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We investigate experimentally the propulsive efficiency of a propeller in water with
chordwise flexible blades that deform under the action of fluid loading. Using a scale
model experiment, we record the deformation of the blades as well as the thrust and torque
generated by the rotor. The use of flexible materials can improve the resilience to changing
external conditions: with optimal flexibility, the blades deform and remain efficient under
off-design conditions. We derive a theoretical law for blade tip deformation and show good
agreement with experiments. Our results suggest that, using only the blade flexibility alone,
we are able to program the blade deformation to passively adopt an optimized shape for
efficient propulsion within a given parameter range.
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I. INTRODUCTION

Flexible structures are often more resilient to fluctuations of external flow conditions. This
property was first observed in nature by Vogel [1], who noticed that the leaves of the tulip tree change
shape to adopt a more streamlined configuration in high-wind conditions. This ability to change
shape is called reconfiguration and is common to many artificial or natural flexible systems. A
large-amplitude shape change is associated with a modification of the loading from the surrounding
fluid [2–6]. The streamlining of the body induces important changes in the flow field, causing
a slower increase in fluid loading compared to the classical relationship for rigid bodies, which
increases proportionally to the square of the flow velocity.

The coupling between fluid loading and deformation can also be used to improve performance.
Many animal species benefit from fluid-structure interactions [7], either by using their fins in the
case of fish and cetaceans, or their wings in the case of insects. In many instances, this deformation
is associated with a modification of the propulsive efficiency [8,9]. Inspired by these examples,
reconfiguration can be used in artificial systems to improve resilience to changes in external
conditions. Cognet et al. [10] used this principle by studying a wind turbine with flexible blades.
The blades deform under the action of fluid loading and centrifugal force, and the authors show
that using the right flexibility can extend the range over which a given wind turbine is efficient. The
blades of the wind turbine passively change shape and adapt to external conditions (here, the wind
velocity) in order to produce as much energy as possible.

Our goal in this study is to investigate the possibility of similarly extending the efficiency range
of an underwater propeller. For this problem, it is the forcing from the rotation that causes both the
loading and the deformation, and the centrifugal force plays a much smaller role than in the case of
wind turbines.

Several studies have addressed the problem of flexibility in rotating systems: for instance, Sicard
and Sirohi [11] and Mohd Zawawi et al. [12] studied highly flexible rotor blades in a microhelicopter
configuration for safety or storage purposes. Wind turbines with flexible blades are widely studied in
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FIG. 1. Sketch of the experimental setup: side view (left) and downstream view (right).

the literature [13–16]; in particular, Cognet et al. [17] proposed an algorithm to find the appropriate
blade material properties given a wind turbine geometry and a wind distribution to maximize the
extracted energy.

Several efforts have also been made to theoretically describe the forces and deformations for
flexible rotors [18–20]. In this article we use a similar description of the problem by dividing the
blade into independent spanwise elements.

For propellers in water, the problem of flexibility has recently been studied on a model scale
through the flow field around the rotor [21] or through the thrust produced [18]. In both studies, the
propeller blade is fully flexible, allowing it to bend and twist under the action of the fluid. However,
the bending deformation is always detrimental to thrust and efficiency as it reduces the area swept
by the rotor. We therefore study a modified geometry with a rigid leading edge, so that only the
twist deformation is allowed. Our goal is to study the propulsive efficiency of such a rotor and to
investigate whether the use of a flexible blade can lead to a passive adaptation of the rotor to the
flow conditions.

In this article, we first describe the experimental setup used to measure the efficiency of the rotors
and then highlight the main parameters of the problem with a typical experiment. We show how the
use of flexible blades improves the resilience to a change in external conditions and, finally, we
derive a theoretical law for the deformation of the blade tip and compare it with experiments.

