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Coherent pressure structures in turbulent channel flow
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Most of the studies on pressure fluctuations in wall-bounded turbulent flows aim at
obtaining statistics as power spectra and scaling laws, especially at the walls. In the present
study we study energetic coherent pressure structures of turbulent channel flows, aiming at
a characterization of dominant coherent structures throughout the channel. Coherent struc-
tures are detected using spectral proper orthogonal decomposition (SPOD) and modeled
using resolvent analysis, similarly to related works dealing with velocity fluctuations but
this time using pressure fluctuations as the output of interest. The resolvent operator was
considered with and without the Cess eddy-viscosity model. Direct numerical simulations
(DNSs) of incompressible turbulent channel flows at friction Reynolds numbers of ap-
proximately 180 and 550 were employed as databases in this study. Three representative
dominant structures emerged from a preliminary spectral analysis: near-wall, large-scale,
and spanwise-coherent structures. For frequency–wave number combinations correspond-
ing to these three representative structures, SPOD results show a strong dominance of
the leading mode, highlighting low-rank behavior of pressure fluctuations. The leading
resolvent mode closely agrees with the first SPOD mode, providing support to studies
that showed better performance of resolvent-based estimators when predicting pressure
fluctuations compared to velocity fluctuations [Amaral et al., J. Fluid Mech. 927, A17
(2021)]. The dominant mechanisms of the analyzed modes are seen to be the generation
of quasistreamwise vortices with pressure fluctuations appearing close to vortex centers. A
study on the individual contributions of the nonlinear terms (treated as forcing in resolvent
analysis) to the pressure output reveals that each forcing component plays a constructive
role to the input-output formulation, which also helps understanding the weaker role of
forcing “color” in driving pressure fluctuations.

DOI: 10.1103/PhysRevFluids.9.074606

I. INTRODUCTION

The understanding of pressure fluctuations in wall-bounded turbulent flows is of fundamental
importance for many practical applications such as sound radiation and structural vibration. With the
world community appeal for “greener by design” vehicles and technologies, lower sound emission
is one of the goals that have been pursued towards diminishing environmental pollution, as noise
is also a concern regarding human and wildlife health issues. On the other hand, fluid-structure
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interactions are of concern for structural integrity. Moreover, pressure fluctuations on the surface of
a sharp body, such as the trailing-edge of a wing, scatters sound that is propagated to the far field
and may also induce structural vibrations. Besides aircraft wings, this is especially important for
wind turbines, fans, and propellers [1].

Although the past few decades have experienced great advances in both computations and ex-
periments of wall turbulence, the study of pressure fluctuations in wall-bounded turbulent flows has
received less attention than the analysis of velocity fluctuations. On the experimental side, most of
the studies were focused on the analysis of wall-pressure measurements [2–5], with the microphones
usually mounted in arrays flush to the test model wall [6]. Such arrays have limited aperture and
a finite number of sensors, which, among other issues, limits the measurement resolution. Test
facilities also suffer from background noise that can contaminate the measurements [7], especially
at low Reynolds numbers [8]. The small scales associated with the turbulent flow also impose a
challenge to reliable measurement of pressure fluctuations [9]. Hence, they are an important part of
the literature regarding such topic relies on theoretical and numerical studies.

High-fidelity numerical simulations have the advantage of obtaining the entire flow field, not
necessarily limited to the channel walls. For instance, Kim et al. [10] conducted a direct numerical
simulation (DNS) of a channel flow with friction Reynolds number (Reτ ) of 180. Their database was
further used by Choi and Moin [11], who computed the wall-pressure spectra. When comparing their
frequency spectra with experimental data at different Reynolds numbers, the authors obtained dif-
ferent scaling laws for the low- and high-frequency ranges. The lower frequencies better collapsed
with outer variables, whereas inner variables better fitted the higher frequencies. This result agrees
with the experimental data by Farabee and Casarella [4], who studied wall-pressure fluctuations in
boundary layers. Choi and Moin [11] also identified a small region with a −5 power-law decay
rate for both frequency and streamwise wave-number spectra, i.e., for ων/uτ

2 > 1, where ω is
the angular frequency, ν is the fluid kinematic viscosity, and uτ is the friction velocity, and for
α+ = αν/uτ > 0.1, where α is the streamwise wave number. Such decay rate was also found in later
studies [12–14]. For even higher frequencies, the spectra decay at higher rates. Another observation
by Choi and Moin [11] regards the effect of the Reynolds number on the wall-pressure spectra.
Increasing the Reynolds number leads to increased power at the high-frequency band when outer
scaling is considered, whereas the low-frequency band increases the power with Reynolds number
for inner scaling.

Kim [15] also explored the Reτ = 180 database by Kim et al. [10], focusing on the pressure
fluctuations. The author decomposed the pressure fluctuations into rapid (linear) and slow (nonlin-
ear) components, where the distinction between such components relies on the linear and nonlinear
interactions present in the Poisson equation for pressure. The rapid part of pressure fluctuations,
which contains the mean velocity gradient, responds immediately to any change imposed to the flow
field, whereas the slow part reacts through nonlinear interactions. The results obtained by Kim [15]
show that the slow component is dominant over the rapid component, i.e., the nonlinear source terms
in the Poisson equation play a major role in the pressure fluctuations behavior. Another relevant
finding by the author was obtained through the modeling of the wall fluctuations by a Green’s
function, where the pressure was written as a convolution of a Green’s function with a source term.
He showed the instantaneous pressure at one of the channel walls is affected by source terms that
are present at the opposite wall, highlighting that pressure fluctuations comprise large spatial scales
and have a nonlocal nature.

Regarding the power spectra of wall pressure and shear stress, Hu et al. [12] conducted a series of
numerical simulations for channel flows up to Reτ = 1440. The authors compared their results with
spectra of channel, pipe, and boundary-layer flows at several Reynolds numbers. The wall-pressure
spectrum showed a reasonable collapse for Reτ � 360, with inner scaling for the higher frequencies
and outer scaling for the lower frequencies, as previously observed by Choi and Moin [11]. The pre-
multiplied frequency spectra exhibited a peak at ω+ ≈ 0.3. This peak frequency is in agreement with
the results obtained by Anantharamu and Mahesh [13], which conducted DNS of channel flow at
Reτ = 180 and 400 aiming at exploring the source of wall-pressure fluctuations. Anantharamu and
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Mahesh [13] also found that the wall-pressure fluctuation peak for the premultiplied wave-number
spectra corresponds to a streamwise wavelength λx

+ ≈ 200, where λx
+ = 2π/α+, for fluctuations

in the buffer layer for y+ ≈ 15, where y+ is the wall-normal coordinate in inner (wall or viscous)
units and α+ is the streamwise wave number in inner units. A pressure premultiplied spectrum peak
in the range λx

+ ≈ 200 to 300 was also reported by Panton et al. [16], who studied several DNS
databases of channel flow for Reτ up to 5186 and zero pressure gradient boundary-layer flows for
Reτ up to 1271. In addition, Panton et al. [16] proposed scaling laws for the pressure statistics at the
wall and inner and outer layers.

In recent years there has been substantial effort in modeling coherent structures in wall turbulence
[17–19]. Efforts towards this direction include the study of linearized models and modal decompo-
sition of databases [20–22]. For linearized models, the problem is written in the input-output format
in the frequency domain and the nonlinear terms of the Navier-Stokes (N-S) system are treated as
an external forcing that generates a response through the resolvent operator, obtained by inversion
of the linearized N-S (LNS) operator considering the mean profile as a base flow [23,24]. The
inputs correspond to the forcing terms (nonlinear terms of N-S system), whereas the outputs denote
the flow state (e.g., velocity and pressure components). In the frequency domain, the input and
outputs are written as two-point space-time statistics, i.e., cross-spectral densities (CSDs), and can
be accurately computed directly from, e.g., snapshots of DNS data. Resolvent analysis permits the
elucidation of the role played by the nonlinear terms of the N-S system. Application of singular value
decomposition (SVD) on the resolvent operator provides the most amplified forcing and response
modes. Resolvent modes also display a hierarchical character, ranked from high to low gain. It
should be emphasized that in order to obtain the resolvent operator, hence the resolvent modes,
only the mean flow and the boundary conditions are needed. As the resolvent analysis employs
a linearization over a mean flow, it may reveal the dominant amplification mechanisms. This is in
contrast with the use of the Poisson equation for pressure fluctuations, where no assumption is made
about the base flow, and a normal linear operator (the Laplacian) does not display gain separations as
significant as the ones obtained with the LNS. For instance, Luhar et al. [25] used resolvent analysis
to explore wall-pressure fluctuations in turbulent pipe flow obtained through DNS and verified that
the rank-1 (optimal) response mode contains most of the relevant features present in the DNS. They
also show the pressure fluctuations that can be identified through the resolvent analysis are related
to the rapid (linear) pressure component. The slow (nonlinear) pressure component, on the other
hand, needs the solution of the full nonlinear turbulence field, since it is related to the divergence of
the full forcing field.

