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The dynamic model is one of the most successful inventions in subgrid-scale (SGS)
modeling as it alleviates many drawbacks of the static coefficient SGS stress models.
The model coefficient is often calculated dynamically through the minimization of the
Germano-identity error (GIE). However, the driving mechanism behind the dynamic
model’s success is still not well understood. In wall-bounded flows, we postulate that
the principal directions of the resolved rate-of-strain tensor play an important role in the
dynamic models. Specifically, we find that minimization of the GIE along only the three
principal directions (or less), in lieu of the nine components in its original formulation,
produces equally comparable results as the original model when examined in canonical
turbulent channel flows, a three-dimensional turbulent boundary layer, and a separating
flow over periodic hills. This suggests that not all components of the Germano identity
are equally important for the success of the dynamic model, and that there might be
dynamically more important directions for modeling the subgrid dynamics.

DOI: 10.1103/PhysRevFluids.9.074607

I. INTRODUCTION

Dynamic closure of the subgrid-scale (SGS) stress is perhaps the most celebrated feature of
large-eddy simulation (LES), which is absent in other lower-fidelity approaches for modeling
turbulence. The class of dynamic SGS models allows for the determination of model coefficients
purely from the resolved-scale information available in live LES calculations, eliminating the need
for the ad hoc practice of parameter calibration and therefore greatly promoting the predictive nature
of the method. It was Germano et al. [1] who first introduced the idea of the dynamic procedure,
proposing the dynamic Smagorinsky model (DSM). This formulation was based on the Germano
identity, which is an algebraic relation between the SGS stresses at two different filter levels and the
resolved turbulent stresses. Lilly [2] proposed a modification by minimizing the Germano-identity
error (GIE), which has become the most widely adopted practice.

Compared to the massive works that apply the DSM to the study of turbulent flows, the
mechanism behind why the DSM is successful is much less understood. The explanation based
on scale invariance in the inertial subrange was initially adopted, but it was later challenged by
Jiménez and Moser [3], who claimed that the DSM’s success is thanks to the model’s robustness to
errors in the physics. Pope [4] brought another perspective that the dynamic procedure minimizes
the dependence of relevant turbulence statistics (total Reynolds stresses) on filter levels. Toosi and
Larsson [5] complemented the understanding by showing the connection between the GIE and the
residual of the LES governing equations.

Closely related to the interpretation of the GIE tensor, how one minimizes the GIE can make
a difference in the SGS stress modeling. Ghosal et al. [6] recast the solution procedure of the
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model coefficient in the context of a variational problem, generalizing the dynamic procedure
to flows without homogeneous directions. Meneveau et al. [7] introduced a Lagrangian dynamic
procedure where the GIE is minimized along the flow pathlines, allowing for the application of
the model to inhomogeneous flows in complex geometries. Morinishi and Vasilyev [8] proposed
a modification for the dynamic two-parameter mixed model to improve the model performance
in wall-bounded turbulent flows. Park and Mahesh [9] explored reduction in an ensemble-averaged
GIE and proposed an efficient predictor-corrector-type method to find the optimal parameter. Denaro
[10] derived the integral-based Germano identity which showed much less sensitivity to the type
of contraction than expected in the differential-based formulation. Agrawal et al. [11] proposed a
tensorial Smargorinsky coefficient in the DSM to overcome the invalid assumption of alignment
between the filtered strain-rate tensor and the SGS stress.

The present study aims to provide an alternative explanation of the mechanism behind some
dynamic SGS models rooted in the Germano identity, focusing on wall-bounded flows. Specifically,
we show that only a few directions matter for these models, namely, the principal directions of the
filtered strain-rate tensor. The idea is demonstrated in turbulent channel flow, a three-dimensional
turbulent boundary layer (3DTBL), and a separating flow over periodic hills. The paper is organized
as follows. In Sec. II, some reduced dynamic procedures designed to highlight characteristic
behaviors of the dynamic model along these directions are presented. Three flow configurations
used in the present work are explained in Sec. III. Section IV presents the main results and analyses,
which is followed by the conclusion in Sec. V.