II. SETUP

We use a scale model boat to test the flexible bladed propellers. The boat is held in place above a
free surface water channel and is tilted such that the propeller is submerged. The sensors and motor
are placed above the free surface [Fig. 1(a)]. The boat is composed of a DC electric motor, a torque
sensor, and a load cell. The DC electric motor rotates the shaft to which the propeller is attached.
The torque sensor measures in real time the hydrodynamic torque required to rotate the propeller
and the small parasitic torque associated with the two ball bearings used to hold the shaft in place.
We measured this parasitic torque separately and removed it from the final torque measurement.
The boat is attached to a carriage on a linear air bearing, itself held in place by a load cell. The
linear air bearing only transmits the longitudinal force to the load cell that therefore measures the
sum of the drag of the boat and the thrust generated by the propeller. We also measured the drag of
both the hull and shaft without the propeller, which we subtract from the final thrust measurement.
At last, we measure the angular velocity �, using a Hall effect sensor and a magnet attached to the
rotating shaft that sends 25 pulses per revolution. The propeller is placed sufficiently deep in the
water (100 mm from the top and bottom) and away from the channel walls so that there is no visible
free surface effect from the propeller and the blockage remains limited (below 15%). It has to be
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FIG. 2. (a) Superposition of pictures of the flexible propeller. The blade is illuminated by a laser sheet and
several pictures with different angular velocities have been superimposed. As the angular velocity is increased,
the deflection increases as well and the angle γM decreases. (b) Sketch of a radial cut of a blade at a distance
r from the axis of rotation. The local velocity results from the combination of the angular velocity r� and the
flow velocity U∞.

noted that the incoming flow on the blades is modified due to the angle δ of the propeller. Hence, the
incoming velocity on the propeller, U∞, is the projection of the free stream velocity in the direction
of the rotor: U∞ = U 0

∞ cos δ.
The propeller blades are made of three flexible plastic sheets glued to a rigid leading edge, all

connected to a central hub. We introduce the pitch angle γ0 of the blades as the angle between the
undeformed blades and the plane of rotation. We use four flexible propellers labeled P1 through P4
from least to most flexible and one rigid propeller for the purpose of reference, which has blades
made out of fiberglass. The blades have a maximum radius R, a minimal radius Rmin, and a chord c.
(The mechanical properties of the blades are detailed in the Supplemental Material [22].)

The measurement protocol is defined as follows: the flow velocity is set by the variable-speed
pump of the channel and the angular velocity of the rotor is increased in steps from 0 to 22 rad/s.
Each step lasts 20 s and is repeated twice. In the following graphs, the shaded regions represent the
fluctuation between repeated measurements. In parallel, a high-speed camera captures the shape of
the blade at the tip. This camera is synchronized with the Hall effect sensor on the boat, taking 25
pictures per rotation of the propeller. The blade is illuminated by a laser sheet covering the entire
chord at a given radius. The laser sheet is placed 1–2 mm from the tip, corresponding to 90% of the
maximum radius. We then extract the images where the blade is facing the camera [Fig. 2(a)]. The
tip twist angle γM = γ (r = R) is measured from the images of the deformed blade using a Hough
transform [23] to detect the main direction of the lit shape in the images. In practice, we measure
the angle of the straight section near the trailing edge. The measurement is subsequently corrected
because of the geometric bias introduced by the angle of the shaft. We focus on the deformation of
the blade near the tip because the local velocity (and therefore the generated force) is the largest
near the tip.

III. EXPERIMENTAL RESULTS

In order to compare the performance of the propeller between different operating conditions, we
introduce the tip speed ratio,

λ = R�

U∞
, (1)

with R the radius of the propeller, � the angular velocity, and U∞ the incoming flow velocity,
respectively.

For a given tip speed ratio, changing the flow velocity corresponds to a modification of the
chord-based Reynolds number:

Re = R�c

ν
, (2)
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with c the chord of the blades and ν the kinematic viscosity of water. In our case, Re ranges
between 103 and 104. High-Reynolds-number theory for flows around airfoils will therefore be
used to characterize the flow dynamics.

Finally, the last relevant dimensionless parameter compares the flexibility of the material to the
hydrodynamic loading. In this work, we consider the elasticity of the Mylar sheets as a pointwise
torsional spring at the leading edge [Fig. 2(b)]. The material properties are therefore modeled as
a single torsional spring per unit width C, measured using a bending test (the blades P1 through
P4 have a torsional spring constant of 1.60 × 10−1, 5.11 × 10−2, 8.71 × 10−3, and 2.32 × 10−3 N,
respectively). The hydrodynamic loading on a blade profile per unit width scales as 1/2ρc(R�)2

and is applied at a typical distance c from the leading edge. Thus, we obtain a Cauchy number
comparing the hydrodynamic moment on the leading edge to the restoring elastic force defined as
follows:

CY = 1/2ρc2(R�)2

C
. (3)

