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Dynamics of a magnetic particle in an oscillating magnetic field
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The orientation dynamics of and the torque fluctuations due to a spheroidal magnetic
particle in an oscillating magnetic field are analyzed in the Stokes flow regime. For a per-
manent dipole, the dynamics depends on ω†, the ratio of the magnetic field frequency, and
the viscous relaxation rate. For ω† � 1, the particle executes oscillations with amplitude
∼(ω†)−1 about its initial orientation. The average torque is zero because the particle does
not execute complete rotations, and the root mean square of the torque fluctuations scaled
by the characteristic magnetic torque tends to a constant in this limit. For ω† � 1, the
orientation is close to the magnetic field direction for most of the oscillation period, and
it rapidly rotates when the field passes through extrema. The scaled root mean square of
the torque fluctuations is proportional to (ω†)−1/2 in this limit. The particle orientation
aligns along the magnetic field direction for different models of induced dipoles if the
magnetization is nonhysteretic. For the hysteretic Stoner-Wohlfarth model, the dynamics
also depends on the parameter h0, the ratio of the Zeeman energy, and the anisotropy
energy. For h0 � 1, the magnetic moment oscillates about one pole of the orientation
vector, and the orientation vector rapidly rotates when the field passes through extrema in a
manner similar to that for a permanent dipole. For h0 � 1, the magnetic moment switches
between the two poles of the orientation vector, and the orientation vector executes small
amplitude oscillations about the field direction. There is a discontinuous transition between
the oscillating and switching magnetic moment which depends on h0 and the initial
orientation.

DOI: 10.1103/PhysRevFluids.9.074303

I. INTRODUCTION

Suspensions of magnetic particles subjected to external magnetic fields have been used to
enhance mixing and transport in microfluidic applications [1]. Due to the small dimensions, low
velocities, and consequently the low Reynolds number, mixing between fluid streams occurs due
to molecular diffusion in the absence of external forcing. Molecular diffusion is a slow process,
and mixing due to molecular diffusion acts as a significant technological barrier for realizing the
potential of microfluidics [2,3]. This is because the molecular diffusion coefficient is 10−9 m2/s
for small molecules and could be as small as 10−13 m2/s for large molecules such as proteins
and polymers. From dimensional analysis, for diffusion across a distance 1 mm, the characteristic
diffusion time is in the range 103–107 s. This long mixing time makes fluid-handling operations
infeasible in point-of-care devices, and it is necessary to enhance mixing by passive or active
means. One of the phenomena used to enhance mixing is the application of time and spatially
varying magnetic fields, which induce forces and torques in magnetic particles [4]. Active mixing
strategies include magnetic microstirrer arrays [5], which rotate under an externally applied rotating
magnetic field. Microconvection has been observed in suspensions of magnetic particles under
spatially varying [6] and temporally oscillating [7] magnetic fields.
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Magnetic particles are classified into two types, nanometer-sized particles used in ferrofluids [8],
and micrometer-sized particles using in magnetorheological applications. Ferrofluids are dense col-
loidal suspensions where Brownian motion is important. The particles in a ferrofluid exert a torque
on the fluid under the influence of a magnetic field, and this torque results in an antisymmetric part
of the rate of deformation tensor [9,10] which could induce secondary flows. Issues of importance in
ferrofluids are the “spin viscosity” in the momentum conservation equation [11] and spin-up flows
under rotating magnetic fields [12]. Dilute ferrofluid suspensions have been used to generate mixing
in microfluidic devices [13,14].

Suspensions of micrometer-sized particles are classified as magnetorheological fluids [15,16].
These are non-Brownian suspensions which flow like a Newtonian fluid in the absence of a magnetic
field. Under the effect of an applied magnetic field, the particles aggregate, jam the conduit, and
prevent flow. Due to the rapid jamming under a field within time intervals of the order of millisec-
onds, these fluids enable rapid switching of mechanical characteristics in brakes and dampers. In
these dense suspensions, particle magnetic and hydrodynamic interactions play an important role in
the aggregation of particles and jamming of the suspension [17]. The rheology of these fluids has
usually been characterized using the “yield stress” formalism [18], but recent studies suggest that
the phenomenon is more complex involving hydrodynamic and magnetic interactions [19].

From a fundamental perspective, the simplest configuration is a single particle with a magnetic
moment in a steady or time-varying magnetic field with or without shear. The dynamics of a
magnetic spheroid under a steady applied magnetic field has been studied in the presence of imposed
shear [20–24]. In the absence of a magnetic field, a spheroid in shear flow executes closed orbits
called Jeffery orbits which depend on the initial orientation. The particles’ magnetic moments align
with the field direction in the absence of a shear flow. As the ratio of the magnetic to hydrodynamic
torque is increased, there is a progression between these two limits through a series of bifurcations,
which depend on the aspect ratio of the particle. Most studies consider a permanent dipole with
a fixed magnetic moment, though simple models for a nonhysteretic induced dipole have also
been considered [23,24]. However, the hysteretic nature of the magnetic moment has not been
incorporated in these studies.

There have been several studies on the dynamics of a particle in a rotating magnetic field [25,26].
Rotating magnetic fields have been used to propel and direct screw-shaped magnetic particles for
targeted diagnostics and drug delivery [27], and they have been used for “rotational magnetic
spectroscopy” for probing rheology [28]. The single-particle dynamics of spherical particles with
a permanent dipole in a rotating magnetic field has been studied analytically [29]. However, there
have been relatively few studies of more realistic hysteretic and nonhysteretic models for the particle
magnetic moment.

The subject of the present study is the dynamics of a particle in a spatially uniform and oscillating
magnetic field in the low Reynolds number regime. Though an oscillating field is much easier to
generate in comparison to a rotating field, there have been relatively few studies on the particle
dynamics in an oscillating field. Since there is no spatial variation in the field, an isolated particle
will not experience a force. However, there could be a torque if the particle moment is not parallel
to the field direction. This torque could generate fluid velocity fluctuations, and thereby convective
transport and mixing. However, to evaluate the potential for mixing, it is important to examine
whether the fluctuations are self-sustaining or whether they decay with time.

The dynamics of an isolated spheroidal particle in an oscillating magnetic field is the subject
of this study. An important classification of magnetic particles is into permanent and induced
dipoles. Permanent dipoles have a magnetic moment even in the absence of a magnetic field and
are usually made of ferromagnetic materials [30]. Induced dipoles have a magnetic moment in the
presence of a magnetic field and are usually made up of paramagnetic materials. The permanent
dipoles considered here have a magnetic moment vector that has a fixed magnitude and direction
in the particle reference frame. Magnetic particles can also be classified as single domain and
multidomain. The magnetization is uniform throughout the volume in single-domain particles [31].
The magnetic moment is the product of the particle volume and the saturation magnetization. There

074303-2



DYNAMICS OF A MAGNETIC PARTICLE IN AN …

is an upper limit on the size of single domain particles [32,33], which is less then 100 nm for
typical magnetic materials. Particles with larger size have multiple domains which are oriented
in different directions. This is due to the balance between the demagnetizing energy which tends
to randomize the magnetic moment and the energy of the exchange interactions which tend to
keep the moments aligned. For larger particle sizes, the demagnetising energy is dominant, and
the equilibrium state has multiple domains. The magnetic particles could also be anisotropic,
that is, they can be magnetized along a preferred direction [34]. This anisotropy could be due to
crystalline anisotropy, due to the shape of the particles or due to elastic stresses. For particles with
shape anisotropy such as spheroids, the magnetization could be preferentially along the axis of the
particle.