Response modes obtained from resolvent analysis may be compared to appropriate modal de-
compositions of data, and a suitable approach is spectral proper orthogonal decomposition (SPOD).
SPOD extracts a set of orthogonal modes from flow realizations in frequency domain that are
optimal according to an appropriate inner product [26,27]. The modes are ranked according to their
energetic content, i.e., the first mode is the most energetic one and the subsequent modes contain
less energy than the previous mode. The resolvent or response modes are equivalent to the SPOD
modes when the flow is forced by stochastic white noise [26,28,29]. Moreover, if the resolvent has a
large gain separation, i.e., σ1 � σ2,3,...,n, then the optimal flow response is expected to be dominant
and is thus similar to the most energetic SPOD mode. In this case, even a white-noise assumption
for the forcing terms in the resolvent framework leads to reasonable agreement between SPOD and
resolvent analysis. Therefore, the resolvent analysis becomes a powerful method to predict dominant
coherent structures in turbulent flows.

SPOD and resolvent analysis applied to study coherent structures in wall-bounded flows normally
focus on the velocity components. Early works by McKeon and Sharma [23] and Hwang and Cossu
[24] investigated pipe and channel flows, respectively, for a wide range of Reynolds numbers using
resolvent analysis to study the most amplified velocity responses. In the channel flow problem
studied by Hwang and Cossu [24], the authors showed the most amplified structures are streamwise
streaks which are forced by streamwise vortices. Streaks are coherent structures, usually identified in
the near-wall region of wall-bounded turbulent flows and can be pictured as spanwise aligned layers
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of low- and high-speed streamwise velocity flow driven by quasistreamwise vortices that organize
the momentum transfer and energy dissipation, redistributing the kinetic energy [30,31]. Abreu
et al. [32] studied DNS channel flow databases at Reτ ≈ 180 and 550 and employed SPOD and
resolvent analysis to identify and model near-wall coherent structures for several combinations of
wave numbers and frequencies, with only velocity state components considered in the study. They
verified that streaks and streamwise vortices were the most energetic structures in the near-wall
region, as expected from the literature of wall-bounded turbulent flows [31]. The leading SPOD
and resolvent modes were in close agreement when the lift up mechanism [33,34] was active,
similarly to what was found in a related turbulent pipe flow study [35]. Lift up is a linear mechanism
that amplifies finite amplitude streamwise fluctuations in shear flows through the action of vertical
fluctuations, hence moving low-speed flow from the walls upwards [36,37].

The resolvent operator can be written to include an eddy-viscosity model (which substitutes the
constant molecular viscosity) to mimic a portion of the nonlinear terms of the N-S system [22,24]. In
this approach, the nonlinear forcing statistics are still modeled as white noise but the linear operator
is modified by the inclusion of the eddy-viscosity model, the most common model being the one
proposed by Cess [38]. Eddy-viscosity approaches were successfully employed, e.g., to compute
optimal temporal transient growths supported in turbulent channel flow [39,40], optimally amplified
streaks [41], to introduce optimal perturbations (streaks) in confined turbulent flows [42], among
others. Symon et al. [19] and Symon et al. [43] observed the use of a Cess eddy-viscosity model
was helpful in the resolvent analysis in channel flows, improving the resolvent modes capacity to
predict the most energetic structure (streamwise streaks). However, the use of a singe eddy-viscosity
profile does not lead to accurate predictions at all scales.

The work by byMorra et al. [44] employed SPOD and resolvent analysis to investigate turbulent
channel flow at Reτ ≈ 180 and 550 obtained through DNS. The authors focused on extracting the
nonlinear forcing terms from the database in order to show how such terms affect the resolvent
outputs. In their study, the power spectral density (PSD) of the state (velocity fluctuation) compo-
nents, evaluated through the input-output formulation for different forcing statistics (input) models,
where compared with the true state components, obtained directly from the DNS, for the most
energetic near-wall and large-scale structures. They showed that a rank-2 approximation of the
forcing, containing only the two most energetic SPOD modes, is a sufficient approximation of the
nonlinear terms, leading to a response with reasonable accuracy when comparing with DNS data.
The performance of the Cess eddy-viscosity-modeled forcing on the accuracy of resolvent analysis
was also explored and the authors verified the use of the eddy-viscosity model boosted the accuracy
of the predictions of the output (response) in comparison to the resolvent operator using only the
molecular viscosity.

The present study explores the DNS databases of turbulent channel flow at Reτ ≈ 180 and
550. Such DNS databases were validated against established results in the literature. The aim is
to investigate coherent pressure fluctuations in channel flows using SPOD and resolvent analysis.
The coherent structures were obtained through the analysis of the pressure spectra at y/H = 0
(corresponding to the channel wall) and y/H = 0.5, where H is the channel half-height, targeting
the most energetic structures. Such wall-normal distances were selected as representative locations
of near-wall and large-scale structures in wall-bounded flows. The resolvent operator is studied with
and without the inclusion of the Cess eddy-viscosity model Cess [38]. We examine the accuracy of
input-output analysis to predict pressure fluctuations and the role of nonlinear forcing statistics in
constructing the flow response in order to provide knowledge on the dynamics of pressure structures
in wall turbulence. Low-rank models for the forcing component and their effect on the pressure
component estimate is also addressed.

The remainder of this paper is organized as follows. After this introduction, Sec. II addresses the
methodology, including the description of the physical problem, the tools employed to analyze the
data (resolvent analysis or input-output formulation, two-point statistics, and SPOD), and details
of the DNS databases. The energy spectra as a function of the streamwise and spanwise wave
numbers, as well as the frequency, for wall-normal distances corresponding to the near-wall and
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large-scale structures are reported in Sec. III. Comparisons between SPOD and resolvent modes,
with and without the inclusion of the Cess eddy-viscosity model on the linear operator are discussed
in Sec. IV. In Sec. V we employ the input-output formulation to elucidated the role of the forcing
terms through the study of the effect of each forcing component (input) on the pressure component
(output). Finally, Sec. VI summarizes the conclusions.

II. METHODOLOGY

A. Governing equations

The flow is governed by the incompressible Navier-Stokes system in the absence of external
body forces. The vector of velocity components is given by u = [ux uy uz], with ux, uy, and uz as the
streamwise, wall-normal, and spanwise velocity components, respectively. The full state vector is
written as

q = [u p]T , (1)

with q = q(x, y, z, t ), where x, y, and z indicate the streamwise, wall-normal, and spanwise direc-
tions, respectively; t denotes time; p is the pressure component; and T denotes transpose operator.
A Reynolds decomposition was employed over the flow state components, i.e., q = q̄ + q′, where q̄
is the mean flow and q′ is the fluctuation.

In the present study, the mean flow at the streamwise direction is employed to construct the
linearized Navier-Stokes system, e.g., q̄ = [Ū (y) z z z]T , where z is the zeros vector and Ū (y) is
the mean flow velocity profile. The mean pressure gradient that drives the channel flow has no
contribution for the linearised Navier-Stokes system for nonzero frequency and wave number, as
discussed by Morra et al. [44], and hence is not considered here. Following Morra et al. [44] and
dropping the primes from the fluctuation quantities to simplify notations, the Reynolds-decomposed
N-S system is given by

∂t u + (u · ∇)Ū + (Ū · ∇)u + ∇p − 1

Reτ

∇2u = f , (2a)

∇ · u = 0, (2b)

where ∂t denotes partial derivative with respect to time t , ∇ is the gradient operator, and ∇2 is the
Laplacian operator. The nonlinear terms of the N-S system, i.e.,

f = −(u · ∇)u + (u · ∇)u, (3)

are interpreted as external forcing [23] and, in Cartesian coordinates, are given by the vector f =
[ fx fy fz]T , where fx, fy, and fz are the streamwise, wall-normal, and spanwise forcing components,
respectively. The friction Reynolds number is defined as Reτ = uτ H/ν. The Reynolds number may
also be given in terms of the bulk velocity Ub, i.e., Re = UbH/ν.

B. Resolvent analysis and input-output formulation

Resolvent analysis is a technique in which the governing equations are linearized over a base
flow and written in the input-output format. The inputs refer to the forcing terms and the outputs
are the flow responses [23,24,45]. The LNS operator includes the base flow and adequate boundary
conditions, e.g., no-slip conditions at the top and bottom walls for channel flows.

