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Three-dimensional structure of the thermal boundary layer in turbulent
Rayleigh-Bénard convection: A Lagrangian perspective
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In turbulent Rayleigh-Bénard convection, it is generally acknowledged that the thermal
boundary layer (BL) governs heat transfer, although its scaling with the Rayleigh num-
ber is still debated. Various methods have been developed to measure the characteristic
thickness of the BL, which are mostly employed in a time-averaged manner. Among them,
only the slope method can be applied in an instant of time, being therefore capable of
time-resolved analysis; however, it provides no further insight when the Nusselt number
is known. Accordingly, the average properties of the BL are thoroughly studied, mainly
in the context of heat transfer; its time-dependent structural dynamics and roughness
remain largely unexplored. Here, we propose a Lagrangian method to characterize both
the time-averaged and the spatio-temporal evolution of the BL, that marks the edge of the
BL where convective and diffusive transports overlap. The characteristic thickness of the
BL, that is defined by this method, is not a trivial function of the Nusselt number and can be
considered a potential tool to analyze the BL structure while varying the Nusselt number.
It is also demonstrated using 3D direct numerical simulations, that the injection of heat
is extremely inhomogeneous in space and time; the vast majority of heat accumulates in
narrow domains, that is governed by the local plume dynamics.
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Buoyancy-driven flows are common in nature surrounding us, including thermal convection in
the atmosphere [1], in the oceans [2], or inside buildings [3]. Also, it is generally acknowledged
that such phenomenon occurs in geophysical [4] and astrophysical [5] flows, such as in the earth’s
mantle, or inside the sun. Additionally, numerous technological processes, such as liquid metal
processing [6] requires the understanding of buoyancy-driven flows. In these real-world phenomena,
buoyancy is often accompanied by geometrical complexity, additional forces (e.g., inertial or
magnetic) or multiple origins of change in density. To gain fundamental understanding either
theoretically or experimentally, it is often useful to rely on a simplified model, that lacks additional
complexity, but still addresses major aspects of the observations. Rayleigh-Bénard convection
(RBC) is a fluid dynamical setup, in which a fluid layer is subjected to thermal expansion: it is
heated at the flat bottom plate, and cooled at the top plate. Despite its apparent simplicity, it is
one of the classical problems in fluid dynamics; however, the scaling (Nu ∝ Raγ Prχ ) with fluid
properties (Ra, Pr) of heat transfer (Nu) through an RBC cell is still debated. Here, the Nusselt
number (Nu) is expressed in terms of other dimensionless parameters: Ra the Rayleigh number and
Pr the Prandtl number.

It is generally agreed that the heat flux through the RBC cell is limited by heat diffusion through
thermal boundary layers (BL) near the top and bottom plates characterized by vanishing convective
heat transfer. Indeed, most theories, that predict the scaling laws for Nu are essentially BL theories:
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including mixing layer theories [7,8], various turbulent BL theories [9–12], and their variants [13].
These theories are based on distinct fundamental assumptions on the kinetic and the thermal BL and
occasionally result in different scaling exponents in various regimes of Ra and Pr [14]. Moreover,
Grossmann and Lohse have identified regimes for the scaling law and plotted a kinetic phase
diagram based on the significance of kinetic and thermal energy dissipation in the BL versus in
the bulk, and the relative magnitude of kinetic and thermal BL widths (λu and λθ ) [12]. Therefore,
in the case of RBC, it is of great importance to both qualitatively and quantitatively characterize the
BL properties to validate or challenge the underlying hypotheses of the various BL theories.

Due to the no-slip boundary conditions, the heat transfer is purely diffusive at the heated/cooled
plates, which changes character through the boundary layer and becomes dominated by convection
in the bulk. Conceptually, the BL is understood in a time-averaged fashion, and it is assumed
to be spatially contiguous, which may vary in thickness (λθ ). Indeed, traditionally λθ is defined
through average properties of the temperature time-series measured at different distances from the
top/bottom plates. The classical 99% threshold method explicitly relies on measuring the time-
averaged temperature (λ99%

θ ), while Belmonte et al. [15] have used the root-mean-squared (RMS)
temperature fluctuations (λrms