The Stoner-Wohlfarth model is for spheroidal magnetic particles that are in the single-domain
state, and that have an easy axis. Here it is also assumed that the magnetic moment responds
instantaneously to changes in the magnetic field, that is, the Néel relaxation time for the magnetic
moment is much smaller than viscous relaxation time for the particle or the period of oscillation of
the magnetic field. The Néel relaxation time is defined as

τN = τ0 exp (KV/kBT ), (1)

where K is the magnetic anisotropy energy density, V is the particle volume, kB is the Boltzmann
constant, T is the absolute temperature, and τ0 is an “attempt period” (inverse of attempt frequency),
which is in the range 10−9–10−10 s [35]. The Néel relaxation time is an exponential function of the
ratio of the anisotropic energy and the thermal energy. Here we are considering the low anisotropy
energy or high temperature limit, where the Néel relaxation time is small, and the switching of the
magnetic moment between the two directions along the easy axis is instantaneous.

The model for the magnetic moment of the particle is an important aspect considered here.
Though the magnetic moment for real particles has a nonlinear and hysteretic dependence on the
applied magnetic field, most models consider a constant magnetic moment. In order to evaluate
the potential for microfluidic mixing, it is important to consider realistic models for the particle
magnetic moment, both without and with hysteresis. Here the nonhysteretic models considered are
the permanent dipole with a constant magnetic moment and three models for the induced dipole. In
all nonhysteretic models, the magnetic moment is considered to be along the axis of the spheroid.
In the hysteretic Stoner-Wohlfarth model, the particle moment is not aligned along the particle axis.
The angle between the magnetic moment and the particle axis is determined by minimizing total
energy of the system, which is the sum of the Zeeman energy and the anisotropic energy due to
the misalignment of domains. All of these models are examined to determine whether there are
self-sustaining fluctuations in the orientation vector and the torque exerted by the particle on the
fluid.

The torque balance equation for a spheroidal particle in a magnetic field is used to determine the
equation for orientation angle relative to the direction of the magnetic field in Sec. II. The different
models for the particle magnetic moment are described in Sec. III, and the dimensionless parameters
are discussed. The dynamics for a permanent dipole with constant magnetic moment, in Sec. IV,
depends on one dimensionless group ω†, which is the magnetic field frequency scaled by the viscous
relaxation rate.

The nonhysteretic models for the induced dipoles include the signum model where the magnetic
moment has a constant value directed along the component of the magnetic field along the particle
axis, and the linear model, where the particle magnetic moment is a linear function of the component
of the field along the particle axis. The Langevin model provides a smooth progression from the
linear model at low magnetic field to a constant magnetic moment at high magnetic field. In all non-
hysteretic models, a trivial solution is obtained where the particle orientation is time-independent
and aligned along the magnetic field in the long-time limit. This can be shown analytically for the
signum and linear models, and the same solution is obtained numerically for the Langevin model.
Though the solutions are trivial, the calculations are included in Appendix for completeness.
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FIG. 1. The coordinate system (a) used for analyzing the dynamics of the spheroid showing the directions
of the magnetic field H , magnetic moment m, and orientation vector o and the angles α and φ, and the spheroid
(b) showing the axis (blue) of length L and the equatorial plane (red) of radius R.

The hysteretic Stoner-Wohlfarth model is discussed in Sec. V. The root mean squares of the
torque fluctuations generated due to these different models are compared in Sec. VI, in order to
estimate the relative efficiency of mixing. The important conclusions are summarized in Sec. VII.

II. EVOLUTION EQUATIONS

The effect of an oscillating magnetic field H on a spheroid with orientation vector o is studied
using the coordinate system in Fig. 1(a). The spheroid is a surface of rotation of an ellipse around
the axis (blue) shown in Fig. 1(b). The length of the axis is L, and the radius of the equatorial plane
(red) that bisects the axis is R. The aspect ratio r is the ratio of the length along the axis and the
diameter on the equatorial plane, L/(2R). The spheroid is prolate for r > 1 and oblate for r < 1. The
spheroid is a sphere for r = 1, an infinitesimal thin rod in the limit r � 1, and an infinitesimally thin
disk in the limit r � 1. The magnetic field oscillates along the direction e‖, and e⊥ is perpendicular
to e‖ in the e‖ − o plane. The orientation vector o subtends an angle φ with respect to the e‖,

o = cos (φ)e‖ + sin (φ)e⊥. (2)

The magnetic moment m acting on the polarizable particle due to the field makes an angle α with
the orientation vector,

m = m[cos (φ + α)e‖ + sin (φ + α)e⊥], (3)

where m is the magnitude of magnetic moment of the particle. The following vector products are
used later in the analysis:

m · o = m cos (α), (4)

o · H = H cos (φ), (5)

m × H = −mH sin (φ + α)e�, (6)

m · H = mH cos (φ + α), (7)

where H is the magnetic field, e� = e‖ × e⊥ is the direction perpendicular to the plane of e‖ and e⊥
in Fig. 1.
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In the viscous limit, the sum of the magnetic and hydrodynamic torques acting on the spheroid
is zero. The torque balance is given by

A⊥(I − oo) · (
1
2ω − �

) + A‖oo · (
1
2ω − �

) + μ0(m × H ) = 0. (8)

Here ω is the fluid vorticity at the particle center in the absence of the particle, 1
2ω is the fluid rotation

rate, � is the particle angular velocity, and μ0 is the magnetic permeability. The last term on the
right in Eq. (8), μ0(m × H ), is the magnetic torque acting on the particle. The first two terms in
Eq. (8) are the components of the hydrodynamic torque perpendicular and parallel to the orientation
vector, which is along the axis of the spheroid shown in Fig. 1(b).

The coefficients A‖ and A⊥ are the ratio of the torque and the angular velocity components
parallel and perpendicular to the orientation vector, respectively [36],

A‖ = 16πηR3(1 + r2)

3(r2β‖ + β⊥)
, (9)

A⊥ = 16πηR3

3β⊥
, (10)

where η is the viscosity. The factors β⊥ and β‖ are

β‖ =
∫ ∞

0

dλ

(r2 + λ)3/2(1 + λ)
, β⊥ =

∫ ∞

0

dλ

(r2 + λ)1/2(1 + λ)2
, (11)

where λ is an integration variable.
For the special case of a spherical particle, the aspect ratio r is 1. The integrations in Eq. (11) can

be carried out analytically to obtain β‖ = β⊥ = 2
3 , and we obtain the result A‖ = A⊥ = 8πμR3 for

a sphere. It is necessary to determine A‖ and A⊥ numerically for other values of the aspect ratio.
The torque balance along the orientation vector is determined by taking the dot product of Eq. (8)

with o,

o · (
1
2ω − �

) = 0. (12)

Note that o · (m × H ) = 0 because o, m, and H are in the same plane. Equation (12) implies that the
components of the particle angular velocity and the fluid rotation rate along the orientation vector
are equal. The torque balance perpendicular to the orientation vector is obtained by taking the cross
product of Eq. (8) with o,