It has to be noted that the centrifugal force is negligible in this problem. This can be easily
verified by considering a blade section located at a distance r from the axis of rotation. The forces
per unit width exerted onto the section scale as

Fhydro ∼ ρc(R�)2, Fcentrifuge ∼ ρbladeRce�2, (4)

with ρblade the specific mass of the blade, and e its thickness. The ratio between the two reads

Fcentrifuge

Fhydro
∼ ρblade

ρ

e

R
� 1. (5)

Thus, only three main dimensionless numbers (along with the pitch angle γ0) are sufficient to
characterize this system: the tip speed ratio λ, the Reynolds number Re, and the Cauchy number
CY . Moreover, for high-Reynolds-number flows around airfoils, the Reynolds number is expected
to have only negligible effects on both the lift and drag coefficients of the blade profile, and so on
the generated forces. In consequence, changing the flow velocity while keeping a constant tip speed
ratio will then only modify the Cauchy number. In the range of blade materials used, the Cauchy
number spans more than three decades. For the sake of simplification, we hence kept the flow
velocity constant throughout the study equal to U 0

∞ = 0.15 m/s. Each blade flexibility can therefore
be quantified using the number CY /λ2 = 1/2ρc2U 2

∞/C. The blades P1 through P4 correspond to
values of CY /λ2 of 1.5 × 10−2, 4.7 × 10−2, 2.4 × 10−1, and 1.0, respectively.

Figure 3 shows a typical example of the data obtained in an experiment, here for a pitch angle
of γ0 = 60◦. The blue curves correspond to the reference rigid propeller, and the data in the yellow
to red shades correspond to increasingly flexible propellers. Four relevant quantities characterizing
the performance of the rotor are plotted as a function of the tip speed ratio λ: the thrust and torque
coefficients, defined as

CT = T

1/2ρπR2(R�)2 , CQ = Q

1/2ρπR3(R�)2 , (6)

with T and Q the hydrodynamic thrust and torque, respectively, the rotor efficiency η, and the tip
twist angle γM . As can be observed, all the flexible blades produce less thrust than the rigid one
[Fig. 3(a)] except for the least flexible ones. This can be understood considering the effect of the
flexibility that reduces the twist angle on the blade [Fig. 3(d)] and aligns the blade with the local
flow velocity. Under normal conditions of use, this results in a reduction in the lift generated and
therefore in the thrust generated.

In this study, we are interested in the propulsive efficiency η, defined as the ratio between the
useful power and the power expanded to spin the propeller:

η = TU∞
Q�

= CT

λCQ
. (7)
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FIG. 3. (a) Thrust coefficient CT , (b) torque coefficient CQ, (c) propulsive efficiency η, and (d) tip twist
angle γM as a function of the tip speed ratio λ. Colors indicate the flexibility of the blades: blue for the rigid
ones and yellow to red for increasingly flexible blades. Shaded areas indicate fluctuations between repeated
measurements. All the data correspond to a pitch angle γ0 = 60◦. Flexibility reduces both the thrust and torque
produced by the rotor by decreasing the twist angle γM and therefore the angle of attack, α. With this particular
pitch angle, the effect of this shape change is to improve the propulsive efficiency.

For this particular large pitch angle (γ0 = 60◦), the reduction of both thrust and torque in comparison
with the rigid blades leads to a significant improvement of the global efficiency of the propeller
[Fig. 3(c)]. This observation can be understood as follows in the limit of high tip speed ratios: if
R� � U∞, then the local flow velocity angle ϕ [as defined in Fig. 2(b)] approaches zero, meaning
that the effective angle of attack, α = γ − ϕ, is reduced to γ . The global efficiency depends on the
lift-to-drag ratio distribution of each blade radial section. If the lift-to-drag ratio is high everywhere
on the blade, so will be the efficiency of the propeller. However, the lift-to-drag ratio is the highest
for moderate angles of attack: 10◦ < αopt < 20◦ (for our geometry and setup, we measured the
lift and drag coefficients separately and obtained an optimal angle αopt = 17◦). Therefore, for this
specific large-pitch-angle case, the angle of attack on the rigid bladed propeller (α ≈ γ0 = 60◦) is
too large to generate efficient propulsion. For a flexible bladed propeller, the bending and twisting
mechanisms tend to decrease the local angle of attack on the blade, which is almost always beneficial
for efficiency. With a right choice of the mechanical properties of the blade, it is possible to find a
so-called optimal Cauchy number that maximizes the global efficiency: as can be seen in Fig. 3(c),
the red curve (blades P3) is above the most flexible dark red one (blades P4). Of course, if the angle
of attack is reduced beyond αopt (i.e., typically if the blades are too deformable), then the efficiency
will decrease (summed up in Fig. 4).