θ ) to define the boundary layer width. These methods necessitate
averaging times, which exceed the timescale of the slowly evolving large-scale convection (LSC)
patterns. The third, and most common is the slope method (λsl

θ ), in which the temperature profiles
near the plates are fitted with a linear function of the coordinate, which gives a spatial extent by
a simple geometrical construction [14]. λsl

θ is related to the Nusselt number at the boundary by
a simple inverse relation λsl

θ ∝ 1/Nu. Accordingly, it holds no further information as long as the
Nusselt number is known. The construction is based on the assumption, that the heat transfer is
purely diffusive inside the boundary layer and is separated sharply from the purely convective bulk
domain, therefore it does not account for the inherently smooth transition between distinct regions
of heat transfer. However, the spatial roughness of the boundary layer can be examined, since it does
not necessarily require either temporal or spatial averaging. Nevertheless, it was successfully used
by Schumacher and Pandey [16,17] to characterize the instantaneous and/or local properties of the
BL and they have concluded that λsl

θ is smaller where plumes are impacting the plates and larger in
regions where plumes are leaving the plates. The above methods commonly use Eulerian sampling
for measuring the temperature at fixed locations; however, Lagrangian experiments, which sample
along fluid pathlines, are also available [18].

Herein, we present a method to define the BL width that allows the structural analysis with high
spatial and temporal resolution. The temporal change of the temperature (∂t T ) is computed along
Lagrangian trajectories of passive tracers, thus removing the convective component and character-
izing the purely diffusive heat transport. ∂t T curves show distinct extrema near the boundaries when
plotted against either the vertical position of the tracers or time. The distances of the extrema from
the top/bottom plates define a characteristic length for the thermal BL, which we propose to use
both for spatially resolved and averaged analysis of the BL. The length defined this way is not a
trivial function of the Nusselt number, therefore holds additional information about the boundary
layer. Also, contrary to the construction of λsl

θ , it accounts for the smooth transition between the
diffusive and convective regimes.

The thermal convection in the RBC is described by momentum, energy, and mass balance
equations, which in the Oberbeck-Boussinesq approximation [19,20] and in natural nondimensional
units, can be written as follows:

∂u
∂t

+ u · ∇u = −∇p + θez +
√

Pr

Ra
∇2u, (1)

∂θ

∂t
+ u · ∇θ = 1√

PrRa
∇2θ, (2)

∇ · u = 0. (3)
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The dimensionless numbers Ra and Pr come from scaling the length with the box height (H) and
the velocity with the free-fall velocity (vff ), the velocity of a fluid parcel, which corresponds to
the kinetic energy when converted from the maximum of the buoyant potential energy. While θ =
(T − Tcold )/(Thot − Tcold ) is the temperature scaled by the temperature difference between the plates.

For the numerical solution of the governing equations the finite volume method is applied.
Spatial and temporal discretization of the equations was done using the central differencing scheme
(CDS) and forward Euler time integration, respectively. We note, that the above forward time
central space (FTCS) discretization in the convection dominated regime is very restrictive for
the applicable stable time-step [21] but in turn offers low numerical diffusion. The momentum
Eq. (1) is coupled to the incompressibility constraint Eq. (3) using Chorin’s projection method [22],
whereas Goda’s incremental pressure correction method [23] was chosen in the projection step
to improve the convergence characteristics of the algebraic solver via providing improved initial
guess for the velocities. A custom multigrid method, which is optimized for modern massively
parallel hardware (GPU) was used to solve the algebraic equations in the correction step [24]. The
simulation was performed at Ra = 107, Pr = 0.7 and aspect ratio � = 0.5 on a 400×400×800
numerical grid and using �t = 1.64×10−4 timestep in free-fall time units. The above setup allows
a well-resolved analysis of the BL, which is confirmed by convergence analysis of the time-averaged
properties with increasing numerical resolution. Velocity and temperature fields were sampled
along Lagrangian trajectories using tri-linear interpolation, while tracer pathlines were computed
by explicit time-integration. The compute code was implemented and executed on a multi-GPU
workstation.