A⊥o × (
1
2ω − �

) + μ0o × (m × H ) = 0. (13)

The rate of change of the orientation vector is the angular velocity of the particle, �,

do
dt

= � × o = − μ0

A⊥
o × (m × H )

= μ0

A⊥
[(m · o)H − (o · H )m]. (14)

Here we have used Eq. (13) for o × �, and assumed there is no flow, ω = 0. The evolution
equation is obtained by substituting Eqs. (2) and (3) in Eq. (14),

dφ

dt
= − μ0mH

A⊥
sin(φ + α). (15)

For an oscillating magnetic field, H = H0 cos (ωt ), where ω is the field frequency and H0 is the
amplitude of the oscillating field. Thus, the evolution equation is

dφ

dt
= − μ0mH0

A⊥
sin(φ + α) cos (ωt ). (16)
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FIG. 2. The magnetic moment as a function of the component of the magnetic field along the particle
axis for the nonhysteretic models: cyan—permanent dipole, black—signum model, red—linear model, blue—
Langevin model.

If m0 is the characteristic magnetic moment, it is evident from the above equation that
(A⊥/(μ0m0H0)) is a characteristic timescale, the magnetic relaxation time, which can be used to
scale the time coordinate. Therefore, the scaled equations are expressed in terms of the characteristic
time t† = (tμ0m0H0/A⊥) and the scaled frequency ω† = (ωA⊥/(μ0m0H0)). It should be noted that
the characteristic moment m0 depends on the magnetization model used; the different models are
discussed in Sec. III.

The torque acting on the particle is in the direction perpendicular to the magnetic field and the
particle orientation [Eq. (6)],

T = μ0(m × H ) = − μ0mH0 sin (φ + α) cos (ω†t†)e�. (17)

The magnitude of the torque is related to the time derivative of φ using Eq.(16),

T = A⊥
dφ

dt
. (18)

The average torque and the root mean square of the torque fluctuation are given by

Tavg =
(

ω

2πN

∫ 2πN/ω

0
T dt

)
, (19)

Trms =
(

ω

2πN

∫ 2πN/ω

0
(T − Tavg)2dt

)1/2

, (20)

where N , the number of periods of the oscillating field used for averaging, is large. The average
torque is nonzero only if a particle undergoes complete rotation. For an oscillating particle, the
average torque is equal to zero, and results are reported here only for Trms.

III. MODELS

The magnetic moment is, in general, a function of the magnitude of the magnetic field H =
H0 cos (ωt ) and the angle between the orientation vector and the magnetic field φ. The relation
between the magnetic moment and the magnetic field is shown in Figs. 2 and 4, and the parameters
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TABLE I. F and α values for the different models.

Model F α

Permanent dipole m0 0

Signum m0sgn[cos (ωt ) cos (φ)] 0

Linear χH0 cos (ωt ) cos (φ) 0

Langevin m0

[
coth

( 3χH0 cos (ωt ) cos (φ)
m0

) − m0
3χH0 cos (ωt ) cos (φ)

]
0

Stoner-Wohlfarth m0 Eqs. (26) and (27)

are described in Table I. The models for permanent and nonhysteretic induced dipoles considered
here are as follows:

(1) The simplest is the permanent dipole, where the magnetic moment has constant magnitude
and is directed along the particle orientation vector,

m = m0o. (21)

Here m0 is the constant magnetic moment.
(2) In the signum model for an induced dipole, the magnetic moment has constant magnitude,

but is always directed along the the component of the magnetic field along the orientation vector,

m = m0sgn[o · H]o = m0sgn[H0 cos (φ) cos (ωt )]o. (22)

Therefore, the direction of the magnetic moment changes instantaneously the dot product of the
magnetic field and the orientation vector changes.

(3) In the linear model, the magnetic moment is a linear function of the component of the
magnetic field along the particle orientation vector, o · H , that is,

m = χ (o · H )o = χH0 cos (φ) cos (ωt )o. (23)

Here χ is the magnetic susceptibility.
(4) The magnetic moment in the Langevin model is given by

m = m0

[
coth

(
3χH · o

m0

)
− m0

3χH · o

]
o. (24)

The Langevin model exhibits a transition from a linear dependence of the moment on the field at
low magnetic field and a saturation of the moment at high magnetic field, as shown in Fig. 2. The
signum model is an approximation for the Langevin model in the limit m0

3χ |H| � 1, and the linear
model is an approximation in the limit m0

3χ |H| � 1.
The models discussed above have no hysteresis. In these models, the magnetic moment is aligned

with the orientation vector, and the angle α is zero.
In the Stoner-Wohlfarth model, the strength of the moment remains constant, but the moment is

free to rotate in the plane containing the orientation vector and the magnetic field. The magnetic
moment is given by Eq. (3) with a nonzero angle α between the orientation vector and the magnetic
moment. The direction of the moment is determined from energy minimization, that is, the sum of
the Zeeman energy due to the external field and anisotropy energy should be minimum. The energy
E of the Stoner particle is

E = − μ0m · H + K sin (α)2. (25)

The Zeeman energy is the first term on the right, −μ0m · H . The second term on the right,
K sin (α)2, is the anisotropic energy due to the nonalignment of the moment with the particle axis.
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FIG. 3. The variation of the scaled energy (E/2K ) as a function of the angle α for different values of φ for
the Stoner-Wohlfarth model for φ = π/2 (red), φ = π/3 (blue), φ = π/8 (black), and φ = 0 (cyan). Movie
1 [37] shows the variation in the energy profile for different values of φ for h = 0.1 and h = 1.5.

The energy E is minimum for a particular orientation of the particle when the variation of the
energy with angle α is zero, and the second derivative is positive,

1

2K

∂E

∂α
= sin (α) cos (α) + h sin (φ + α) = 0, (26)

1

2K

∂2E

∂α2
= cos (2α) + h cos (φ + α) � 0. (27)

Here [h = μ0m0h/(2K )] is the dimensionless ratio of the magnetic energy due to field to the energy
of anisotropy. It should be noted that h is time-dependent, because H = H0 cos (ωt ). This is different
from the constant parameter h0 = (μ0m0H0/2K ) used in Sec. V for an oscillating magnetic field.

The energy, scaled by 2K , is shown as a function of α for different values of φ in Fig. 3(a) for
h = 0.1 and Fig. 3(b) for h = 1.5. For h < 1, the energy has two minima for two different values of
α. Analytical solutions exist only for the orientations φ = 0 and π/2.

(1) For φ = 0, the locations of the extrema where (∂E/∂α) = 0 are

α = 0,
E

2K
= −h,

1

2K

∂2E

∂α2
= 1 + h,

α = π,
E

2K
= h,

1

2K

∂2E

∂α2
= 1 − h,

cos (α) = −h,
E

2K
= 1 + h2

2
,

1

2K

∂2E

∂α2
= −(1 − h2). (28)

For h < 1, there are two minima at α = 0 and π , and the scaled energy at these two are −h and
h, respectively. For h > 1, there is one minimum at α = 0, where (E/K ) = −h.