II. REDUCTION OF DYNAMIC PROCEDURES ALONG THE PRINCIPAL DIRECTIONS OF S̄i j

We first summarize the standard dynamic procedure deployed widely in many dynamic models.
In Smagorinsky-type models, the deviatoric part of the SGS stress tensor τi j is modeled as

τi j − 1
3δi jτkk = 2C�2|S|Si j, (1)

where δi j is the Kronecker delta, � is the grid filter size, Si j = 1
2 ( ∂ui

∂x j
+ ∂u j

∂xi
) is the resolved strain-

rate tensor at the grid filter level, and |S| = (2SklSkl )1/2. The overbar ·̄ denotes the grid-filtered
quantities. The Smagorinsky coefficient C is determined by a dynamic procedure [2] based on the
Germano identity (GI),

Li j = Ti j − τ̂i j, (2)

where Ti j is the SGS stress at the test-filter level defined as

Ti j = ûi û j − ûiu j, (3)

and τi j is the SGS stress at the grid-filter level,

τi j = ui u j − uiu j . (4)

The overhat ·̂ denotes the test-filtered quantities. Li j contains the resolved components of the stress
tensor associated with scales between the test and grid filter scales, and it can be computed directly
from the information available in the LES calculations,

Li j = −ûi u j + ûi û j, (5)

using Eq. (2)–(4). Ti j is modeled similarly as in Eq. (1), using the same model coefficient C under the
scale-invariance ansatz. Substitution of the modeled stresses into the deviatoric part of the Germano
identity produces an overdetermined system for the unknown coefficient C,

Li j − 1
3δi jLkk = CMi j, (6)

where

Mi j = 2�̂2 |̂S|̂Si j − 2�2 ̂|S|Si j (7)
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is again computable with the LES solution. Here, �̂ is the test-filter size typically taken as �̂ = 2�.
The commonly used procedure is the least-squares approach, which minimizes the L2 norm of the
GIE tensor, Q = Qi jQi j [2]. Here, Qi j is the GIE tensor defined as the residual of the Germano
identy

Qi j = Li j − 1
3δi jLkk − CMi j, (8)

and the coefficient C is then determined through a least-squares procedure as

C = 〈Li jMi j〉/〈Mi jMi j〉. (9)

Here, 〈·〉 denotes the averaging in homogeneous directions (if any) or local filtering operation used
to stabilize the model. This original dynamic procedure accounts for all components (and therefore
directions) of the GIE tensor collectively with equal weights.

Vorticity dynamics in the inviscid limit implies that vortices are frozen to fluid elements and
therefore they deform in the same way fluid elements do. As the strain-rate tensor characterizes
the local deformation state of fluid elements, vortices are more likely aligned with the principal
directions of the strain-rate tensor [12,13]. If one adopts the scale-similarity ansatz [14], it can be
further assumed that the most energetic SGS eddies are oriented primarily by the smallest resolved
scale. Motivated from this line of argument, we postulate that there are a few dynamically more
important directions which embody the essence of the dynamic procedure, namely, the principal
directions of the resolved strain-rate field. Numerical experiments with the dynamic procedures
further reduced along these directions can be used to test this idea. To this end, we focus on
satisfying the GI along the principal directions of S̄i j only, and examine the effectiveness of this
hypothesis. Three closely related formulations for this purpose are introduced below.