In the simulation spanning 300 free-fall time units, we have placed 106 randomly distributed
passive tracers into the simulation domain, and their trajectories were used to sample the fluid
properties (	, ∂t	, and u) along their trajectories. Sampling was started at 150 free-fall time to en-
sure statistical steady state, and high sampling resolution was chosen (0.0375 free-fall time unit) to
resolve the spatio-temporal details of the boundary layer. We denote symbols for quantities obtained
by Lagrangian sampling, with uppercase (e.g., 	). We note here that ∂t	 is the temperature-change
due to pure diffusion, since it represents the substantial derivative as it is computed along the
tracer trajectory. Accordingly, instantaneous features of the ∂t	 can be computed from Eulerian
temperature and velocity data by directly computing the substantial derivative. First, we examine
spatio-temporal 〈·〉st and 〈·〉s spatial (binned) averages of these quantities as the distance is increased
from the bottom hot plate Fig. 1(a). The 〈	〉st across the boundary layer shown are identical to data
obtained from Eulerian measurements using random sampling positions. Generally, the mean BL
width λsl

	 and the corresponding Nu is derived using the 〈	〉st profile. However, snapshots of the
spatially averaged 〈	〉s profiles show notable variation in time and space indicating that the thermal
BL is not homogeneous in space and time. It is known from previous studies, that the BL width
derived from time-averaged data show spatial variation, thinner at the center and wider close to
the walls [25]. In a recent analysis of 2D DNS [17] it was found, that the local BL is thinner in
spatial regions of plume impact compared to regions of plume ejection. To analyze the effect of
plume dynamics on the BL, tracers are split by the sign of uz; positive values belong to emerging
hot, while negative values belong to impacting cold plumes. The profile of 〈	〉s shows pronounced
differences Fig. 1(b) and indicates that the flow structure has significant impact on heat transfer.

We followed the same procedure with ∂t	, which is computed along tracer trajectories as a
Lagrangian quantity. Plotting 〈∂t	〉st and 〈∂t	〉s versus the distance from the bottom plate Fig. 1(c)
shows a very distinct maximum similar to the RMS profile of 	 fluctuations [15]. The maximum
near the bottom plate and the minimum next to the top plate define the Lagrangian width of the
thermal BL 〈λLag

	 〉st. For our RB setup, the computation of the BL width using the conventional slope
method and our proposed Lagrangian method gives significantly different values; 〈λsl

	〉st = 0.0313
and 〈λLag

	 〉st = 0.0181, respectively. However, systematic study is needed to compare the scaling
behavior with the parameters Ra and Pr, which is of prime interest. The value 〈λLag

	 〉st separates
domains of different thermal behavior; I. in the vicinity of the plates, quasi-steady diffusive behavior
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FIG. 1. Spatial averages of (a) 	, (c) ∂t	, and (e) |uz| at random time instances are shown with solid lines,
the values are computed with H/400 bin-resolution on the vertical position of the tracers. Spatio-temporal
averages 〈·〉st are plotted with + marks. The horizontal spacing of the data points corresponds to double grid
spacing. Panels (b), (d), (e) show the same quantities, but tracers in emerging plumes (red) and impacting
plumes (blue) are distinguished by the sign of uz and the spatial averages were computed selectively.

(on short timescales) is characterized by a linear 	 profile. II. the bulk domain, where coherent
convection or mixing takes place and results in low absolute values of 〈∂t	〉s. In between, there is a
subtle interaction of the two domains that results in the accumulation of thermal and kinetic energy.
At 〈λLag

	 〉st, the rate of energy injection is maximal. Integrating the 〈∂t	〉st profile near the plates
Fig. 1(b) gives the convective heat current throughout the bulk domain. The diffusive current in the
bulk is defined by the slope of 〈	〉st in the bulk. Computing these quantities provides an alternative
route to define Nu that is consistent with the Lagrangian definition of the BL width. It is also worth
mentioning that the vertical velocity magnitude |uz| is nonnegligible throughout the thermal BL
Fig. 1(e).