(2) For φ = π/2 the locations of the extrema are

α = π/2,
E

2K
= h + 1

2
,

1

2K

∂2E

∂α2
= −(1 + h),

α = 3π/2,
E

2K
= 1

2
− h,

1

2K

∂2E

∂α2
= −(1 − h),

sin (α) = −h,
E

2K
= −h2

2
,

1

2K

∂2E

∂α2
= 1 − h2. (29)
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FIG. 4. Component of particle moment parallel to field (a) and perpendicular to the field (b), obtained by
solving Eqs. (26) and (27), for different angles between the particle and the field for the Stoner-Wohlfarth
model, for φ = π/2 (red), φ = π/3 (blue), φ = π/8 (black), and φ = 0 (cyan).

For h < 1, there are two minima at sin (α) = −h in the third and fourth quadrants, and the free
energy is −(h2/2) at both these minima. For h > 1, there is one minimum at α = 3π/2, where
(E/2K ) = 1

2 − h.
The values of α at the minima are obtained by numerically solving Eqs. (26) and (27) for other

values of φ.
The solutions for α, along with the vector product given in Eq. (7), are used to determine

the components of the magnetic moment parallel and perpendicular to the field. The resultant
magnetization curves are shown in Figs. 4(a) and 4(b). Hysteresis is observed for values of h where
there are two minima in the (E/2K ) vs α curves, and the moment is single-valued where there is
one minimum.

The “switching field” hs is the scaled magnetic field at which one energy minimum disappears.
A particle magnetic moment with angle α located in this minimum instantaneously switches to the
other energy minimum with a different α, and therefore there is a discontinuous change in the angle
between the magnetic moment and the orientation vector. The switching field is a function of φ,
the angle between orientation vector and the magnetic moment. The switching field is determined
from the conditions (∂E/∂α) = 0 and (∂2E/∂α2) = 0 [Eq. (26) and Eq. (27) with � replaced by
=]. These two conditions can be used to express hs in terms of φ,

hs = 1

[sin (φ)2/3 + cos (φ)2/3]3/2
. (30)

The switching field is hs = 1 for φ = 0 and φ = π/2, this is consistent with the analytical solu-
tions (28) and (29). The switching field has a minimum value hs = 1

2 for φ = π/4.
Since the relation between α and φ is given by equilibrium conditions and not time evolution

equations, it is implicitly assumed that the Néel time for the response of the particle magnetic
moment is small compared to the time for the change in the magnetic field or the particle orientation.

The evolution Eq. (16) can be formulated as

dφ

dt
= − (μ0H0/A⊥) cos (ωt ) sin (φ + α)F (φ, t ), (31)

where F is the function that relates the strength of the moment to the field. Table I gives the values
of F and α for the different models analyzed in this study.

IV. PERMANENT DIPOLE

The magnetic moment is m = m0o [Eq. (21)], and the scaled evolution equation for this model is

dφ

dt†
= − cos (ω†t†) sin (φ), (32)
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FIG. 5. The variation of the angle φ between the particle orientation and the magnetic field direction as a
function of ω†t† for a permanent dipole for (a) ω† = 0.05 (◦), 0.2 (
), 0.5 (∇), 1.0 (�), 2.0 (�), and 5 (�) for
the initial condition φi = 3π/4 at t† = 0, and (b) ω† = 1 and φi = π/4 (red), π/2 (black), and 3π/4 (blue).
The analytical solution [Eq. (33)] coincides with the numerical solution. The dotted red lines in (a) are the
ω† � 1 asymptotic solutions [Eq. (40)] for ω† = 5.0, 2.0, and 1.0. Movie 2 [37] shows the evolution of the
dynamics of the orientation vector for ω† = 0.05, 0.5, and 2.0.

where the scaled time is t† = (μ0m0H0t/A⊥), and the scaled frequency is ω† = ωA⊥/(μ0m0H0).
The solution for Eq. (32) is

cos (φ) = A exp [2 sin (ω†t†)/ω†] − 1

A exp [2 sin (ω†t†)/ω†] + 1
, sin (φ) = 2

√
A exp [sin (ω†t†)/ω†]

A exp [2 sin (ω†t†)/ω†] + 1
, (33)

where the constant A depends on the initial condition, φ = φi at cos (ω†t†) = 1,

A = 1 + cos (φi)

1 − cos (φi)
. (34)

The variation of the angle φ with ω†t† is shown in Fig. 5(a) for different values of ω† for the same
initial condition, φi = 3π/4 at t† = 0. For ω† � 1, the orientation is close to the two fixed points,
φ = 0, π , for most of the time, and there are rapid transitions between these two orientations. It
can be inferred, as follows, that the difference �φ between the angle φ and the fixed points is
φ ∼ 2A−1/2 exp (−1/ω†) near the fixed point φ = 0, and π − φ ∼ 2A1/2 exp (−1/ω†) near the fixed
point φ = π . For φ � 1 near the fixed point at φ = 0, φ has a minimum at sin (ω†t†) = 1. At this
instant the analytical solution, Eq. (30), for sin (φ) is

sin (φ) = 2
√

A exp (1/ω†)

A exp (2/ω†) + 1
∼ 2A−1/2 exp (−1/ω†). (35)

Since sin (φ) � φ for φ � 1, we find that φ ∼ 2A−1/2 exp (−1/ω†). For π − φ � 1 near the fixed
point at φ = π , the maximum value of φ is at sin (ω†t†) = −1. At this instant, the analytical
solution, Eq. (30), for sin (φ) is

sin (φ) = 2
√

A exp (−1/ω†)

A exp (−2/ω†) + 1
∼ 2A1/2 exp (−1/ω†). (36)

Since sin (φ) � π − φ for π − φ � 1, we find that π − φ ∼ 2A1/2 exp (−1/ω†). Therefore, the
orientation approaches close to the two fixed points, but it does not reach the fixed points. This is
because the eigenvalues at these fixed points are time-dependent. The eigenvalue is − cos (ω†t†) for
the fixed point at φ = 0, and cos (ω†t†) for the fixed point at φ = π . When cos (ω†t†) is positive,
φ = 0 is the stable fixed point and φ = π is the unstable fixed point. When cos (ω†t†) is negative,
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φ = π is the stable fixed point and φ = 0 is the unstable fixed point. Since the stability of an
initially stable fixed point reverses as the orientation approaches this fixed point, the orientation
never reaches the fixed point.

Figure 5(b) shows the dependence of the φ trajectories on the initial condition over a longer time
period of 15 times the period of the magnetic field oscillation. Here φ is shown as a function of
ω†t† for ω† = 1 and for three different initial conditions, φi = π/4, π/2, and 3π/4. It is evident
that the trajectories remain distinct even after tens of time periods of the magnetic field oscillation.
The trajectories are in quantitative agreement with the analytical prediction, Eqs. (33) and (34).