The same type of nonmonotonic behavior can also be seen for the thrust coefficient: only the P1
blades produce more thrust than the rigid ones [Fig. 3(a)]. This is due to the fact that the optimal
angle of attack for thrust production is α ≈ 45◦. The reduction of angle of attack from 60◦ for the
rigid blades is therefore at first beneficial for thrust before being detrimental for large deflections.
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FIG. 4. Schematic of the mechanism that leads to improved efficiency. [(a)–(c)] Evolution of the angle of
attack with the material flexibility for one given blade section. [(d)–(f)] Evolution of the global shape of the
blade as the deflection is larger at the tip than at the root. In (a) the blade is rigid and the angle of attack, α, is
larger than the one maximizing the lift-to-drag ratio: αopt. (b) The effect of flexibility is to reduce the twist angle
γ , therefore also reducing α. (c) Extremely flexible blades reduce α to values smaller than αopt, the lift-to-drag
ratio is reduced, and there is therefore an optimal flexibility.

IV. EFFICIENCY IMPROVEMENTS

The mechanisms described above can be generalized over a large range of external conditions to
compare the efficiency of different propellers.

In Fig. 5(a), the propeller efficiency is shown as a function of the tip speed ratio for the P3 blades
(corresponding the highest efficiency case shown in Fig. 3) and a pitch angle ranging from 40◦ to
60◦. In order to compare these different configurations to the rigid case, we also show the efficiency
curves of the rigid bladed rotor for the different pitch angles studied (in blue; different pitch angles
are identified with different markers). The study of the efficiency curves for the rigid case and for
different pitch angles is crucial for the understanding of the efficiency improvement brought using
flexible blades.

The efficiency curves for the rigid blades all display a maximum for an intermediate tip speed
ratio (except for the case corresponding to γ0 = 80◦ that remains very inefficient). Connecting all the
maxima of the above curves defines a tip-speed-ratio-dependent pitch angle for optimal efficiency
(i.e., for a given tip speed ratio λ, the pitch angle is adapted to give the maximal efficiency).

This optimal pitch angle relation as a function of the tip speed ratio γ
opt
0 (λ) is shown in Fig. 5(b)

and is a decreasing function of the tip speed ratio. In other words, the pitch angle should decrease
as λ increases if we want the propeller to keep its best efficiency.

We now understand, for a flexible bladed rotor, how the efficiency of the propellers is closely
linked to the twist angle γ along the span as was shown in the schematic of Fig. 4. In principle, the
aim is to design a flexible blade that deforms such that the twist angle (or effective pitch angle) γ

closely follows the decreasing curve displayed in Fig. 5(b).
This is what we observe if we superimpose in Fig. 5(b) the measured tip twist angle γM for the

P3 flexible blades with a pitch angle γ0 ranging from 40◦ to 60◦ to the plot (in blue) of γ
opt
0 (λ)

measured experimentally (i.e., the pitch angle corresponding to the maximum efficiency of the rigid
blades for each tip speed ratio). The three curves associated with a high efficiency have a slope that
closely follows the evolution of the experimental value of γ

opt
0 . Comparing these data with those

presented in Fig. 3 we see that the other flexible blades cannot reproduce this effect: both the P1
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FIG. 5. (a) Efficiency η as a function of the tip speed ratio λ. P3 blades (red) are displayed for γ0 = 40◦,
50◦, and 50◦ while rigid blades (blue) are displayed as a reference for all pitch angles. Markers represent the
pitch angle. Near the optimum, the efficiency curves of these flexible blades are superior to those of the rigid
blades. The flexibility allows the propellers to have high efficiency over a wider range of λ. (b) Corresponding
tip twist angle. The blue line corresponds to the optimal pitch angle for the rigid blades, γ

opt
0 (λ), measured

experimentally. Markers with dark edge colors correspond to data points where the flexible propeller is more
efficient than the rigid ones, whichever the pitch angle. Tip twist close to the optimum pitch angle corresponds
to high efficiency.