For a discrete domain, one has

M
dq(t )

dt
= Aq(t ) + B f , (4a)

y(t ) = Cq(t ), (4b)

where M is a diagonal matrix whose entries are set to 1 and zero for the momentum and continuity
equations, respectively, A is the linear operator, assumed as stable, B is the input matrix that restricts
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the forcing terms to appear only in the momentum equation, and C is a matrix that selects a relevant
output y. Throughout this study, C restricts the observations to the components of the state related to
pressure fluctuations, unless otherwise specified. Expression (4b) is exact provided that the forcing
terms are computed from the same DNS database employed to obtain the state components.

Equation (4b) can be written in frequency and wave-number domains as

ŷ(ω) = {C[−iωM − A(ω)]−1B} f̂ (ω), (5)

where dependencies on streamwise and spanwise wave numbers α and β, respectively, and wall-
normal distance y, were dropped to simplify notations. Moreover,

ŷ(ω) =
∫ ∞

−∞
y(t )eiωt dt (6)

is the Fourier transform of y, with analogous expression for other variables. Hats indicate variables
in the frequency domain, ω is the temporal frequency, and i = √−1.

In expression (5), between brackets one has H = CRB, where R = L−1 and L = (−iωM − A).
L is the LNS operator, whereas R denotes the resolvent operator and H is the resolvent operator
including, through operators C and B, the observation and forcing restrictions, respectively.

Following McKeon [22], the LNS operator is written as

L =

⎡
⎢⎢⎢⎢⎣

iαŪ − iωI − 1
Re ∇2 dŪ

dy Z iαI

Z iαŪ − iωI − 1
Re ∇2 Z d

dy

Z Z iαŪ − iωI − 1
Re∇2 iβI

iαI d
dy iβI Z

⎤
⎥⎥⎥⎥⎦, (7)

for a triplet (α, β, ω). Here Ū is the mean turbulent streamwise velocity profile, ∇2 = ( d2

dy2 − k2I)

with k2 = α2 + β2, d
dy and d2

dy2 are, respectively, the first and second differentiation matrices along
the wall-normal coordinate, and Z is the zeros matrix. No-slip conditions at the walls are applied to
the linear operator.

The input matrix B is given by

B =

⎡
⎢⎢⎢⎣

I Z Z

Z I Z

Z Z I

Z Z Z

⎤
⎥⎥⎥⎦, (8)

with the rows corresponding to the wall positions for the three-momentum equations set to zero to
enforce the boundary conditions.

To restrict the observations to the pressure field, operator C is defined in this work as

C = [Z Z Z I]. (9)

The linear operator can include an eddy-viscosity model. Following Towne et al. [46], the linear
operator L including the Cess eddy-viscosity model [38] reads

L =

⎡
⎢⎢⎢⎢⎣

iαŪ − iωI − E − J −iανT
′I + dŪ

dy Z iαI

Z iαŪ − iωI − 2E − J Z d
dy

Z −iβνT
′I iαŪ − iωI − E − J iβI

iαI d
dy iβI Z

⎤
⎥⎥⎥⎥⎦, (10)
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where νT
′ = d

dyνT , E = νT
′ d

dy , and J = 1
Reτ

νT
ν

∇2. The total eddy viscosity νT (y), obtained after the
sum of the turbulent eddy viscosity νt (y) and the viscosity ν, is modeled as

νT

ν
= 1

2

{
1 + κ2Reτ

2

9
[1 − (η − 1)2]2[1 + 2(η − 1)2]2

[
1 − e(|η−1|−1)Reτ /A

]2

}1/2

+ 1

2
, (11)

where the constants κ and A are constants given as 0.426 and 25.4, respectively [40], and η is the
nondimensional wall distance in outer units, i.e., η = y/H and y ∈ [0, 2H] (i.e., η ∈ [0, 2]).

The application of SVD on the resolvent operator accounting for the integration weights leads to

K p
1/2HK f

−1/2 = Ũ�Ṽ
†
, (12a)

V = K f
−1/2Ṽ , (12b)

U = RBV , (12c)

where the columns of U and V form orthonormal bases, � is the a rectangular diagonal matrix of sin-
gular values, and † denotes the Hermitian operator. U = [U1 U2 . . . Un] and V = [V 1 V 2 . . . V n]
can be interpreted as the optimal output (response or resolvent) and input (forcing) modes, respec-
tively. The gain matrix � is diagonal with real, positive and decreasing values, i.e., σ1 � σ2 � · · · �
σn. A harmonic forcing f̂ = V i leads to a flow response q̂ = σiU i. For n = 1, the pair (U1,V 1)
provides the optimal, or most amplified, forcing and its associated response [23,24]. When σ1 � σ2,
i.e., there exists a large gain separation between the first two singular values, the first response mode
tends to dominate the flow and the operator is denominated as low-rank.

Tilde notations in Eq. (12c) indicate quantities biased by the integration weights, with the
Cholesky decomposition denoted by K p

1/2 and K f
1/2 regarding the pressure and forcing compo-

nents, respectively. K p is a diagonal matrix containing Clenshaw-Curtis quadrature weights [47]
and K f is defined as

K f =

⎡
⎢⎣

K p Z Z

Z K p Z

Z Z K p

⎤
⎥⎦. (13)

Note that if one defines Eq. (12c) as

U = CRBV = HV = K p
−1/2Ũ , (14)

then the resolvent modes would be restricted by the pressure fluctuation component, i.e., only
pressure modes could be recovered. Defining Eq. (12c) as U = RBV enables the recovering of
the full-state modes, i.e., velocity and pressure fluctuation components.

C. Two-point statistics (CSD)

Let us consider

Q = 〈q̂q̂†〉, (15a)

F = 〈 f̂ f̂
†〉, (15b)

where Q and F are the CSDs, or the two-point statistics, of the state and forcing components as a
function of (α, β, ω) and symbol 〈. . . 〉 denoting the expected-value operator. Welch’s method [48]
can be employed to evaluate a CSD from a time series.

It is possible to obtain the flow response to an stochastic process employing the resolvent operator
[26,28,29], i.e.,

S = HFH†. (16)
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Moreover, the observation CSD can be obtained as

Y = CQC†. (17)

Expression (16) is the input-output relation between the forcing (F) and response (S) CSDs.
Knowledge of the full forcing statistics terms allows the recovery of the full response statistics. If
the forcing statistics terms are unknown, then one option is to model it as white noise, i.e., F = I
and hence

SI = HH†. (18)

In practical applications, typically the forcing CSD terms are unknown and modeling them as
white noise is an interesting possibility. Yet, one may include an eddy-viscosity model in the linear
operator formulation to account for part of the forcing terms maintaining the forcing CSD as white
noise, i.e.,

SνT = HνT HνT
†, (19)

where subscript νT indicates the use of the eddy-viscosity model within the resolvent operator.

D. SPOD

SPOD is a technique that decomposes a set of snapshots into an orthonormal, optimal basis
in the frequency domain [26,49,50]. The obtained modes represent structures that maximize the
mean-square energy of the analyzed flow field for a given inner product [51].

The SPOD can be evaluated by taking the eigenvalue decomposition of the CSD of the state
(or forcing) for a triplet (α, β, ω) and an appropriate weight or inner product. In discrete form, the
generalized problem can be written as

DW� = ��, (20)

where D is the CSD of interest, e.g., state observations [Y , Eq. (17)] or forcing [F, Eq. (15b)],
W accounts for both the integration weights and the numerical quadrature on the discrete grid, �

denotes the SPOD modes, and � corresponds to the eigenvalues.
The SPOD modes are an orthonormal basis that optimally represent the CSD of interest, in

the present case the pressure fluctuations, for a given wave number–frequency combination [26].
The contribution of each SPOD mode (eigenfunction) to the CSD representation is given by its
associated eigenvalue, ranked according to the energetic content, i.e., from the most to the least
energetic, i.e., λ1 � λ2 � · · · λn.

To extract the SPOD modes, we followed the procedures by Towne et al. [26] and Schmidt and
Towne [27]. Therefore, we have not solved Eq. (20) but an equivalent problem that contains the
same nonzero eigenvalues, given by

Ĝ
†
W Ĝ� = ��̃, (21a)

�̃ = Ĝ��̃
−1/2

, (21b)

where Ĝ is a matrix containing the state (or forcing) Fourier transforms of each data block, �

denotes the eigenvectors, �̃ stands for the eigenvalues, and �̃ contains the SPOD modes. The total
number of nonzero eigenvalues is Nb, i.e., the same as the number of blocks employed in the Welch’s
method to obtain the CSDs.