For ω† � 1, the response time is much larger than the period of the magnetic field oscillation.
In this limit, the field direction changes before there is significant change in the orientation vector.
The particle oscillates with small amplitude around the initial condition. The dynamics over one
period of the magnetic field oscillation is analyzed by defining t‡ = ω†t†, so that the magnetic field
variation is expressed as H = H0 cos (t‡). Equation (32) is expressed in terms of t‡, and the resulting
equation is divided by ω†, to obtain

dφ

dt‡
= − 1

ω†
cos (t‡) sin (φ). (37)

A regular perturbation expansion in the small parameter (ω†)−1, φ = φ0 + φ1/(ω†) +
φ2/(ω†)2 + · · · , of the evolution Eq. (37) gives

dφ0

dt‡
= 0,

dφ1

dt‡
= − cos (t‡) sin (φ0),

dφ2

dt‡
= − cos (t‡)φ1 cos (φ0). (38)

These equations are solved sequentially with the initial condition φ0 = φi, φ1 = 0 and φ2 = 0 at
t‡ = 0, to obtain

φ0 = φi, φ1 = − sin (t‡) sin (φ0), φ2 = 1
2 cos (φ0) sin (φ0) sin (t‡)

2
. (39)

Therefore, the expansion for the angle φ expressed in terms of φi and t† is

φ = φi − (ω†)−1 sin (ω†t†) sin (φi) + 1
2 (ω†)−2 cos (φi ) sin (φi ) sin (ω†t†)

2
. (40)

The asymptotic solution (40) in the limit ω† � 1 is shown by the red dotted lines for ω† =
5, 2, and 1 in Fig. 5(a). The asymptotic results are in quantitative agreement with the numerical
results for ω† � 2, and there is very little difference between the two even at ω† = 1. It is noteworthy
that the asymmetry in the trajectories about φ = φi is well captured by the asymptotic solution,
Eq. (40), at ω† = 1.

The magnitude of the torque acting on the particle, Eq. (17), is

T = − μ0m0H0 sin (φ) cos (ω†t†). (41)

The average torque acting on the particle is zero as the particle oscillates about its initial condition
and does not undergo a complete rotation. The root mean square of the torque fluctuations in the
direction perpendicular to the e‖ − e⊥ plane is

T †
rms = Trms

μ0m0H0
=

(
ω†

2π

∫ 2π/ω†

0
dt† 4A cos (ω†t†)2 exp [2 sin (ω†t†)/ω†]

{A exp [2 sin (ω†t†)/ω†] + 1}2

)1/2

. (42)

The scaled root mean square of the torque fluctuation is plotted as a function of ω† in Fig. 6. This
increases as

√
2ω†/π for ω† � 0.5. In the limit ω† � 1, the leading-order term in the solution (40),

φ = φi, can be used to obtain the root mean square of the torque fluctuation,

T †
rms = | sin (φi )|√

2
, (43)
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FIG. 6. The variation of root mean square of the torque fluctuation with ω† for a permanent dipole for initial
conditions, φi = π/12 (◦), φi = π/6 (
), φi = π/4 (∇ ), φi = π/3 (�), φi = 5π/12 (�), and φi = π/2 (�).
The blue dashed line is the asymptotic result for ω† � 1, T †

rms = √
2ω†/π . The red dashed lines on the right

are the asymptotic results for ω† � 1 [Eq. (43)].

where φi is the initial orientation angle. The root mean square of the torque fluctuation does depend
on the initial orientation for ω† � 1, and the numerical results are in agreement with the high ω†

prediction for ω† � 5.

V. STONER-WOHLFARTH MODEL

The scaled evolution equation for the Stoner-Wohlfarth model is

dφ

dt†
= − sin (φ + α) cos (ω†t†). (44)

The transformed energy equations (26) and (27) for an oscillating field are

sin (α) cos (α) + h0 cos (ω†t†) sin (φ + α) = 0, (45)

cos (2α) + h0 cos (ω†t†) cos (φ + α) � 0, (46)

where h0 = (μ0m0H0/2K ). For a given initial orientation, the α value is determined by using the
energy equations (45) and (46).

A unique feature of the Stoner-Wohlfarth model is synchronization with magnetic field, which
will be discussed in detail in Secs. V A and V B. In Fig. 5(b) it was observed that the solution (33)
for the orientation of a permanent dipole depends on the initial condition. In contrast, the analysis
in this section shows that the periodic state in the long time limit for the Stoner-Wohlfarth model
does not depend on the initial orientation. There are transients at initial time that depend on the
initial orientation, but these decay with time. In the long-time limit, there is synchronization of the
orientation with the magnetic field oscillation. The discussion in the following sections is restricted
to the synchronized trajectories in the long-time limit.

A. Low h0

Shown in Figs. 7(a) and 7(c) are the angles φ of the orientation vector (black) and (φ + α) of the
magnetic moment (blue), and in Fig. 7(b) and 7(d) are the angles α between the magnetic moment
and the orientation vector scaled by h0, for two different values, h0 = 0.1 and h0 = 0.5. Results
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FIG. 7. The angles φ of the orientation vector (black), φ + α of the magnetic moment (blue) in (a) and (c),
and (α/h0 ) in (b) and (d), as a function of ω†t† for h0 = 0.1 (a) and h0 = 0.5 (b), and ω† = 0.2(◦), ω† = 1
(
), and ω† = 5 (�). The red dotted lines in (a) and (c) are the solutions φ0 + h0φ1, where φ0 is the solution for
permanent dipole [Eqs. (33) and (34)] with φi = π/2, and φ1 is the first correction [Eq. (49)]. The red dotted
lines in (b) and (d) are the first approximation α1 [Eq. (47)]. Movies 3 and 4 [37] show the dynamics of the
orientation and magnetic moment vectors for h0 = 0.1 and 0.5, respectively.

are provided for three different values of ω†, 0.2, 1, and 5. For h0 = 0.1 [Figs. 7(a) and 7(b)], the
trajectories are qualitatively similar to those for a permanent dipole shown in Fig. 5, and the angle
α is small. [Note that the ratio (α/h0) = 10α is plotted in Fig. 7(b).] For ω† = 0.2, the time period
of the magnetic field is much larger than the orientation relaxation time. The orientation vector
and moment are aligned with the magnetic field direction (φ = 0, π ) for most of the oscillation
period, and there are sharp but continuous changes when the magnetic field passes through extrema.
The magnetic moment and the orientation vector are aligned and α � 0 for most of the oscillation
period, and α is nonzero only when the orientation reverses. For ω† = 5, when the time period
of the magnetic field is much smaller than the orientation relaxation time, the amplitude of the
oscillations is small and the oscillations are sinusoidal. The angle α is also sinusoidal in this case.
For ω† = 1, the oscillations are approximately sinusoidal, but the oscillation amplitude is larger. In
all cases, the orientation angle and the magnetic moment are nearly aligned for h0 = 0.1. This is
designated “oscillating magnetic moment,” since the magnetic moment oscillates close to one pole
of the orientation vector.

There is a larger variation in the angle α between the orientation and the magnetic moment for
h0 = 0.5, as shown in Fig. 7(b). However, the ratio (α/h0) is approximately the same as that for
h0 = 0.1. The forms of the trajectories for h0 = 0.5 are qualitatively similar to those for h0 = 0.1—
the variation is approximately sinusoidal for ω† = 5 and 1, and there is a sharp transition when the
magnetic field reverses for ω† = 0.2.
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FIG. 8. The orientation angle φ as a function of ω†t† at ω† = 1 for the Stoner-Wohlfarth model with h0 =
0.1 (a), and the Stoner-Wohlfarth model with h0 = 0.5 (b). The blue, black, and red lines are the trajectories
for initial condition φi = 3π/4, φi = π/2, and φi = π/4 at t† = 0, respectively.