The Lagrangian definition of λ	 does not explicitly require time averaging, therefore it allows
the separation of tracers for inbound and outbound plumes at a single instance of time. Separating
sample trajectories by the sign of uz provides evidence that the accumulation of energy is spatially
inhomogeneous; the vast majority concentrates near impacting plumes Fig. 1(d). However, we note
that spatial averaging hides the structure of the BL.
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FIG. 2. Samples of thermal quantities in fluid parcels which enter the thermal boundary layer at an instance
of time (translated to t = 0): (a) the rate of change of temperature ∂t	 and (b) the temperature 	 vs time
are plotted along the pathlines. Panel (c) shows ∂t	 vs the vertical positions, here the location of maxima
corresponds to the local boundary layer width.

Finer details are uncovered when those trajectories are sampled which pass through the BL at
a given time. Previous results for the spatially averaged profiles foreshadow that ∂t	 along the
pathlines may show characteristic extrema with respect to time. Those set of trajectories are selected
that show extrema in ∂t	 at a time instance (fixed at t = 0), see Fig. 2(a), the location of these
extrema can be considered as the edge of the boundary layer. The vertical extent of the boundary
layer can be read off when ∂t	 is plotted against the z coordinate for the selected trajectories, see
Fig. 2(c).

Before reaching the boundary layer (approximately t < −0.25) pathlines trace back deeply into
the bulk of the domain, as shown in Figs. 2(c) and 3. This provides evidence that no well-mixed
layer exists between the BL and the bulk domain as assumed by Castaing et al. [8], the diffusion
dominated BL interacts directly with the impacting plumes, at least under the conditions the analysis
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FIG. 3. Pathlines of trajectories passing through the boundary layer edge at the same instance of time
colored by temperature (	).

was performed. ∂t	 either fluctuates (approximately around zero) in the regions of heavy turbulent
mixing, or it is close to zero when the trajectory samples a coherent turbulent structure.

After passing the maximum of ∂t	 (t > 0) the temperature (	) further increases and reaches
a maximum, see Fig. 2(b) and accordingly ∂t	 changes sign as the pathline returns to the bulk
domain. This unique BL analysis method makes it apparent, that a characteristic time is present in
the boundary layer dynamics, which coincides with the time interval that the trajectory spends in the
boundary layer. This characteristic time can alternatively be defined by the half-width of the peaks
in ∂t	 as displayed in Fig. 2(a), which relates to a smooth transition from the bulk to the boundary
layer. We also note, that the computation of the characteristic time requires the explicit tracking of
the fluid parcels, thus it cannot be derived from instantaneous snapshots of Eulerian data.

Finally, the three dimensional morphology of maximum energy injection is presented at an
instance of time. These points can be considered as markers of the boundary layer edge in the regions
of inbound convection. Results in the previous sections based on spatially averaged data suggest,
that heat transfer is highly inhomogeneous and localized to impacting plumes. It is also confirmed
by trajectory analysis: plotting the spatial positions identified as the BL edge provides evidence that
the BL is not just inhomogeneous but also the injection of the thermal energy is noncontiguous on
the BL edge. The intersections of the tracer trajectories with the BL edge is plotted in Figs. 4(a)
and 4(b). The boundary layer width (shown as color code) is thinner at the center of the plume and
thicker at the edge of the plume. This behavior is in line with previous observations of the time
averaged BL [25].

Our proposed method separates diffusive change in thermal energy from convective effects, thus
signaling the injection of potential energy due to change in density at the edge of the thermal
boundary layer. Analyzing single time instances, it was found, that regions in which incoming
plumes impact, contribute the vast majority of the potential energy excitation in the RBC system.
Accordingly, the contribution of emerging plumes is negligible; the thermal excitation at the edge of
the BL can be considered to be spatially noncontiguous. It is remarkable that the proposed analysis
method of the thermal boundary layer is not restricted to simple geometries; thus, it can be applied
for rough or uneven surfaces and complex domains.
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FIG. 4. The spatial arrangement of the Lagrangian boundary layer is shown, sampled at two instances of
time (left and right columns). The lateral x-y plane of the simulation box forms the axes of the subplots, while
the distance of the sample points from the bottom plate are color coded in the first row, in panels (a) and (b),
up to the boundary layer width λloc

	 . The time evolution of λloc
	 is also available as supplemental animation file

[26]. Panels (c) and (d) show the maximum values of the injected thermal energy (∂t	
max) at the boundary

layer edge for the same samples as in the first row. See the time evolution of λloc
	 on supplemental animation

file [26].
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