To target the pressure SPOD, operator W is defined as

W =

⎡
⎢⎢⎢⎢⎣

Z Z Z Z

Z Z Z Z

Z Z Z Z

Z Z Z K p

⎤
⎥⎥⎥⎥⎦, (22)
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, periodic

, periodic

= 2

FIG. 1. Sketch of the channel flow geometry (black), coordinate system (red), and mean flow (blue)
together with relevant dimensions (green).

whereas Ĝ is a matrix that is organized, for each frequency ω and wave-number pair (α, β ), as
containing the Fourier transforms of each state component and for each wall-normal distance y
in its lines, i.e., Ny lines (Ny being the mesh discretization in the wall-normal direction), and the
columns are organized in terms of data blocks, i.e., Nb columns. Therefore,

Ĝ = [
q̂1 q̂2 · · · q̂Nb

]
, (23)

for a triplet (α, β, ω) and

q̂ = κ[ûx ûy ûz p̂]T , (24)

where the state components are written in the frequency–wave number domain, i.e., for a triplet
(α, β, ω), and κ is a constant defined as

κ = 1√
Nb
 f

, (25)

where 
 f is the frequency discretization.
It is important to remark that resolvent and SPOD modes are identical when the forcing CSD

is considered white in space, with the SPOD eigenvalues equal to the square of the resolvent modes
[26].

E. Numerical simulations

The ChannelFlow pseudospectral code [52] was employed to conduct the DNS of incompressible
turbulent channel flow for friction Reynolds numbers of Reτ ≈ 180 and 550. In Cartesian coordi-
nates, with half height H used for normalization, the boxes dimensions are 4π × 2 × 2π in the
streamwise (Lx), wall-normal (Ly), and spanwise (Lz) directions, respectively, for the Reτ ≈ 180
simulation, and 2π × 2 × π for the Reτ ≈ 550 case. The wall-normal direction is defined within
y/H ∈ [0, 2]. Figure 1 shows a sketch of the flow geometry employed in the simulations.

For each simulation, the state and forcing components were stored as a function of time t ,
wall-normal distance y, and streamwise and spanwise wave numbers, α and β, respectively, i.e.,
q = q(α, y, β, t ) and f = f (α, y, β, t ). Chebyshev polynomials were employed for the discretiza-
tion of the wall-normal direction (y), whereas the streamwise (x) and spanwise (z) directions were
discretized using Fourier modes; the collocation points in the streamwise and spanwise directions
were expanded by a 3/2 factor for dealiasing purposes [10].

Table I shows the simulation main parameters, including the bulk Reynolds numbers Re and the
friction Reynolds numbers Reτ , the number of mesh points (Nx, Ny, and Nz) and mesh discretization
(
x+, 
z+, 
ymin

+, and 
ymax
+). The first column of the table contains the canonical values for

the friction Reynolds number and, between parenthesis, their actual value from the simulations.
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TABLE I. DNS parameters of the two channel flow cases addressed in the present study.

Reτ Re Nx Ny Nz 
x+ 
z+ 
ymin
+ 
ymax

+ Nt 
t+ Nfft Nb

180 (179) 2800 192 129 192 11.71 5.86 5.39 × 10−2 4.39 2399 5.72 64 146
550 (543) 10 000 384 257 384 8.89 4.44 4.09 × 10−2 6.66 3000 2.95 64 184

The plus superscript indicates nondimensional quantities using inner (viscous) scaling. Table I also
includes information on the number of snapshots (Nt ) and the time steps based on inner units (
t+),
as well as the block-size (Nfft) and number-of-blocks (Nb) employed to evaluate CSDs and PSDs.
The computation of power spectra, CSDs and PSDs of the flow state and forcing were performed
using Welch’s method [48] with a Hann window and blocks containing 75% overlap.

The works by Martini et al. [53] and Morra et al. [44] present the DNS validation results for
the mean velocity profile and root-mean-square (rms) values of velocity components; the former
paper for Reτ ≈ 180 and the later for Reτ ≈ 550. Literature results from earlier simulations [54]
were employed for validation purposes. Pressure statistics validation results were not addressed by
Martini et al. [53] and Morra et al. [44]. Therefore, Fig. 2 displays the root-mean-square of the
pressure component for the present database (continuous lines) and for the data obtained from del
Álamo and Jiménez [54] (symbols), which show good agreement.

To further validate the DNS databases, Fig. 3 displays one-sided wall-pressure spectra scaled
in inner units as a function of streamwise (left frame) and spanwise (right frame) wave numbers.
Comparisons among the results of the present simulations with others obtained in the literature
[11,13] are displayed in the figure. Note the Reτ ≈ 550 database has a higher friction Reynolds
number than the one used by Anantharamu and Mahesh [13], which is 400. Regarding the stream-
wise wave-number spectra (left frame), good agreement is achieved for the energy containing part of
the spectrum at low wave numbers. Differences with respect to the Reτ = 400 case in Anantharamu
and Mahesh [13] may be attributed to the different Reynolds numbers of the simulations. The
high-wave-number content of the present simulation has a faster decay than earlier results. This
may be related to the use of the rotational form of the nonlinear terms in the present simulation, as
different choices for the nonlinear terms may affect results [55]. As the present study focuses on
larger pressure structures, the agreement at lower wave numbers and rms profiles was considered
sufficient.

FIG. 2. Comparison between the pressure component rms for the present simulations (continuous lines)
and those by del Álamo and Jiménez [54] (symbols).
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[13]
[13]

[11]

FIG. 3. Comparison among wall-pressure fluctuation streamwise wave-number spectra for the present
Reτ ≈ 180 (gray thick continuous line) and 550 (black thin continuous line) simulations and the results by
Anantharamu and Mahesh [13] at Reτ ≈ 180 (red thick dashed line) and 400 (blue thin dashed line) and
by Choi and Moin [11] at Reτ ≈ 180 (green thick dash-dotted line). Left frame: Spectra as a function of
streamwise wave number in inner units. Right frame: Spectra as a function of spanwise wave number in inner
units. A −5 slope curve (orange thick dotted line) is also plotted in the left frame.

The present turbulent channel flow simulations have statistical symmetry around the central
plane. We take advantage of this by decomposing fluctuations into even and odd parts around the
central plane, as in Abreu et al. [32]. In this study we considered the odd part of pressure fluctuations,
with the corresponding even or odd parts for the other state and forcing components.

III. WAVE-NUMBER AND FREQUENCY SPECTRA OF PRESSURE FLUCTUATIONS

We start by evaluating wave-number and frequency spectra for the pressure in order to select the
most energetic structures for further analysis. The procedure will follow the approach of Morra et al.
[56], this time for pressure fluctuations. Spectra without and with premultiplication will be used,
since, as will be shown, energetic spanwise-coherent pressure structures appear in the spectrum
without premultiplication. A detailed analysis of the Reτ ≈ 550 channel flow will be addressed
in the following, whereas complementary results for the Reτ ≈ 180 simulation are displayed in
Appendix.

The pressure component spectra at the channel wall (y = 0) and at y+ ≈ 100, 200 and y ≈ 0.5 (a
height characteristic of large-scale structures [54]) are shown in Figs. 4 and 5 for the pressure power
spectra with and without premultiplication, respectively. Minor differences between wall (y = 0)
and buffer-layer spectra (y+ ≈ 15, characteristic of near-wall structures) were observed and hence
we decided to show only the results on the channel wall. The wall premultiplied spectrum peaks at
(λx

+, λz
+) ≈ (227, 155) and the λx

+ peak value agrees with previous studies [13,16]. On the other
hand, the y ≈ 0.5 plane premultiplied spectrum peaks at (λx, λz ) ≈ (0.90, 1.57). The premultiplied
spectra at y+ ≈ 100 resembles the one at y = 0, although the energy peak moved to slightly
higher wavelengths, whereas the spectra at y+ ≈ 200 resembles the one at y ≈ 0.5 (equivalent to
y+ ≈ 270). Note that on the wall (y = 0), peak spectral wave numbers denote structures that are
streamwise elongated, i.e., λx > λz, whereas far from the wall (e.g., y ≈ 0.5), the more energetic
structures are spanwise elongated, i.e., λz > λx.

The pressure spectra without premultiplication as a function of streamwise and spanwise wave
numbers shown in Fig. 5 peaks at (α, β ) = (3, 0) for all the four studied planes, suggesting the
presence of large spanwise elongated structures extending throughout the channel. This peak wave
number matches the results of Yang and Yang [14]. Abreu et al. [57] and Pozuelo et al. [58] verified
that such spanwise elongated structures (β = 0) for velocity fluctuations are not an artifact of small
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FIG. 4. Premultiplied energy spectra for Reτ ≈ 550 simulation.

domains. Spanwise-elongated pressure structures are potentially relevant for problems involving
fluid-structure interaction [59] and sound radiation [60,61]. Hereinafter, as a convention, we will
refer to the near-wall structures in inner (or wall) units, whereas large-scale structures will be dealt
with using outer units. We will also focus on the near-wall (y = 0), large-scale (y ≈ 0.5) and the
spanwise-coherent structures.