Dynamic procedures which account for the GI along the principal directions of Si j only can be
expressed in a general form as

C =
n∑

j=1

〈α jL
′
j jM

′
j j〉

/ n∑
j=1

〈α jM
′
j jM

′
j j〉, (10)

where α j are proper weights for the jth principal direction, and the prime symbol (′) is used to
denote tensors represented in the eigencoordinate of Si j . For instance, Q′

kl = V −1
ki Qi jVjl , where Vi j

contains the orthonormal eigenvectors of Si j . The first formulation, denoted as PDL2 (L2 norm
minimization along principal directions), is defined as n = 3 and α j = 1. This approach minimizes
the modified cost function Q = ∑3

j=1(Q′
j j )

2, i.e., the squared sum of the GIE along the principal

directions of Si j . The second formulation, denoted as PDWL2, is defined as n = 3 and α j = λ2
j ,

where λ j are the eigenvalues of Si j . This approach minimizes Q = ∑3
j=1(λ jQ′

j j )
2, i.e., the squared

sum of the GIE weighted according to the level of stretching and/or compression along the principal
directions of Si j . A maximally reduced version is where n = 1 and α j = 1, which concerns only the
direction with the maximum stretch: C is determined from the GI applied along the direction with
the maximum positive eigenvalue of Si j . This approach (denoted as PDMAX) assumes that the SGS
eddies align along the maximal vortex stretching direction of the resolved-scale eddies, and only
that direction matters to the SGS dynamics and/or energetics. It should be noted that the coordinate
invariance of Eq. (10) is guaranteed from the fact that the eigenvalues and eigendirections of a tensor
are invariant in any coordinate system. The eigencoordinate system of Si j is unique at the moment
Eq. (10) is to be evaluated, and any tensor’s representation in this coordinate system is also unique.

III. FLOW CONFIGURATION

The first case considered in the present work is the plane turbulent channel flow with periodic
boundary conditions in the streamwise and spanwise directions. Direct numerical simulation (DNS)
results from Moser et al. [15] and the Johns Hopkins Turbulence Database (JHTDB) [16,17] are used
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FIG. 1. Profiles of flow statistics in wall units in turbulent channel flow at Reτ = 395: (a) mean streamwise
velocity and (b) turbulence intensities (urms, vrms, and wrms). Black squares, DNS [15]; green solid line, LES
with DSM; red dashed line, LES with PDL2; blue dash-dotted line, LES with PDWL2.

as reference. The computational domain is set to be (Lx, Ly, Lz ) = (2πδ, 2δ, 2πδ/3) for Reτ = 395
and (Lx, Ly, Lz ) = (2πδ, 2δ, πδ) for Reτ = 1000, where x is the streamwise direction, y is the wall-
normal direction, and z is the spanwise direction. δ is half channel height. The flow is driven by the
constant pressure gradient in the streamwise direction.

The second case is the three-dimensional boundary layer created on a flat plate by a time-
dependent freestream velocity vector, whose magnitude is independent of time but whose direction
changes at a constant angular velocity [18]. The Reynolds number (Rel = U0( 2

f ν )1/2) is 767. Here,
U0 is the freestream velocity magnitude, f is the angular rate of rotation of the freestream velocity
vector, and ν is the kinematic viscosity. In our numerical simulation, the computational domain is
set to be (Lx, Ly, Lz ) = (2δ, δ, 2δ), where y is the wall-normal direction. δ = u∗

f is the outer length
scale where u∗ is the velocity scale as defined by Spalart [18]. The top boundary condition is set to
be the rotating velocity vector,

U∞ = U0 cos( f t ), W∞ = U0 sin( f t ). (11)

Periodic boundary conditions are applied to the two horizontal directions, x and z. Despite its simple
configuration, the flow is characterized with a skewed mean velocity profile (i.e., the flow direction
varying with the wall distance) and a full Reynolds-stress tensor, similar to the Ekman layer. The
flow statistics are computed in the coordinate system that is rotating with the freestream velocity
vector. In this coordinate system, the flow is statistically steady.

The third case is the separating flow over periodic hills [19]. The computational domain is
(Lx, Ly, Lz ) = (9h, 3.035h, 4.5h), where h is the height of the hill; x, y, and z denote the streamwise,
wall-normal, and spanwise directions, respectively. The Reynolds number based on the hill height
h and bulk velocity above the hill crest, US , is ReS = USh/ν. It is related to the domain-averaged
bulk Reynolds number (ReB = UBh/ν) by a factor of 0.72, ReB = 0.72ReS . The flow is driven by a
constant mass flow rate. Periodicity is applied to the streamwise and spanwise directions.