It is observed that the angle α is positive when φ increases, and negative when φ decreases,
indicating that the magnetic moment vector leads the orientation vector. The variation of α is
smooth, and hysteresis is not observed. In the limit h0 � 1, α is expected to be O(h0), and an
expansion φ = φ0 + h0φ1 + · · · and α = h0α1 + · · · is employed. Since α is O(h0), it does not
appear in the evolution equation for φ0 obtained by expanding Eq. (44) in the limit h0 � 1.
The resulting equation reduces to that for a permanent dipole, Eq. (32), with φ replaced by φ0.
Equation (33) is the solution for φ0. The leading-order contribution α1 is then determined from
Eq. (45),

α1 = − cos (ω†t†) sin (φ0). (47)

This solution, shown by the dotted red lines superposed on the black lines in Fig. 7(b), is in excellent
agreement with the numerical solutions for h0 = 0.1. The agreement is not as good for h0 = 0.5
[Fig. 7(d)], but the qualitative variation is captured. The equation for the first correction φ1 is

dφ1

dt†
= −(φ1 + α1) cos (φ0) cos (ω†t†)

= −φ1 cos (φ0) cos (ω†t†) + sin (φ0) cos (φ0) cos (ω†t†)
2
. (48)

An important difference between the trajectories for the orientation vector for a permanent dipole
in Fig. 5 and those for the Stoner-Wohlfarth model for h0 � 1 in Fig. 7 is the dependence on
initial condition. Whereas the trajectories in Fig. 5 for a permanent dipole do depend on the initial
orientation, those for the Stoner-Wohlfarth model in Fig. 7 do not depend on the initial orientation.
In the long-time limit, the trajectories drift to a universal trajectory that is independent of the initial
angle. This phenomenon is shown in Fig. 8, where the variation of φ with ω†t† is shown for h0 = 0.1
[Fig. 8(a)] and h0 = 0.5 [Fig. 8(b)]. Here it is clear that φ tends to a universal trajectory in the
long-time limit. To specify the universal trajectory, the angle φu is defined as the value of φ at the
instant cos (ω†t†) = 1. In Fig. 8 it is observed that φu is close to (π/2), independent of the initial
condition. This is in contrast to the trajectory for the permanent dipole model in Fig. 5(b), where
the variation of φ clearly depends on the initial condition.

The drift to a universal trajectory can be rationalized from the equation for the first correction
φ1 for the orientation angle (Eq. (48)). When the leading-order solutions, Eq. (33) for cos (φ0) and
sin (φ0), are substituted into Eq. (48), the second inhomogeneous forcing term on the right is secular
and does not average to zero over one cycle unless φi = π/2 at cos (ω†t†) = 1. A bounded solution
is obtained in the long-time limit only if there is synchronization with the applied field such that
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FIG. 9. The angles φ = φu at cos (ω†t†) = 1 as a function of ω† for (a) an oscillating magnetic moment for
h0 = 0.01(◦), h0 = 0.1 (
), and h0 = 0.5 (�), and (b) a switching magnetic moment for h0 = 1.0 (◦), h0 = 0.8
(
), h0 = 0.7 (∇), h0 = 0.6 (�).

φi = π/2 at cos (ω†t†) = 1 in Eqs. (33) and (34). This synchronization can be understood as the
consequence of two coupled oscillators in the Stoner-Wohlfarth model, one between the field and
the magnetic moment and the other between the magnetic moment and the orientation vector. In
contrast, there is only one oscillator in the permanent dipole model coupled to the external field,
and therefore there is no synchronization.

This first-order inhomogeneous equation for φ1 can be solved using an integrating factor after
substituting the solutions (33) for cos (φ0) and sin (φ0),

φ1{A exp [2 sin (ω†t†)/ω†] + 1} exp [− sin (ω†t†)/ω†]

=
∫ t†

0
dt‡

(
2
√

A{A exp [2 sin (ω†t‡)/ω†] + 1} cos (ω†t‡)2

{A exp [2 sin (ω†t‡)/ω†] + 1}

)
+ C, (49)

where C is the constant of integration and t‡ is the integration variable. The value of C is obtained
from the requirement that the average of φ1 is zero when the integration is carried out between
ω†t† = 0 and ω†t† = 2π . The dotted red lines superposed on the black lines in Fig. 7 are the
solutions for φ0 + h0φ1 in the limit h0 � 1. These are in excellent agreement for h0 = 0.1, but
there are differences during the rotation of the orientation vector for h0 = 0.5.

As explained earlier, the universal trajectory is characterized by the parameter φu is defined as
the angle φ at cos (ω†t†) = 1. From Fig. 7, it is observed that φu is close to π/2 for h0 = 0.1, but
the asymptotic result is not accurate for h0 = 0.5. The variation of φu with ω† for different values
of h0 is shown in Fig. 9(a). This figure shows that φu is close to π/2 for h0 = 0.01, and φu also
tends to π/2 for ω† � 1. Note that the period of the magnetic field oscillation is small compared
to the particle relaxation time in the limit ω† � 1, and the amplitude of the oscillations decreases
proportional to (ω†)−1.

B. High h0

Figure 10 shows the evolution of the angles [Fig. 10(a)] φ, and [Fig. 10(b)] α (black) and (φ + α)
(blue) as a function of ω†t†. The difference between the range of the ordinate in Figs. 10(a) and 10(b)
is noteworthy. In Fig. 10(b), the angle α varies in the range −π to π , while the angle φ is positive
and much smaller in magnitude in Fig. 10(a). Due to this, there is very little difference between α

and α + φ. The difference does seem large over a part of the time interval because α is slightly less
than π , and α + φ is wrapped around and is slightly greater than −π .

The angles α and φ + α undergo discontinuous transitions between 0 and ±π . The reversal of the
magnetic moment takes place a little after the reversal in the direction of the applied magnetic field.
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FIG. 10. The angle (a) of the orientation vector φ, and (b) the angles of the magnetic moment α (black) and
φ + α (blue) as a function of ω†t† for h0 = 0.8 and ω† = 0.2(◦), ω† = 1 (
), and ω† = 5 (�). The magnetic
moment switches at the time instants shown by the vertical dotted lines. Movie 5 [37] shows the dynamics of
the orientation vector and the magnetic moment for h0 = 0.8 and for ω† = 0.2, 1.0, and 2.0.