and P2 blades have a slope much smaller than the one needed to follow γ
opt
0 (λ) and the P4 blades

deform way too much.
In this work, we see that, depending on the material properties, flexible propellers can passively

adapt to changing external conditions by bringing the effective pitch angle close to its optimal value.
This is the case, for instance, of the P3 rotor at a pitch angle of 40◦ that overcomes all the efficiency
curves of the rigid case displayed in Fig. 5(a). It is worth noting that the physics described here is
based on the blade tip deformation. In itself, each radial section of the optimum shape of the flexible
blade should match the local effective pitch angle based on the local tip speed ratio λ(r) (as pictured
in Fig. 4, bottom row). However, the blade tip region corresponds to the location where most of the
force is generated and therefore driving the physics of the propeller.

V. TWIST ANGLE PREDICTION

Tip twist is crucial in predicting the efficiency of a flexible blade. In the following, we therefore
focus on predicting its evolution as a function of the pitch angle γ0, tip speed ratio λ, and Cauchy
number CY . First, we derive the equation for the twist angle γ and extract a predictive relationship
using a first-order approximation.

For the sake of simplicity, we chose to divide the blade into independent spanwise beams clamped
at the leading edge rather than solving the blade shape as a single elastic plate (Fig. 2). This approach
has been shown by Cognet [24] to converge to the same solution when the number of beams is
increased in the case of wind turbines. This approach neglects the elastic energy associated with
the spanwise torsion. However, this energy is always one order of magnitude smaller than the one
associated with chordwise bending: the ratio between the two can be approximated as Espan/Echord ∼
J/(I (1 + νp))(�ε/ε × c/(R − Rmin))2, with νp the Poisson ratio of the material. I and J are the
second moment of area and torsional moduli, respectively (both are the same order of magnitude for
elastic ribbons [25]). ε = γ − γ0 is the deflection of the blade and �ε is the difference in deflection
between the tip and the root. The chordwise elastic energy is therefore larger than the one associated
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to torsion by a factor larger than the square of the aspect ratio. In addition, in our experiments, the
torsion is small compared to the bending itself [i.e., �ε/ε � 1; see Fig. 2(a)]. The elastic restoring
force associated to each local beam is therefore modeled as a pointwise torsion spring attached to
the leading edge [Fig. 2(b)].

We consider a blade section, at a distance r from the axis of rotation. Two terms contribute to
the moment balance at the leading edge: the hydrodynamic loading and the elastic restoring torsion
moment. The latter reads

Melastic = C(γ (r) − γ0). (8)

The hydrodynamic contribution is computed dividing the resultant force into lift and drag contribu-
tions. The force normal to the blade chord per unit span reads

Fhydro = 1
2ρc

(
U 2

∞ + (R�)2)(CL(α) cos α + CD(α) sin α), (9)

where CL and CD are the lift and drag coefficients of the blade profile, respectively. We neglect
here the effect of the rotor self-induction, which slightly accelerates the fluid upstream before it
reaches the rotor. This force is applied at a distance δ̄LE

AC = c/4 from the blade leading edge [26].
The conservation of angular momentum at the blade leading edge reads

0 = C(γ (r) − γ0) − 1
2ρc

(
U 2

∞ + (R�)2
)
(CL(α) cos α + CD(α) sin α)δ̄LE

AC . (10)

Using R� and c as reference velocity and length, respectively, this equation can be written in
dimensionless form using the Cauchy number CY :

γ (r) = γ0 − CY

(
1 + 1

λ2

)
(CL(α) cos α + CD(α) sin α)δLE

AC , (11)

with δLE
AC = δ̄LE

AC /c. This equation is nonlinear due to the feedback from the hydrodynamic forcing,
the angle of attack being α = γ − ϕ.