IV. RESULTS AND DISCUSSIONS

The simulations are performed with CharLES, an unstructured cell-centered finite-volume com-
pressible LES solver developed at Cascade Technologies, Inc. The solver employs an explicit
third-order Runge-Kutta (RK3) scheme for time advancement and a second-order central scheme
for spatial discretization. More details regarding the flow solver can be found in Refs. [20,21].
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FIG. 2. Mean velocity profiles of channel flow at Reτ = 395. Squares, DNS [15]; green solid line, LES
with DSM; red dashed line, LES with PDL2; blue dash-dotted line, LES with PDWL2; magenta dotted line,
LES with nonprincipal components model, PDOFF; olive green dashed line, LES with PDMAX; cyan solid
line, no SGS model.

A. Turbulent channel flow at Reτ = 395 and Reτ = 1000

Figure 1 shows the profiles of flow statistics for turbulent channel flow at Reτ = 395. The grid
spacing in wall units is (�+

x ,�+
y ,�+

z ) = (50, 0.22–13, 16.5). The LES results agree well with
DNS [15] in terms of mean velocity. As commonly reported in underresolved LES [22], a slight
overprediction of the streamwise intensity (urms) and underprediction of the other intensities are
observed. All dynamic procedures [the original and principal direction (PD) versions from Sec. II]
produce nearly identical results, but the PD versions are seen to be slightly more accurate when
zoomed in (see Fig. 2). PDL2 and PDWL2, which use only three diagonal components of the GIE
tensor in the principal coordinate system of the grid-filtered strain-rate tensor, perform equally well
compared to the original DSM, which includes all components of the GIE tensor. It should be
noted that all components of the GIE tensor in the eigencoordinate of Si j were found to be nonzero
and comparable in their magnitude. The results here imply that not all the components of the GI
are equally important. By working on only partial information of the GI, the dynamic model can
produce results almost identical to the original DSM results. Although not shown here for brevity,
an identical behavior was observed in a channel flow calculation with Reτ = 1000 using a relatively
coarser grid with (�+

x ,�+
y ,�+

z ) = (100, 0.5–32, 50).
To further highlight how different components of the GIE tensor contribute to the performance of

the DSM, another two reduced dynamic procedures are tested in the same turbulent channel flow at
Reτ = 395 as a comparison. The first one includes only the nonprincipal components (off-diagonal
components of the GIE tensor represented in the principal coordinates of Si j) in the dynamic
procedure. The model is referred to as PDOFF. Another model is PDMAX introduced earlier in
Sec. II, which operates only on the principal direction of Si j with the maximum stretching. The
mean velocity profiles are shown in Fig. 2. It can be observed that PDOFF underpredicts the mean
velocity, and interestingly, it performs as badly as the no-SGS-model result. This indicates that the
nonprincipal components have no contribution in the determination of the eddy viscosity. On the
other hand, the PDMAX model performs similarly as the original DSM. It has a better agreement
with DNS for 50 < y+ < 110 but slightly underpredicts the mean velocity for y+ > 110. The rea-
sonably good performance of the PDMAX model is especially surprising given that it only considers
one component of the GI tensor. This may imply that the SGS model can be further reduced, and
the eddy-stretching directions are potentially more important than the eddy-compressing directions.
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FIG. 3. Average SGS eddy viscosity from LES of channel flow at Reτ = 395. SGS eddy viscosity is
normalized by kinematic viscosity. (a) Linear scale; (b) logarithmic scale. Green solid line, LES with DSM;
red dashed line, LES with PDL2; blue dash-dotted line, LES with PDWL2. In (b), black solid and dashed lines
are y3 and y2 reference lines, respectively.