To determine frequencies of interest for the peak wave numbers, similarly to what was done
by Morra et al. [56], the pressure PSD for near-wall and large-scale structures are exhibited in the
top frames of Fig. 6 as a function of wall-normal distance and phase speed. In the figure, the PSD
is plotted as a function of the wall-normal distance and phase speed c+ = ω+/α+, where ω+ is
the angular frequency scaled in inner units. The top and bottom frames correspond to the PSD of
the pressure and streamwise forcing components, respectively. The figure also shows the critical
layer (U + = c+) in dashed lines. The pressure component PSDs peak at c+ ≈ 13.5 (ω+ ≈ 0.37)
with support at y+ ≈ 30 and c+ ≈ 18 (ω ≈ 6.87) with support at y ≈ 0.38 for the near-wall and
large-scale structures, respectively. The ω+ peak value is in agreement with previous results [12,13].
For the forcing streamwise component, the PSDs peak at c+ ≈ 12 and 13 for the near-wall and large-
scale structures, respectively, both with support at y+ ≈ 10. Such near-wall nature of the forcing
peak, even for large-scale structures, was reported by Morra et al. [44].

The PSDs are shown in Fig. 7 for the pressure (right frame) and streamwise forcing (left frame)
components for the spanwise-coherent structures with (α, β ) = (3, 0). Both pressure and forcing
components PSD peak at ω ≈ 2.95, the first with support at y+ ≈ 183, following the critical layer,
and the latter with support at y+ ≈ 7. Hereinafter, the power spectra without premultiplication peak
will be refereed to as PSP.

Table II summarizes the results of the preceding analysis of spectra for both Reynolds numbers.
The spectral peaks are given in terms of spanwise and streamwise wave numbers and wavelengths
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FIG. 5. Energy spectra for Reτ ≈ 550 simulation.

(in inner and outer units), phase speeds, angular frequencies (in inner and outer units) and wall-
normal distance of the peak (in inner and outer units) for both Reynolds numbers. Results for the
pressure and streamwise forcing spectra are shown in the table, and when the peak location of the
latter is different from the former ones, such values are provided between parenthesis. Note that
it is also possible to recover the temporal wavelengths through the relationships λt = 2π/ω and
λt

+ = 2π/ω+ in outer and inner units, respectively. The near-wall structures for both Reynolds
numbers show similar peak location when considering inner scaling, i.e., (λx

+, λz
+) ≈ (200, 160)

and (c+, ω+) ≈ (13.5, 0.4), with support at y+ ≈ 35, whereas for the streamwise forcing compo-
nent, one has (c+, ω+) ≈ (12, 0.35). Such scaling must be taken with care, since only two moderate
Reynolds numbers are considered in the present study. For completeness, results for the wall-normal
distance of y+ ≈ 15 are also provided in the table and it is verified that the spectral characteristics
at this distance are very similar to those obtained at the wall (y = 0). For the large-scale structures
(y ≈ 0.5), no obvious scaling with either inner or outer units is observed. Regarding the spectra
without premultiplication, large structures that are infinitely long in the spanwise direction were
found for both Reynolds numbers. Analyzing the forcing spectra, such spanwise-coherent structures
have at y+ ≈ 7 for both Reynolds numbers, whereas the pressure spectra show support at y+ ≈ 44
and 183 for Reτ ≈ 180 and 550, respectively.

IV. COMPARISON BETWEEN SPOD AND RESOLVENT MODES

A. Dominant structures

The dominant coherent structures described in the previous section are further explored using
SPOD and resolvent analysis for the Reτ ≈ 550 simulation. Appendix displays complementary
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FIG. 6. PSDs for Reτ ≈ 550 simulation. Left frames: Near-wall structures. Right frames: Large-scale
structures. Top frames: Pressure component (spp). Bottom frames: Streamwise forcing component ( f xx).
Dashed lines denote the critical layer. Note the vertical axis scaling of the top-left frame is in outer units
(y), whereas the other frames retained inner units (y+).

results for the Reτ ≈ 180 simulation. Regarding the resolvent analysis, results without and with
the eddy-viscosity model are addressed.

Figure 8 exhibit the SPOD eigenvalues evaluated for the pressure (top frames) and forcing
(bottom frames) components. Near-wall, large-scale, and spanwise-coherent structures are dis-
played in the left, middle, and right frames, respectively. The first SPOD eigenvalue correspond to

FIG. 7. PSDs for Reτ ≈ 550 simulation and spanwise-coherent structure, i.e., (α, β ) = (3, 0). Right frame:
Pressure component (spp). Left frame: Streamwise forcing component ( f xx). Dashed lines denote the critical
layer.
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TABLE II. Spectral peaks for wall, near-wall, large-scale, and PSP structures for the two Reynolds numbers
studied. Notation w/pm indicates spectra with premultiplication, whereas w/o pm pm indicates spectra without
premultiplication. When the streamwise forcing component peak location differs from those of the pressure
component, the values of the forcing peak are given between parenthesis. ypeak

+ and ypeak denote the PSD peak
position.

λx
+ λz

+ λx λz α β c+ ω+ ω ypeak
+ ypeak

w/pm, y = 0, Reτ ≈ 180 204 161 1.14 0.90 5.5 7 14 (12.5) 0.43 (0.38) 4.91 (4.32) 38 (10) 0.21 (0.06)
w/pm, y+ ≈ 15, Reτ ≈ 180 225 125 1.26 0.70 5 9 14 (12.5) 0.40 (0.34) 4.52 (3.93) 33 (10) 0.17 (0.06)
w/pm, y ≈ 0.5, Reτ ≈ 180 250 375 1.40 2.09 4.5 3 16 (12.5) 0.39 (0.31) 4.52 (3.53) 76 (10) 0.42 (0.06)
w/o pm, Reτ ≈ 180 749 ∞ 12.57 ∞ 0.5 0 12.5 0.03 0.39 44 (6.5) 0.24 (0.04)

w/pm, y = 0, Reτ ≈ 550 227 155 0.42 0.29 15 22 13.5 (12) 0.37 (0.33) 10.8(9.82) 30 (10) 0.05 (0.02)
w/pm, y+ ≈ 15, Reτ ≈ 550 227 131 0.42 0.24 15 26 12 (13) 0.33 (0.37) 9.82 (10.80) 20 (10) 0.04 (0.02)
w/pm, y ≈ 0.5, Reτ ≈ 550 490 850 0.90 1.57 7 4 18 (13) 0.23 (0.17) 6.87 (4.91) 209 (10) 0.38 (0.02)
w/o pm, Reτ ≈ 550 1137 ∞ 2.09 ∞ 3 0 18 0.10 2.95 183 (7) 0.34 (0.01)

approximately 61%, 69%, and 91% of the total energy for the near-wall, large scale, and spanwise-
coherent structures, respectively, when considering the pressure component. Abreu et al. [32] report
a first eigenvalue corresponding to about 68% and 84% of the total energy for the near-wall and
large-scale structures, respectively. Note that the near-wall and large-scale structures obtained by
Abreu et al. [32] peak at other spatial and temporal wavelengths, since they are targeting the
streamwise velocity component and consider the kinetic energy weighting to evaluate the SPOD
modes. If the forcing components are considered instead, then the first SPOD eigenvalues decay
to approximately 25%, 21%, and 27% of the total energy for the respective structures. Taking into
account the second forcing SPOD eigenvalue raises the percentile contribution to approximately
43%, 37%, and 41%, respectively. However, the leading pressure SPOD mode remains strongly
dominant for the three considered structures.

Figure 9 displays the resolvent and eddy-viscosity resolvent gains, where black circle markers
indicate the former and red square markers account for the latter. Frames, from left to right, denote
the near-wall, large-scale and spanwise-coherent structures, respectively. The ratio between the
first and second resolvent gains, i.e., σ1/σ2, is of approximately 3.94, 9.52, and 30.85 for the

FIG. 8. SPOD eigenvalues employing the pressure (top frames) and forcing (bottom frames) modes for
the Reτ ≈ 550 simulation. Frames from left to right: Near-wall, large-scale, and spanwise-coherent structures,
respectively.
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FIG. 9. Resolvent gains employing the pressure weighing for the Reτ ≈ 550 simulation. Black circles:
Linear operator without eddy-viscosity model. Red squares: Linear operator with eddy-viscosity model. See
the comments in the caption of Fig. 8.

near-wall, large scale and spanwise-coherent structures, respectively, i.e., a low-rank behavior is
observed. Regarding the eddy-viscosity resolvent gains, such low-rank behavior is not present, with
suboptimal gains close to the optimal ones.