There is a discontinuous change because the curvature of the local minimum of the energy profile
for the SW model given by (45) and (46) becomes zero, and the system transitions discontinuously
to the other minimum. This is illustrated in Fig. 11, which shows the evolution of the free energy
landscape for h0 = 0.8 and ω† = 1. In contrast to Fig. 3, the magnetic field is not a constant, but
undergoes a sinusoidal oscillation h = h0 cos (ω†t†). Due to this, there are two minima in the free

FIG. 11. The variation of the scaled energy (E/2K ) as a function of the angle α for the Stoner-Wohlfarth
model for an oscillating field with h0 = 0.8, ω† = 1.0, and ω†t† = 2.45, φ = 0.122 (blue), ω†t† = 2.64, φ =
0.178 (black), and ω†t† = 3.27, φ = 0.127 (red). The maxima are shown by the 
 symbols, the minima by
the ∇ symbols, and the inflection point with zero slope by the � symbol. The angle α of the particle magnetic
moment and the corresponding energy are shown by the × symbol. Movie 6 [37] shows the variation of the
energy profile with ω†t† for h0 = 0.8 and ω† = 1.0.
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FIG. 12. The orientation angle φ as a function of ω†t† at ω† = 1 for the Stoner-Wohlfarth model with
h0 = 0.75 (a), and the Stoner-Wohlfarth model with h0 = 1.0 (b). The black and red lines are the trajectories
for initial condition φi = π/4 and φi = π/2 at t† = 0, respectively.

energy for time intervals where h0 cos (ω†t†) < hs, where hs is the switching field [Eq. (30)], and
there is one minimum for time intervals where h0 cos (ω†t†) > hs. It should be noted that hs is
a function of φ, which is itself a function of time in this case. The merger of a maximum and
a minimum is shown in Fig. 11(a) for h0 = 0.8 and ω† = 1. At ω†t† = 2.45, the energy profile
shown by the blue curve has two maxima and two minima. At ω†t† = 2.64, shown by the black
curve, there is an inflection point with zero slope due to the merger of a maximum and a minimum.
At ω†t† = 3.27, there is only one maximum and one minimum as shown by the red curve. Thus,
there are two maxima and two minima for ω†t† < 2.64, and one maximum and one minimum for
ω†t† > 2.64.

The α and energy values for the particle magnetic moment are shown by the × symbol in Fig. 11.
For ω†t† = 2.45, φ = 0.122, the energy minimum is at α = 0.201. At ω†t† = 2.64, φ = 0.178, the
minimum merges with a maximum resulting in an inflection point at α = 0.201, and the orientation
of the magnetic moment switches (discontinuously changes) to α = 3.07, where the other minimum
is located. This transition between two minima and one minimum causes a discontinuous change in
the magnetic moment along the the vertical lines in Fig. 10(b).

The φ trajectory in Fig. 10(a) is continuous, but there is a discontinuity in the slope along with the
discontinuous change in the moment. This is because the magnetic moment discontinuity results in
a discontinuous change in the torque on the particle. Due to this, the change in the angular velocity
(dφ/dt) is discontinuous, and the change in φ is nondifferentiable. Since the magnetic moment
discontinuously switches between the opposite poles of the orientation vector, this type of motion
is denoted “switching magnetic moment.”

The trajectories are universal, independent of the initial orientation, for the switching magnetic
moment as well. The trajectories for two different initial conditions in the first quadrant are shown
in Fig. 12(a) for h0 = 0.75 and 12(b) for h0 = 1.0. If the initial condition is in the second quadrant,
the trajectories are, by symmetry, π minus the the angle shown in Fig. 12. It is clearly observed
that the trajectories all converge to a universal trajectory within a few cycles of the magnetic field
oscillation. As a consequence, the torque fluctuations are also independent of the initial orientation
angle. The angle φu for the switching magnetic moment is shown as a function of ω† for different
values of h0 in Fig. 9(b). It is evident that φu is much smaller for a switching magnetic moment in
comparison to the oscillating magnetic moment, and φu decreases as h0 increases. This implies that
the particle orientation is close to the direction of the magnetic field when the field passes through
a maximum.
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FIG. 13. The variation of φmax (solid line), the maximum value of φ at which there is a switch in the
particle magnetic moment, and φamp, the range of variation of φ (dashed line) as a function of ω† for h0 = 1.0
(◦), h0 = 0.8 (
), h0 = 0.7 (∇), h0 = 0.6 (�). The dotted line on the right has slope −1 on a log-log graph.

The variation of φmax, the maximum value of φ, and φamp, the difference between the maximum
and minimum values of φ, are shown as a function of ω† in Fig. 13 for different values of h0. This
figure shows that φmax does not vary significantly with ω†, but there is a monotonic decrease in
the amplitude of the φ variation. For ω† � 1, the time period of the magnetic field oscillation is
much larger than the particle relaxation time, and the particle orientation responds instantaneously
to changes in the field. In this limit, φamp is close to φmax, indicating that the particle orientation
oscillates from φ � 0, the magnetic field direction, to φ = φmax. For ω† � 1, the time period of
the magnetic field oscillation is much smaller than that for orientation relaxation, and consequently
there is little change in the particle orientation with change in the magnetic field. Here there is
very little variation φ with time, and φamp is much smaller than φmax. The value of φamp decreases
proportional to (ω†)−1 for ω† � 1.

The value of the magnetic field at which there is a switching of the magnetic moment is related
to the “switching field” for the Stoner-Wohlfarth model [38] for a stationary particle. The switching
field hs [Eq. (30)] is shown as a function of the angle φ for a static particle by the line in Fig. 14.
The symbols are the values of h0 cos (ω†t†), the instantaneous field at the time instant for switching
(dotted vertical lines in Fig. 10), as a function of φmax, the angle at which the switching takes place.
It is evident that when the scaled instantaneous field h0 cos (ω†t†) is plotted against the angle φmax

at which switching takes place, the points fall exactly on the switching field vs angle curve for a
static particle. The switching angle has a small variation with ω† for h0 = 0.55, as shown by the
spread in the circle symbols in Fig. 14. As h0 increases, the dependence of the switching field with
ω† decreases.

C. Transition

A clear distinction has been drawn between the “oscillating magnetic moment” at low h0, where
the magnetic moment executes small amplitude oscillations about one pole of the orientation vector,
and the “switching magnetic moment” at high h0, where the magnetic moment switches between
the two poles of the orientation vector which executes small amplitude oscillations about the
magnetic field direction. The transition between the oscillating and switching magnetic moment
is discontinuous—this is due to the discontinuous change in the moment in Fig. 4. In addition to h0

and ω†, this transition also depends on the initial orientation angle φi at t = 0. It should be noted
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FIG. 14. The switching field hs [Eq. (30)] as a function of the angle φmax between the orientation vector
and magnetic field for a static particle (solid line); and the variation of h0 cos (ω†t†) with φmax for a particle in
an oscillating magnetic field, where φmax is the angle at which the magnetic moment switches (dashed vertical
lines in Figs. 10 and 16). The symbols are h0 = 0.55 (◦), h0 = 0.6 (
), h0 = 0.7 (∇), h0 = 0.75 (�), h0 = 0.8
(�), h0 = 1.0 (�).

that φi is different from φu shown in Fig. 9; the former is the initial condition, while the latter is the
value of φ at cos (ω†t†) = 1 for the universal trajectory.

The boundaries between oscillating and switching magnetic moments are shown by the solid
lines in the ω†-φi plane for 0.55 � h0 � 0.75. Here φi is the initial angle of the particle orientation
which varies between 0 and π/2. These boundaries were evaluated numerically at the points shown
by circles, where an increment of 0.001 in φi results in a transition between the oscillating and
switching magnetic moment. Also shown in Fig. 15 are the angle φu (Fig. 9) for periodic states.

(1) If the initial orientation is between two solid lines of the same color, an oscillating magnetic
moment is observed where there is a universal trajectory with φu shown by the dotted line and the

 symbol. It is observed that φu tends to π/2 for ω† � 1, in agreement with Fig. 9(a).