However, it should be noted that clipping to avoid negative eddy viscosity was necessary for the
PDMAX version above y+ = 100 (which can explain its underprediction for y+ > 110), whereas
no clipping was required for the standard and other PD versions of the DSM.

Figure 3 shows the time-averaged SGS eddy viscosity across the channel. The three SGS models
produce similar levels of SGS eddy viscosity. The near-wall SGS eddy viscosity exhibits y2 behavior
instead of y3, consistent with the finding of Park and Mahesh [9], where the SGS eddy viscosity
computed from DNS data of channel flow at Reτ = 590 also exhibited y2 behavior near the wall.
Figure 4 shows the profiles of the SGS energy transfer rate P = τi j S̄i j in the turbulent channel flow.
This result is directly relevant to the energy transfer between the large and small scales. Again,
there is no significant difference among DSM, PDL2, and PDWL2 results, showing that these three
formulations are largely equivalent in terms of capturing the energy transfer. The instantaneous
Smagorinsky coefficients collected over one eddy turnover time (t = δ/uτ ) are shown in the scatter
plots in Fig. 5. The initial condition is the converged flow field calculated with DSM. Three different
formulations are then applied to calculate the instantaneous Smagorinsky coefficients. Pairings in

FIG. 4. Profiles of the SGS energy transfer rate in turbulent channel flow at Reτ = 395. P and y are
normalized with viscous wall units. Green solid line, LES with DSM; red dashed line, LES with PDL2; blue
dash-dotted line, LES with PDWL2.
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FIG. 5. Scatter plot of the Smagorinsky coefficients of the dynamic models in turbulent channel flow at
Reτ = 395. The horizontal axis is the DSM result, and the vertical axis corresponds to the results from the
two PD formulations. (a) Viscous sublayer (y+ = 1.5), (b) buffer layer (y+ = 15), and (c) logarithmic layer
(y+ = 45). Red, LES with PDL2; blue, LES with PDWL2.

the scatter plots are such that the data involved are sampled at the same simulation time. Three
different wall-normal locations including viscous sublayer, buffer layer, and logarithmic layer are
probed. In Fig. 5, most points are observed to be clustered, lying generally within one or two stan-
dard deviations of the data involved. The PD formulations produce Smagorinsky coefficients quite
close to the those produced by the standard DSM, as expected. The level of collapse is found higher
in the buffer layer and logarithmic layer than in the viscous sublayer, where the difference in the
latter is deemed insignificant because the model contribution is negligibly small even compared to
the molecular viscosity.

The effects of different model formulations can also be evaluated through the norm of the GIE
tensor Qi j , given by J = Qi jQi j [Qi j defined in Eq. (8)]. Park and Mahesh [9] and Toosi and Larsson
[5] pointed out that the GIE will be zero for the exact SGS model, and that a good SGS model should
pursue small GIE. We focus on the coarse LES case of Reτ = 1000, but the same trend is observed
in the Reτ = 395 case as well. The profile of J in Fig. 6(a) shows that the peak location of the
GIE is at around y+ = 10 within the buffer layer, consistent with the findings of Park and Mahesh
[9]. It is found that the GIE from the original DSM is almost identical to the GIE from the PD
formulations, except in the buffer layer (y+ = 5–30). In the buffer layer, about 15% reduction in
the peak GIE is observed with the PD formulations as compared to the original DSM. Figure 6(b)
presents the normalized J profile. Here, J is normalized by ( d〈U 〉

dy δν )4 + 〈u′u′〉2, where δν = ν/uτ .