Low-rank reconstructions of the pressure PSD [P(est)
pp ] for the near-wall and large-scale structures

are displayed in Fig. 10 using only the first resolvent or response mode, i.e.,

P(est)
pp = acorrU1σ1

2U1
†, (26)

where acorr is the amplitude correction factor, chose to match the DNS [P(DNS)
pp , Figs. 6 and 7] at

each frequency ω as

acorr (ω) =
∫ 2

y/H=0 P(DNS)
pp (α, y, y, β, ω)dy∫ 2

y/H=0 U1σ1
2U1

†dy
, (27)

in the same fashion as Morra et al. [56].
In comparison with the top frames of Fig. 6, it is seen that the near-wall and large-scale structures

are well represented by the first mode. This feature is somewhat expected since a gain separation
of approximately one order of magnitude is observed for such structure (Fig. 9). However, the
predictions from resolvent analysis without eddy-viscosity tend to be more concentrated around
the critical layer c = U than the trends from DNS data [56]; this feature is observed in the plots.
Regarding the spanwise-coherent structure, an even closer match with the DNS PSD is obtained,
peaking at (c+, y+) ≈ (18, 180); again, the gain separation is significant, which leads to a clearly
dominant mechanism for spanwise-coherent structures.

FIG. 10. Pressure component PSD low-rank resolvent reconstruction (first mode) for the Reτ ≈ 550 simu-
lation. Frames from left to right: near-wall, large-scale, and spanwise-coherent structures, respectively.
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FIG. 11. Pressure component PSD low-rank eddy-viscosity resolvent reconstruction (first mode) for the
Reτ ≈ 550 simulation. See the comments in the caption of Fig. 10.

Figure 11 shows the low-rank reconstructions now using the eddy-viscosity resolvent, i.e.,

PνT (est)
pp = aνT

corrU
νT
1 σ

νT
1

2U νT
1

†, (28)

with

aνT
corr (ω) =

∫ 2
y/H=0 P(DNS)

pp (α, y, y, β, ω)dy∫ 2
y/H=0 U νT

1 σ
νT
1

2U νT
1

†dy
. (29)

Although this model does not show a low-rank behavior (Fig. 9), it captured the energy peak position
for the near-wall structures at (c+, y+) ≈ (13.5, 30). In contrast, the eddy-viscosity resolvent does
not well represent the energy peak position for the large-scale structure, which shows a peak at
(c+, y) ≈ (16, 0.1), and for the spanwise-coherent structure, which only the phase speed peak is
correct at c+ ≈ 18. Besides the mismatch in pressure PSD peaks, the distributions along y are not
well represented by the low-rank reconstruction.

SPOD (�̃p), resolvent (U ), and eddy-viscosity resolvent (U νT ) modes are shown in Fig. 12 for
the near-wall and large-scale structures. For brevity, only the first SPOD and the optimal resolvent
and eddy-viscosity resolvent modes are shown. The pressure component is depicted in the contours,
where blue color denotes negative values, whereas the red color indicates positive values in the

FIG. 12. Pressure near-wall (left frames) and large-scale (right frames) structures modes for the Reτ ≈ 550
simulation. Rows (from top to bottom): First SPOD (�̃p), resolvent (U ), and eddy-viscosity resolvent (U νT )
modes. Contours correspond to the pressure component, with blue associated to negative pressure and red
associated to positive pressure. Arrows denote wall-normal and spanwise velocity components.
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FIG. 13. Pressure spanwise-coherent structures for the Reτ ≈ 550 simulation. Frames (from left to right):
First SPOD (�̃p), resolvent (U ), and eddy-viscosity resolvent (U νT ) modes. See the comments in the caption
of Fig. 12.

color map scale. For all frames, the arrows correspond to the wall-normal and spanwise velocity
components; although SPOD targets pressure fluctuations here, the velocity components may be
obtained by their inclusion in the realization matrix Ĝ in Eq. (21), in a procedure corresponding
to extended POD [62]. Near-wall pressure structures (left frames of Fig. 12) and the associated
quasistreamwise vortices peak at y+ ≈ 35, 20, and 40 for the �̃p, U , and U νT modes, respectively.
The quasistreamwise vortices for the SPOD (�̃p) and resolvent (U ) modes have clockwise rotation
associated with negative (blue) pressure, whereas counterclockwise vortices are associated with
positive (red) pressure values. Although the position of quasistreamwise vortices (i.e., the phase
with respect to pressure fluctuations) is correct for the resolvent mode, the vortices are more
concentrated around the critical layer, as usual for resolvent modes with molecular viscosity [56].
This mode is similar to that shown by Abreu et al. [32], who employed an L2 norm accounting
for the three velocity components (kinetic energy norm) to extract the SPOD and resolvent modes
at (λx

+, λz
+, λt

+) ≈ (1000, 100, 100), i.e., the wave number–frequency triplet of the premultiplied
spectrum peak for the near-wall structures. The large-scale structures span almost the entire channel
half-height and have a dynamics similar to that observed for the near-wall structures. For the SPOD
and resolvent modes, the quasistreamwise vortices have support at y ≈ 0.40 and 0.35, respectively.
The eddy-viscosity resolvent mode, on the other hand, peaks at y ≈ 0.15 and also shows the
quasistreamwise vortices in the intersection between regions of high and low pressure.

The pressure modes for the spanwise-coherent structures are shown in Fig. 13. First, second
and third columns correspond to the SPOD (�̃p), resolvent (U ), and eddy-viscosity resolvent (U νT )
modes, respectively. The pressure structures span the channel half-height. Moreover, for the three
modal decompositions, regions of low pressure are associated with clockwise vortices, whereas for
the regions of high pressure, the vortices rotate in the counterclockwise direction. Near the wall,
the pressure component for the U νT modes displays a slight inclination towards the right direction,
which is not observed for the �̃p and U modes. Similarly to near-wall and large-scale structures,
both resolvent modes display a fairly close agreement with the SPOD mode taken from the DNS.

Figures 14 and 15 show the second resolvent and SPOD modes in the same fashion as the
Figs. 12 and 13. We observe that the second mode now shows a pair of structures along y, in phase
opposition. This is similar to what is observed for corresponding velocity modes [32]. The resolvent
modes reproduce the phase opposition observed in the SPOD mode but with a sharper jump that
contrasts with the smoother phase change along y in the SPOD mode. The second modes appear
to be related to a similar mechanism in the leading flow response, this time leading to structures in
phase opposition along y.

B. Comparison to velocity modes

We now compare some features of the observed pressure structures with modes obtained
considering the more usual metrics related to velocity fluctuations. Figures 16 and 17 display the
SPOD (�̃TKE), resolvent (UTKE), and eddy-viscosity resolvent (U νT

TKE) modes for the near-wall and
large-scale structures and spanwise-coherent structure, respectively, defining operators C [Eq. (9)]
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FIG. 14. Pressure near-wall (left frames) and large-scale (right frames) structures modes for the Reτ ≈ 550
simulation. Rows (from top to bottom): Second SPOD (�̃p), resolvent (U ), and eddy-viscosity resolvent (U νT )
modes. See the comments in the caption of Fig. 12.

and W [Eq. (22)] to target the turbulent kinetic energy (TKE) as

C =

⎡
⎢⎢⎢⎢⎣

I Z Z Z

Z I Z Z

Z Z I Z

Z Z Z Z

⎤
⎥⎥⎥⎥⎦, (30)

and

W =

⎡
⎢⎢⎢⎢⎣

K p Z Z Z

Z K p Z Z

Z Z K p Z

Z Z Z Z

⎤
⎥⎥⎥⎥⎦. (31)

The obtained TKE-targeted structures display overall similarities the pressure-targeted structures
(Figs. 12 and 13). The TKE-SPOD modes are more inclined towards the right direction with respect
to their pressure counterpart. While the TKE and pressure resolvent modes are very similar, likely
due to the low-rank nature of the linearized system, the eddy-viscosity resolvent has different modes,
with pressure structures with strong variations near the wall, in contrast with the smoother SPOD
modes. Moreover, the spanwise-coherent structure using pressure and TKE metrics are almost
identical, except for the eddy-viscosity resolvent mode that has a near wall behavior in contrast

FIG. 15. Pressure spanwise-coherent structures for the Reτ ≈ 550 simulation. Frames (from left to right):
Second SPOD (�̃p), resolvent (U ), and eddy-viscosity resolvent (U νT ) modes. See the comments in the caption
of Fig. 12.
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FIG. 16. TKE near-wall (left frames) and large-scale (right frames) structures modes for the Reτ ≈ 550
simulation. See the comments in the caption of Fig. 12.

with the SPOD mode. We observe that the use of the pressure as a single variable determining the
level of agreement simplifies the modeling task, as a single scalar SPOD mode must be matched by
linearized models.

To explore the different mechanisms leading to pressure and velocity responses, Fig. 18 shows
the divergence of the resolvent forcing first mode evaluated with (bottom row) and without the eddy-
viscosity model (top row) for the three studied structures, i.e., near-wall, large-scale, and spanwise
coherent structures (columns, from left to right). Differently from the forcing modes obtained with a
TKE energy norm, which are solenoidal or incompressible [44], the divergence of the forcing when
accounting for a pressure energy norm is not zero. Thus, there are additional mechanisms leading
to pressure fluctuations, related to the nonzero divergence of nonlinear terms.