We derive a law for small deformations by developing at the first order Eq. (11). The tip
deformation ε = γM − γ0 is considered to be small, and the angle of attack at the tip reads

α = ε + α0, (12)

where α0 = γ0 − arctan 1/λ is the angle of attack of the undeformed blade. The right-hand-side
terms of Eq. (11) then read

CL(α) cos α ≈ CL(α0) cos α0 + ε

(
−CL(α0) sin α0 + ∂CL

∂α

∣∣∣∣
α0

cos α0

)
, (13)

CD(α) sin α ≈ CD(α0) sin α0 + ε

(
CD(α0) cos α0 + ∂CD

∂α

∣∣∣∣
α0

sin α0

)
. (14)

We obtain the approximated law for the deformation ε:

ε = −CY

(
1 + 1

λ2

)
δLE

AC

(
CN (α0) + ε

∂CN

∂α

∣∣∣∣
α0

)
, (15)

where CN (α) = CL(α) cos α + CD(α) sin α is the normal force coefficient and

∂CN

∂α

∣∣∣∣
α0

= −CL(α0) sin α0 + ∂CL

∂α

∣∣∣∣
α0

cos α0 + CD(α0) cos α0 + ∂CD

∂α

∣∣∣∣
α0

sin α0. (16)

Finally, we obtain the following relationship for the theoretical twist deformation:

εtheor = − CY (1 + 1/λ2)δLE
AC CN (α0)

1 + CY (1 + 1/λ2)δLE
AC ∂CN/∂α|α0

. (17)
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FIG. 6. Blade deformation at the tip εexpt as a function of its theoretical expression εtheor. The data collapse
onto a single line of slope 0.65 (black line). Inset: Blade deformation as a function of the Cauchy number alone.
Color indicates flexibility and markers indicate the pitch angle similarly to previous plots.

The lift and drag coefficients are computed using a simple flat plate model [10,27]: CL(α) =
C1

L sin α cos α and CD(α) = C0
D + C1

D sin2 α, with C1
L,C0

D,C1
D constants fitted on measured blade lift

and drag coefficients at a similar Reynolds number (C1
L = 1.93, C0

D = 0.1, and C1
D = 1.6). Using

these coefficients, we can compute the first-order linearized deformation εtheor [note that none of the
terms in Eq. (16) is negligible; first-order development is required to capture the deformation of the
blades].

The deformation measured experimentally follows a linear trend as predicted by the theory for
small deformations (Fig. 6). The slope of this trend is 0.65, and is valid up to a deformation of
about 40◦. Beyond this value, corresponding to highly flexible and high pitch blades, the slope
decreases, but the collapse of the experimental data remains satisfactory. This scaling of the
deformation is robust to changes of the exact coefficients used to compute the normal force CN . We
found that variations of 20% in these coefficients still collapse the data, although with a different
slope.

VI. CONCLUSION

We studied the deformation and efficiency of a flexible blade propeller, which deforms in
response to fluid loading. By choosing the appropriate flexible material, we have shown that the
blade deformation maintains a high efficiency even in off-design conditions. The blade shape
passively adapts to a changes in tip speed ratio λ and therefore a flexible propeller can be as efficient
as the optimal rigid propeller over a wide range of λ (e.g., from λ = 3−5.5 for γ0 = 40◦). The
following steps should be followed in order to achieve the desired effect for a given geometry: First,
it is necessary to compute or measure γ

opt
0 (λ), the optimal pitch angle that maximizes the efficiency

of the rigid propeller at a specific λ. Then, based on the linear relationship for moderate deflections
from Eq. (17), the deformation of the blade can be predicted given the geometry and blade profile
used. Finally, when the deformation matches the evolution γ

opt
0 (λ) (giving the right Cauchy number

or material flexibility), the blades will passively adapt to maintain an optimized shape and therefore
a high efficiency.

In the specific case of a wind turbine, Cognet et al. [10] showed that very similar results can
be achieved with one key difference: this configuration has two degrees of freedom to program the
deformation of the blade in response to a given load, the flexibility of the material and its density. In
contrast to this work, the centrifugal force cannot be neglected in the context of wind turbines and
is an additional parameter. However, our results show that by using flexibility as the only parameter

074402-9



AURÉGAN, COURRECH DU PONT, AND THIRIA

of the system, we can still extend the range of efficient propulsion, with the only difference being
the range of tip speed ratio values where high efficiency occurs.

An interesting comparison could be made between the results obtained here and those obtained
with a blade where the flexibility is actually concentrated at the leading edge, with the blade made
up of independent spanwise rigid plates. Such a blade would eliminate two limiting factors: first, the
chordwise curvature of the blades at high deformation, which is detrimental to efficiency. Second,
this blade could achieve a significant spanwise torsion, which would improve both maximum
efficiency and optimum shape matching over the range of λ. In addition, investigating how the
results presented here change in the presence of spanwise torsion in the undeformed configuration
would be an important step towards engineering applications.
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