition to the classical variables of mean velocity, Reynolds stresses, and budgets, extensive
DNS statistics enabled us to compute higher-order statistics, i.e., PDFs, at high precision. We created
the PDFs by collecting Uz at various points every 0.05D/Ub over the time span of 75 000D/Ub.
The data is then divided in bins where data of a given r and z can be collected in the same PDF,
which contributed to the smoothness of the resulting PDFs. After binning the data, we calculated the
density of occurrence for each bin. This involved counting the number of data points falling within
each bin. To ensure that our PDFs represented true probabilities, we normalized these densities so
they summed up to 1.

In Fig. 14, the PDF f of the normalized axial centerline velocity also shows an excellent collapse
for different distances z/D from the orifice. On the centerline, the PDF f are well described by a
Gauss distribution. Additionally, the PDF development at z/D = 28, 42, 56 for varying η is shown
in Fig. 15. It can be clearly seen that for increasing η, the curves slowly deviate from a Gaussian,
and non-Gaussian tails develop. By further increasing η, a delta distribution is approached due to a
laminar constant ambiance velocity. Most important, we observe an excellent PDF data collapse due
to the η scaling. Further and also theoretical analysis of the PDF are ongoing and will be presented
in a later publication.

Finally, in Fig. 16 the Uz-based skewness S and kurtosis K is extracted from the data. Also,
these values show an almost perfect collapse in the range of similarity. A skewness of S = 0 and
kurtosis of K = 3 correspond to characteristics of a Gaussian distribution. This indicates that on the

FIG. 15. PDFs of Uz(η, z)/U z,c(z) for z/D = 28 ( ), 42 ( ), 56 ( ).
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FIG. 16. Kurtosis K (above) and skewness S (below) of Uz(η, z)/U z,c(z) for z/D = 28 ( ), 42 ( ),
56 ( ). K = 3 (dashed), S = 0 are the Gaussian values.

jet centerline η = 0, the PDFs closely resemble a Gaussian distribution. As η increases, the PDFs
show increasing positive skewness with K = 3 until η = 0.09. Beyond this point, the PDFs deviate
from Gaussian behavior, becoming increasingly non-Gaussian as they eventually approach a delta
distribution in the laminar region of the flow very far away from the jet axis.

VI. CONCLUSION

In conclusion, a turbulent round jet flow at Re = 3500 has been simulated. The size of the
box extends up to 75D in the axial and up to 65D in the radial direction to ensure the caption
of the far-field statistics. The statistics are taken over 75 000D/Ub units, which corresponds to 200
passes of a particle through the domain. High-quality statistics have been generated for the velocity
statistics of first- and second-order one-point moments. Furthermore, all the terms of the Reynolds
stress equations and the turbulent kinetic energy equation have been generated directly from the
DNS data. Additionally, for the axial velocity, PDFs have been generated in the radial and axial
directions, which to the authors’ knowledge has not been reported in literature before. The mean
axial centerline velocity shows a highly converged 1/z behavior up to the end of the box. All the
radial velocity profiles of the first- and second-order statistics show a remarkable collapse based
on classical scaling. The turbulence intensities show a slight axial increase similar to experimental
studies, which could not be shown by DNS conducted before as the boxes have been too small.
Further, a fully turbulent velocity profile as an inlet might have similar effects on the dissipation as
an increase in Re.

The database containing the data shown can be downloaded from the TUdatalib Repository of
TU Darmstadt at Ref. [25].
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