C. Parametric comparison between resolvent and SPOD modes

To assess a quantitative comparison between the SPOD and resolvent pressure modes, it is
possible to project the first SPOD mode onto the optimal resolvent for a combination (α, β, ω)
in the same fashion as Abreu et al. [35], i.e.,

� =
∣∣∣∣ 〈a, b〉
||a||||b||

∣∣∣∣, (32)

where � is the normalized projection, with � ∈ [0, 1], a and b are two modes to be compared, 〈·, ·〉
denotes the L2 inner product, || · || indicates the L2 norm, and | · | indicates absolute value. It is
important to remark that � = 0 and � = 1 indicate that the vectors are orthogonal and perfectly

FIG. 17. TKE spanwise-coherent structures for the Reτ ≈ 550 simulation. See the comments in the caption
of Fig. 13.
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FIG. 18. Divergence of the first forcing mode (top row) and eddy-viscosity forcing mode (bottom row) for
the Reτ ≈ 550 case. Frames (from left to right): Near-wall, large-scale, and spanwise coherent structures.

aligned, respectively. Here a = ψ̃1, i.e., the first SPOD pressure mode, and b = U1 or b = U1
νT ,

i.e., the optimal resolvent or eddy-viscosity resolvent pressure mode.
Figures 19 and 20 exhibit the projection coefficients for the Reτ ≈ 180 and 550 cases, respec-

tively, for the temporal frequencies of the near-wall, large-scale, and spanwise-coherent structures.
The coefficients were evaluated for all wave numbers contained in the database and are shown in
contours in the figure; top row for the resolvent operator and bottom row for the eddy-viscosity
resolvent operator. The cross markers on each frame indicate the wave-number pair correspondent
to the structure’s energy peak. Overall, for the frequency corresponding to near-wall structures, high
projection coefficient levels are observed for low streamwise and spanwise wavelengths. For the
large-scale frequency, the band of high level coefficient levels is enlarged, but the higher levels are
still attained for the lower wavelengths. Regarding the characteristic frequency of spanwise coherent
structures, the normalized projection levels are approximately homogeneous in the wave-number
space, despite a few regions where lower and higher levels can be observed. However, for both
Reynolds numbers, note the molecular-viscosity resolvent leads to high projection coefficients in
the high-α–low-β region, while the eddy-viscosity formulation leads to higher coefficients in the
low-α–high-β region. Yet, for the Reτ ≈ 550 case and considering molecular-viscosity resolvent
(top-right frame of Fig. 20), there is a gap in the projection coefficient around the 2 � α � 4 and

FIG. 19. Projection coefficients (pressure norm) of the first SPOD mode on the first resolvent (top row) and
eddy-viscosity resolvent (bottom row) modes for the Reτ ≈ 180 case.
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FIG. 20. Projection coefficients (pressure norm) of the first SPOD mode on the first resolvent (top row) and
eddy-viscosity resolvent (bottom row) modes for the Reτ ≈ 550 case.

20 � β � 30 regions, which does not occur for the eddy-viscosity resolvent nor for the Reτ ≈ 180
case and both resolvent formulations. Overall, besides the considerations above, for the three
considered frequencies, there is no clear advantage for resolvent models with or without the eddy
viscosity, with both approaches having similar parameter ranges with good agreement with the
leading SPOD modes.

Tables III and IV display the projection coefficients for the Reτ ≈ 180 and 550 cases, respec-
tively, for the near-wall, large-scale, and spanwise-coherent structures (cross markers in Fig. 20). It
is observed that indeed the pressure SPOD first modes project very well onto the resolvent and
eddy-viscosity resolvent optimal pressure modes of the three selected structures, especially the
near-wall and spanwise-coherent structures, with � � 0.94. As commented before, there is no clear
advantages for one of the resolvent models.

Figures 21 and 22 show the projection coefficients using the TKE norm instead of the pressure
norm, as in Abreu et al. [32,35]. In comparison to the pressure norm counterpart, Figs. 19 and 20,
the region of high projection coefficient values is smaller for the three studied structures. Regarding
the near-wall and spanwise-coherent structures, higher values are obtained only for the smaller
streamwise wavelengths, whereas for the spanwise-coherent structure, the projection coefficient is
more uniformly spread along the streamwise and spanwise wavelength space, as for the pressure
norm. The differences between the resolvent and the eddy-viscosity resolvent when using the TKE
norm are qualitatively the same as when using the pressure norm, i.e., overall lower projection
levels are attained for the eddy-viscosity resolvent, although the region comprising low spanwise
wave numbers shows higher projection coefficient levels for higher streamwise wave numbers.

TABLE III. Projection coefficients for the pressure modes and Reτ ≈ 180 case.

Near-wall structure Large-scale structure Spanwise-coherent structure
Projection (λx

+, λz
+, ω+) ≈ (204, 161, 0.43) (λx, λz, ω) ≈ (1.40, 2.09, 4.52) (α, β, ω) ≈ (0.50, 0.00, 0.39)

� 0.94 0.91 0.97
�νT 0.95 0.94 0.96
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TABLE IV. Projection coefficients for the pressure modes and Reτ ≈ 550 case.

Near-wall structure Large-scale structure Spanwise-coherent structure
Projection (λx

+, λz
+, ω+) ≈ (227, 155, 0.37) (λx, λz, ω) ≈ (0.90, 1.57, 6.87) (α, β, ω) ≈ (3.00, 0.00, 2.95)

� 0.96 0.89 0.99
�νT 0.98 0.97 0.98

V. ROLE OF DIFFERENT FORCING COMPONENTS

A further effort to explore how the forcing leads to the observed pressure statistics is pursued in
this section. In order to do so, let us consider the effect of the input sub-blocks (forcing CSD) on
the output (pressure CSD). The CSD F can be interpreted as a sum of sub-blocks (F i j), with each
sub-block accounting for a forcing component, i.e.,

F = Fxx + Fxy + Fxz + Fyy + Fyx + Fyz + Fzz + Fzx + Fzy, (33)

where the subscripts i and j in the F i j sub-block notation indicate the streamwise (x), wall-normal
(y) and/or spanwise (z) forcing components. Note that because input F is Hermitian for i �= j, we
will consider F i j and F ji combined.

Figures 23 and 24 show the output spp as a function of the inputs F i j and F for Reτ ≈ 180
and 550 simulations, respectively. The left frames of the figures correspond to the near-wall
structures, whereas the middle and right frames denote large-scale and spanwise-coherent structures,
respectively. A first observation is that using the full forcing statistics F leads to a nearly exact
recovery of the full response statistics S from the DNS. This provides further validation of the
present database.

The forcing CSD terms considering i = j provide positive contribution of pressure PSD. For
the near-wall (of both cases) and large-scale (of the Reτ ≈ 180 case) structures, the Fxy and Fyz

terms have a slightly negative contribution to the pressure output, in a region very close to the wall,
whereas the Fxz terms provide a slightly positive contribution. For the large-scale structure for the
Reτ ≈ 550 channel, the Fxy and Fyz terms have a negative contribution at y ≈ 0.3, whereas the Fxz

term has a positive contribution around this same wall-normal position. Regarding the spanwise-
coherent structures, all terms related to the spanwise forcing presented no contribution to the output,

FIG. 21. Projection coefficients (TKE norm) of the first SPOD mode on the first resolvent (top row) and
eddy-viscosity resolvent (bottom row) modes for the Reτ ≈ 180 case.
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FIG. 22. Projection coefficients (TKE norm) of the first SPOD mode on the first resolvent (top row) and
eddy-viscosity resolvent (bottom row) modes for the Reτ ≈ 550 case.

as expected; the pressure structures are thus two dimensional, resulting solely from streamwise and
wall-normal forcing.