This normalization includes the strain rate d〈U 〉
dy and Reynolds stress 〈u′u′〉 which are related to
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FIG. 6. Profile of J (the L2 norm of the GIE tensor) along the wall-normal direction in channel flow at
Reτ = 1000. (a) J is not normalized; (b) J is normalized by a combination of mean velocity gradient dU/dy
and Reynolds stress 〈u′u′〉. Green solid line, LES with DSM; red dashed line, LES with PDL2; blue dash-dotted
line, LES with PDWL2.
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(a) (b) (c)

FIG. 7. Mean velocity in the 3DTBL. (a) Mean velocity magnitude, (b) mean flow direction γ =
arctan(W/U ), and (c) freestream-wise turbulence intensity, urms. Squares, DNS [18]; green solid line, LES
with DSM; red dashed line, LES with PDL2; blue dash-dotted line, LES with PDWL2.

Mi j and Li j in the GIE tensor. This normalization produces J = O(1), suggesting that the mixed
viscous and turbulent scaling is effective for the GIE. Under such normalization, the peak error
appears around y+ = 5. The PD formulations are derived based on the Germano identity. In general,
the PD formulation can be constructed for any dynamic model based on a similar Germano identity.
In Appendix A, the PDL2 formulation is applied to the dynamic Vreman model of Lee et al. [23],
where we find its result is similar to what has been presented for DSM in this section.

B. Three-dimensional turbulent boundary layer

The idea of the reduced dynamic procedure in the DSM is also examined in a 3DTBL. In this
flow, the freestream velocity vector is rotating at a constant angular velocity. The flow is statistically
steady in the coordinate system rotating with the freestream. x and z denote the directions paral-
lel and perpendicular to the freestream, respectively. Figure 7(a) shows the mean velocity magnitude
profile in the 3DTBL. For the velocity magnitude, the three different formulations produce almost
identical results, showing reasonable agreement with the DNS. A salient feature of 3DTBLs is
the variation of the flow direction with wall distance. The mean flow direction is quantified in
Fig. 7(b) using the flow angle in wall-parallel planes, γ = arctan(W/U ), where U and W are aligned
with and perpendicular to the freestream, respectively. The agreement with DNS is slightly worse
compared to that of the velocity magnitude. LES solutions have about three degrees of discrepancy
close to the wall, and a slight underprediction of the flow angle is seen in the outer layer. PDL2
and DSM produce nearly identical predictions. PDWL2 is relatively worse in y/δ < 0.1, but the
agreement is still reasonable. Overall, the two modified PD models are as good as the original DSM.
The freestream-wise turbulence intensity is shown in Fig. 7(c). Similar to the mean flow statistics,
there is negligible difference among three formulations of the dynamic models.

In Appendix B, the reduced dynamic procedure is also applied to a non-Boussinesq tensor-
coefficient SGS model in the same flow. This type of model is better suited for 3DTBLs, because the
stress-strain alignment assumption in the Boussinesq eddy viscosity models is invalid in 3DTBLs.
Overall, the PD formulation shows slightly improved performance compared to the original dynamic
tensor-coefficient SGS model of Agrawal et al. [11]. Details related to this aspect can be found in
Appendix B.

C. Flow over periodic hills

Figure 8(a) shows the mean streamwise velocity in the separating flow over periodic hills
predicted with the DSM with different dynamic procedures. Good agreement is found with the
experiment in all three SGS models. The largest discrepancy is observed at x/h = 0.05 close to
the separation point (x/h ≈ 0.2). At this location, PDL2 shows slightly better performance than the
other two formulations. Overall, it is found that the reduced PD formulations perform as well as the
original DSM. Figure 8(b) presents the turbulence intensity profiles at the same five stations. The
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(a)

(b)

FIG. 8. (a) Streamwise mean velocity profiles in the flow over periodic hills (Re = 10 595) from x/h =
0.05, 1.00, 2.00, 4.00, 8.00. Profiles are shifted along the abscissa by 1.2. (b) Streamwise turbulence intensity
profiles at the same five stations. Profiles are shifted along the abscissa by 0.24. Black squares, experiment [19];
green solid line, LES with DSM; red dashed line, LES with PDL2; blue dash-dotted line, LES with PDWL2.