The scenario presented here contrasts with that of Morra et al. [44], who studied the contributions
of the input CSD sub-blocks on the streamwise velocity component CSD output for near-wall
and large-scale structures. Morra et al. [44] showed that when i = j, the CSD terms positively
contribute to the streamwise velocity output, whereas the i �= j terms mostly presented a negative
contribution. The authors observed that both positive and negative contributions have approximately
the same amplitude levels, which lead to cancellations in the output if the full input (forcing) CSD
is considered. On the other hand, overall, in the present study the positive contributions of the
input CSD sub-blocks have higher amplitudes than the negative contributions. Therefore, when
all input CSD terms are considered, a positive pressure output is obtained, with higher amplitude
than those observed if only isolated input CSD sub-blocks are considered, in a mostly constructive
interference. Differently from Morra et al. [44], it seems that for the pressure component the input
CSD off-diagonal terms (i �= j) do not play a leading role, at least for the near-wall structures,
as the magnitude of such terms is much smaller than that of the diagonal terms (i = j). The
exceptions seem to occur for the large-scale and spanwise-coherent structures at Reτ ≈ 550 (middle
and right frames of Fig. 24), for which the Fxy term has a large negative amplitude that significantly
contributes for the output when considering the full forcing CSD. Such characteristics of nonlinear

FIG. 23. Pressure component response S = HF i jH† from sub-blocks F i j for Reτ ≈ 180. Solid lines:
Response from sub-blocks F ii. Dashed lines: Response from sub-blocks F i j with i �= j. Triangles: Response
from full forcing CSD. Gray thick line: Response from DNS. Frames, from left to right: Near-wall, large-scale,
and spanwise-coherent structures, respectively.
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FIG. 24. Pressure component response S = HF i jH† from sub-blocks F i j for Reτ ≈ 550. See the com-
ments in the caption of Fig. 23.

terms suggest that a simpler forcing model may be possible if one is interested in pressure structures.
The lower level of destructive interference also helps understanding the good performance of both
resolvent modes in predicting the leading SPOD modes.

VI. CONCLUSIONS

Pressure fluctuations in turbulent channel flows at Reτ ≈ 180 and 550 were studied in this
paper, using results from DNSs. The simulation were validated against literature results and good
agreement was achieved for the rms [54] and one-dimensional power spectra in the streamwise and
spanwise directions [11,13]. The two databases allowed extraction of dominant pressure structures,
analyzed using wave-number spectra and SPOD. SPOD modes were then compared to results from
resolvent analysis in order to evaluate the potential of linearized models to represent such pressure
structures.

Peak wave number–frequency combinations were selected based on spectra without and with
premultiplication for planes at the channel wall (y = 0) and at y ≈ 0.5. Three characteristic struc-
tures were studied in more detail, corresponding to near-wall, large-scale, and spanwise-coherent
(β = 0) structures. The premultiplied spectra for the wall plane (near-wall structures) showed a
peak that collapsed in inner units at (λx

+, λz
+, ω+) ≈ (200, 160, 0.4) for both Reynolds numbers.

Regarding the large-scale structures (y ≈ 0.5), the premultiplied spectra peak do not collapse for
the two Reynolds numbers.

Comparisons among the pressure SPOD and resolvent modes, with and without the inclusion
of an eddy-viscosity model, were performed. Both resolvent and eddy-viscosity resolvent modes
displayed good agreement with the SPOD modes. Such results can be explained by a clearer
low-rank nature of the pressure SPOD modes, with a strong dominance of the leading mode for
the wave number–frequency combinations presently studied. As the resolvent modes comprise
quasistreamwise (for near-wall and large-scale structures) and spanwise vortices with pressure
peaking at vortex centers, the analysis shows that forcing such vortices is the dominant mechanism
leading to pressure fluctuations in turbulent channel flows. Differently from works that focused on
velocity components [43,44], the eddy-viscosity resolvent pressure modes does not show a clear
advantage in terms of better agreement with the SPOD pressure modes.

The analysis of the nonlinear terms and their individual impacts on the pressure output reveals
that the forcing terms have a predominantly constructive contribution to the output. Moreover, with
exception of the large-scale structures of the Reτ ≈ 550 channel, the off-diagonal terms of the
forcing CSD [see expression (33)], are less important than the diagonal terms to obtain a good
prediction of the pressure outputs.

In a previous study by our group, which employed a resolvent-based formulation to estimate
the flow field from wall measurements [63], we noted that pressure structures were more accurate
predicted than the velocity components, especially for distances far from the wall, with less
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dependence on the details of the forcing considered in the linearized model. The present results
show a more marked low-rank behavior of pressure fluctuations, which may explain the ability of
resolvent models to predict or estimate pressure structures. We believe that the results shown in
this paper reinforces the need for proper modeling the color of forcing (nonlinear) terms when the
problem is cast in the input-output framework, albeit with a lower effect of forcing color on pressure
fluctuations compared to velocity components. Moreover, the resolvent operator is a valuable asset
to study the most energetic pressure structures and obtain relevant amplification mechanisms for
turbulent pressure fluctuations.
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APPENDIX: COMPLEMENTARY RESULTS FOR THE Reτ ≈ 180 SIMULATION

Figure 25 show the spectra evaluated with premultiplication. The λx
+ peak value agrees with

previous studies [13,16]. At a distance characteristic of large-scale motions (right frame of Fig. 25),
the peak is located at (λx, λz ) ≈ (1.40, 2.09). The spectra without premultiplication are shown in
Fig. 26. At both the wall and y ≈ 0.5, the spectra peak at (α, β ) = (0.5, 0), showing spanwise
elongated pressure structures. A peak of the pressure spectrum for β → 0 was also documented in
Yang and Yang [14].

The pressure and forcing components PSDs are shown in Fig. 27 for the near-wall and large-
scale structures. For the near-wall structures, the pressure component PSD peaks at c+ ≈ 14 (ω+ ≈
0.43), with spatial support around y+ ≈ 38, whereas for the large structures, such peak is located at
c+ ≈ 16 (ω ≈ 4.52), with support y ≈ 0.42. These peaks arise along the critical layer, shown in the
plots with dashed lines. The ω+ peak value is roughly in agreement with previous results [12,13].
Regarding the streamwise forcing component PSD, the near-wall and large-scale structures peak at
c+ ≈ 12.5, with support close to the wall, at y+ ≈ 10.

Figure 28 shows the pressure (right frame) and streamwise forcing (left frame) components PSDs
for the peak at (α, β ) = (0.5, 0), which is present for the power spectra without premultiplication
(Fig. 26). Both PSDs peak at c+ ≈ 12.5, although for the pressure component the peak has support

FIG. 25. Premultiplied energy spectra for Reτ ≈ 180 simulation.
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FIG. 26. Energy spectra for Reτ ≈ 180 simulation.

at y+ ≈ 44, whereas for the streamwise forcing component the support is much closer to the wall,
at y+ ≈ 6.5.

The SPOD eigenvalues and the resolvent eigenvalues are shown in Figs. 29 and 30. Similar results
as those obtained for the Reτ ≈ 550 simulation are observed for the Reτ ≈ 180 simulation, i.e., the
SPOD eigenvalue and the resolvent gains without the eddy viscosity present low-rank behavior,
whereas the eddy-viscosity resolvent gains do not.

Low-rank representations of the pressure PSD using the first resolvent mode, without and with
eddy viscosity, are depicted in Figs. 31 and 32. As for the Reτ ≈ 550 case, the low-rank model

FIG. 27. PSDs for Reτ ≈ 180 simulation. Left frames: Near-wall structures. Right frames: large-scale
structures. Top frames: Pressure component (spp). Bottom frames: Streamwise forcing component ( f xx).
Dashed lines denote the critical layer.
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FIG. 28. PSDs for Reτ ≈ 180 simulation and spanwise-coherent structure, i.e., (α, β ) = (0.5, 0). Right
frame: Pressure component (spp). Left frame: Streamwise forcing component ( f xx). Dashed lines denote the
critical layer.

FIG. 29. SPOD eigenvalues employing the pressure (top frames) and forcing (bottom frames) modes for
the Reτ ≈ 180 simulation. See the comments in the caption of Fig. 8.

FIG. 30. Resolvent gains employing the pressure weighing for the Reτ ≈ 180 simulation. See the com-
ments in the caption of Fig. 9.
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FIG. 31. Pressure component PSD low-rank resolvent reconstruction (first mode) for the Reτ ≈ 180 simu-
lation. See the comments in the caption of Fig. 10.

FIG. 32. Pressure component PSD low-rank eddy-viscosity resolvent reconstruction (first mode) for the
Reτ ≈ 180 simulation. See the comments in the caption of Fig. 10.

FIG. 33. Pressure near-wall (left frames) and large-scale (right frames) structures modes for the Reτ ≈ 180
simulation. See the comments in the caption of Fig. 12.
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FIG. 34. Pressure spanwise-coherent structures for the Reτ ≈ 180 simulation. See the comments in the
caption of Fig. 13.

was able to capture the main features of the DNS PSD, especially for the resolvent without eddy
viscosity.

Near-wall, large-scale, and spanwise-coherent pressure modes obtained through SPOD and
resolvent analysis are shown in Figs. 33 and 34. The results are similar to those obtained for the
Reτ ≈ 550 simulation (Figs. 12 and 13). The streamwise component of the �̃p (SPOD) modes are
inclined to the right for y � 0.1, whereas for the U (resolvent) modes the regions of positive and
negative pressure are normal to the wall. On the other hand, the streamwise component of the U νT

(eddy-viscosity resolvent) modes are inclined to the left close to the wall, up to y � 0.25, whereas
for y > 0.25, they are slightly inclined to the right. Such feature is evident for the near-wall and
large-scale structures and at some extent for the spanwise-coherent structure.
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