LES results agree reasonably well with the experiment. The DSM and PDL2 show slightly better
prediction of the peak value at x/h = 2.00 compared to PDWL2. The skin friction coefficient and
pressure coefficient distributions are shown in Fig. 9. Cf and Cp results are almost identical among
the three formulations and agree well with the reference LES results [24]. In Fig. 10, the streamlines
of the periodic hill case are presented. The three formulations produce almost the same results. In
the separated flow region, the separation bubble size is slightly larger in the PDWL2 result.

The overall performance is almost equivalent among three formulations.

V. CONCLUSION

Motivated from vorticity dynamics, a hidden mechanism at work in the success of dynamic LES
SGS models is explored. Based on the assumption that the SGS eddies tend to be aligned with
the principal stretching and compression directions of the resolved flow field, we postulate that
only a few elements of the Germano identity, pertaining to the principal directions of the resolved
strain rate, matter in the dynamic procedure to determine the model coefficient. Some principal-

FIG. 9. Skin friction and pressure coefficient distribution along the bottom wall of the periodic hill. Green
solid line, LES with DSM; red dashed line, LES with PDL2; blue dash-dotted line, LES with PDWL2; black
dashed line, LES from Ref. [24].
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FIG. 10. Streamlines of the flow over periodic hills. Green, LES with DSM; red, LES with PDL2; blue,
LES with PDWL2.

direction (PD) variants of the DSM based on this idea are tested in canonical turbulent channel
flows, a three-dimensional turbulent boundary layer, and a separating flow over periodic hills. In
all the cases, PD formulations produced almost identical results as the original DSM. These results
demonstrate that not all components of the Germano identity matter, and that satisfaction of the
Germano identity along some of the principal directions of the resolved strain-rate tensor might be
the essence of the dynamic procedure. This establishes a physical connection between the Germano
identity, initially perceived as a purely mathematical identity devoid of physics, and vorticity in
the resolved flow field. This connection provides an insight into why dynamic models succeed and
offers guidance for future efforts in subgrid-scale modeling.
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APPENDIX A: APPLICATION TO DYNAMIC VREMAN MODEL

Reduction of the dynamic procedure onto the principal directions of the strain rate tensor can be
applied to the dynamic Vreman model (DVM) of Ref. [23]. In the original DVM, the SGS stresses
are modeled as

τi j − τkk

3
δi j = 2Cν

√
�β

αi jαi j
Si j, (A1)

where

αi j = ∂u j

∂xi
, (A2)

�β = β11β22 + β22β33 + β33β11 − β
2
12 − β

2
23 − β

2
31, (A3)

β i j =
3∑

m=1

�2
mαmiαm j . (A4)

Here, Cν is the Vreman model coefficient and �m is the characteristic filter width in the mth
direction. The unknown coefficient in the original DVM is determined by minimizing the GIE over
the whole computational domain, resulting in a model coefficient which is a function of time only.
We proceed with a manner similar to DSM, using the Germano identity:

Li j − 1
3δi jLkk = CνMi j, (A5)
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(a) (b)

FIG. 11. Profiles of flow statistics in wall units in turbulent channel flow at Reτ = 395. (a) Mean stream-
wise velocity and (b) turbulence intensities (urms, vrms, and wrms). Black squares, DNS [15]; red dashed line,
LES with DVM; blue dash-dotted line, LES with DVM-PD.

where

Mi j = 2

√
�

β̂

α̂i j α̂i j
Ŝi j − 2

̂

√
�β

αi jαi j
Si j (A6)

and Li j is the same as in Eq. (5). The unknown coefficient can be calculated as

Cν = 〈Li jMi j〉V /〈Mi jMi j〉V , (A7)

where 〈·〉V denotes the instantaneous volume averaging over the entire computational domain.
The PDL2 formulation of DVM (referred to as DVM-PD) can be constructed in the same manner

as discussed earlier for DSM. This involves modifying Eq. (A7) into the form of Eq. (10), utilizing
the information pertaining only to the eigendirections of the resolve strain rate. This extension to
DVM is straightforward, because both DSM and DVM are based on the Germano identity, serving
as the foundation for any PD formulations derived from them. DVM-PD is tested in the turbulent
channel flow and the results are shown in Fig. 11. The DVM and the DVM-PD are almost identical
in terms of the mean velocity. A slight difference can be observed for Reynolds stresses but it is
almost negligible.

APPENDIX B: APPLICATION TO DYNAMIC TENSOR COEFFICIENT SMAGORINSKY MODEL

Reduction of the dynamic procedure onto the principal directions of the strain-rate tensor can be
applied to the dynamic tensor coefficient Smagorinsky model (DTCSM) [11] as well. In the original
work, the DTCSM models the SGS stress as

τi j − τkk

3
δi j = (CikSk j + CjkSki )|S|�2, (B1)

where Ci j is the tensor of model coefficients. For the DTCSM, the Germano identity produces

Li j = (Cik�
2Mk j + Cjk�

2Mki ). (B2)

Agrawal et al. [11] imposed the trace-free requirement on the model leading to the following
constraints,

C11 = C22 = C33, Ci j = −Cji (i �= j), (B3)

and the four independent coefficients were determined to best satisfy six constraints from the
GI in an L2 sense. Similar to the formulation described in Sec. II, the GIE tensor Qi j = Li j −
(Cik�

2Mk j + Cjk�
2Mki ) for the DTCSM can be transformed into the principal coordinate system

of the filtered strain-rate tensor (Si j). The PD version of the DTCSM then determines model
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FIG. 12. Mean velocity in the 3DTBL. (a) Mean velocity magnitude and (b) mean flow direction γ =
arctan(W/U ). Black squares, DNS; green solid line, LES with DSM; red dashed line, LES with DTCSM; blue
dash-dotted line, LES with DTCSM-PD.

coefficients by enforcing the GI along the principal directions of Si j only (the diagonal components
of the transformed GIE tensor):

(
L′

11
L′

22

)
=

(
2M ′

11 2M ′
12 2M ′

13 0
2M ′

22 −2M ′
12 0 2M ′

23

)⎛⎜⎜⎝
C11

C12

C13

C23

⎞⎟⎟⎠. (B4)

It can observed readily that there are four unknown variables but only two constraints. To close the
system, we introduce an additional assumption on the coefficients operating on the nonprincipal
components of Mi j , letting C12 = C13 = C23. This leads to a closed 2 × 2 system from which the
model coefficients can be determined:(

L′
11

L′
22

)
=

(
2M ′

11 2M ′
12 + 2M ′

13
2M ′

22 −2M ′
12 + 2M ′

23

)(
C11

C12

)
. (B5)

The DTCSM and its PD variant (denoted here as DTCSM-PD) are applied to the 3DTBL case
considered in Sec. IV. Figure 12 shows the profiles of the mean velocity magnitude and flow
direction. For the velocity magnitude, the two tensor-coefficient SGS models have a very good
agreement with the DNS, while the DSM has a slight discrepancy (under- and overprediction in the
near-wall and bulk regions, respectively). For the flow direction, it is clear that the DTCSM-PD has
the best performance close to the wall, where the DSM overpredicts and the DTCSM undepredicts
the flow angle. For y/δ > 0.2, the DTCSM and the DTCSM-PD produce almost identical results
for the flow direction and they agree well with the DNS. The original DSM slightly underpredicts
the flow angle at y/δ > 0.2. Overall, we again confirm that reduction of the dynamic procedure
along the principal direction is as effective as the original DTCSM. In fact, the DTCSM-PD has
the best prediction of the mean velocity. We do note that the choice of the additional constraints
(C12 = C13 = C23) is somewhat arbitrary. Other choices are possible, and how we close the system
may affect the performance of the model. The purpose of this Appendix is to provide a potential
extension of the conclusion in the main text towards more comprehensive SGS models.
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