(2) If the initial orientation is not between the two solid lines, a switching magnetic moment
is observed in the long-time limit. The value of φu [shown in Fig. 9(b) for the switching magnetic
moment] is shown by the dashed lines and ∇ symbol in Fig. 15. It is observed that φu is close to 0,
implying that the orientation vector is almost aligned with the magnetic field when the field passes
through extrema.

Figures 16(a) and 16(c) show the angles φ (black) and φ + α (blue), and Figs. 16(b) and 16(d)
show the angle α at two points on either side of the transition line at the location shown by the black
filled circle in Fig. 15. The results for h0 = 0.55, ω† = 1.0, and φi = 0.919 are shown in Figs. 15(a)
and 15(b). The parameter values are just below the red boundary at the black filled circle in
Fig. 15). The magnetic moment switches, that is, there is a discontinuous change in the orientation
of the magnetic moment relative to one pole of the orientation vector, as shown in Fig. 16(a). This
is the same as that observed for high h0 in Sec. V B. The amplitude of the φ oscillation in Fig. 16(b)
is relatively small, and there is a discontinuity in the slope of the angle φ at the instants where the
magnetic moment switches. In Figs. 16(c) and 16(d), the trajectories are shown when the initial
angle is increased to φi = 0.920 while maintaining h0 = 0.55 and ω† = 1.0. This is just above the
red boundary at the black filled circle in Fig. 15. Here it is observed that the magnetic moment
oscillates about one pole of the orientation vector, and there is no discontinuous transition. The
dynamics is the same as that for an oscillating magnetic moment at low h0 in Sec. V A.
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FIG. 15. The solid lines and ◦ symbols are the boundaries in the ω† − φi plane between oscillating and
switching magnetic moment at h0 = 0.55 (red), h0 = 0.6 (brown), h0 = 0.7 (blue), and h0 = 0.75 (black).
The dotted lines and 
 symbol are the values of φu for the oscillating magnetic moment, similar to Fig. 9(a).
The dashed lines and ∇ symbol are the value of φu [Fig. 9(b)] for the switching magnetic moment, similar
to Fig. 9(b). The black filled circle is φi = 0.920 at ω† = 1 and h0 = 0.55; Figs. 16(a) and 16(c) show the φ

variation on either side of the boundary at this location.

For h0 � 0.5, only an oscillating magnetic moment is observed. At h0 = 0.55, there is a relatively
small region outside of the two red lines in Fig. 15, where a switching magnetic moment is observed,
while an oscillating magnetic moment is observed between the solid lines. The region between the
solid lines shrinks as h0 is increased, and decreases to zero at h0 = 1, resulting in a switching
magnetic moment independent of initial condition.

VI. TORQUE FLUCTUATIONS

The average torque exerted by the particle on the fluid is zero because the particle does not
undergo complete rotations. However, there are fluctuations in the torque vector along the perpen-
dicular to the plane of the particle oscillation. The root mean square of the torque fluctuations is
shown in Figs. 17(a) and 17(b) for the oscillating and switching magnetic moments, respectively.
There is a decrease by an order of magnitude in T †

rms when h0 is increased from 0.5 to 1.0. Even in
the range 0.5 < h0 < 0.8, where there is coexistence between oscillating and switching magnetic
moments, the torque for the switching moment is significantly smaller than that for the oscillating
magnetic moment.

The value of T †
rms does not depend on the initial orientation for the Stoner-Wohlfarth model in

Fig. 17. This is in contrast to the root mean square of the torque fluctuations for a permanent dipole
in Fig. 6, which does depend on the initial orientation for high ω†. This is because the trajectory
of the orientation vector does depend on φi for a permanent dipole, as shown in Fig. 5(b), but the
trajectory for the Stoner-Wohlfarth model drifts to a universal trajectory, as shown in Figs. 8 and 12.

The value of T †
rms for the oscillating magnetic moment is shown in Fig. 17(a). For small h0, the

angle α is O(h0) [see discussion preceding Eq. (47)], and therefore, the angle between the magnetic
moment and the field is approximately φ. In this case the trajectory is close to that for a permanent
dipole, but with the angle φi = π/2 in Eqs. (33) and (34). The horizontal dashed line in Fig. 17(a)
is the torque predicted by Eq. (43) for φi = π/2 in the limit ω† � 1 [see discussion following
Eq. (48)]. For ω† � 1, T †

rms increases proportional to
√

ω†, as predicted by Eq. (42) for ω† � 1.
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FIG. 16. The angles φ of the orientation vector (black), φ + α of the magnetic moment (blue) (a), (c), and
α of the magnetic moment relative to the orientation vector (b), (d), as a function of ω†t† for h0 = 0.55, ω† = 1
below and above the transition line at the point shown by the black filled circle in Fig. 15 at φi = 0.919 (a),
(b) and φi = 0.920 (c), (d). The magnetic moment switches at the time instants shown by the vertical dotted
lines in (a) and (b). Movie 7 [37] compares the dynamics of the particle orientation and magnetic moment for
h0 = 0.55, ω† = 1 and for φi = 0.919 (left) and φi = 0.920 (right).

The value of T †
rms for the switching magnetic moment is shown in Fig. 17(b). Here the magnitude

of the torque fluctuations is much lower than that for the oscillating magnetic moment. For large h0,
the magnetic moment switches between the two poles of the particle orientation axis. The orientation
angle φ is approximately a constant, φ ∼ φmax for ω† � 1 (see Fig. 10), and T †

rms can be evaluated
assuming a stationary dipole in an oscillating field. The solution for T †

rms is the same as Eq. (43) with
φi = φmax, that is, T †

rms = [sin (φmax)/
√

2]. These solutions, shown by the horizontal dashed lines
on the right in Fig. 17(b) are in quantitative agreement with numerical solutions for ω† � 1.

VII. CONCLUSION

The dynamics of a spheroidal magnetic particle in an oscillating magnetic field in the low
Reynolds number limit has been analyzed using different models for the particle magnetic moment.
There is a steady solution when the particle magnetic moment is aligned along the magnetic field
because the torque on the particle is zero in this configuration. Here we examine whether the particle
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FIG. 17. The root mean square of the torque fluctuations as a function of ω† for different values of
the parameter h0 in the Stoner-Wohlfarth model, ◦—h0 = 0.01, 
—h0 = 0.1, ∇—h0 = 0.5, ×—h0 = 0.6,
+—h0 = 0.7, �—h0 = 0.8, �—h0 = 1.0. Panel (a) is for oscillating magnetic moment and (b) for switch-
ing magnetic moment. The sloping dashed line in (a) is T †

rms = √
2ω†/π [Eq. (42) for ω† � 1], and the

horizontal dashed line is T †
rms = (1/

√
2) [Eq. (43) with φi = π/2]. The dashed horizontal lines in (b) are

T †
rms = [sin (φmax)/

√
2] [Eq. (43) with φi = φmax].

with an arbitrary initial orientation tends to the stable state, or whether the orientation undergoes
oscillations. The root mean square of the torque fluctuations due to particle motion is also examined.

The magnetic moment of the particles is fixed along one of the poles of the orientation vector in
the permanent dipole model. In an oscillating magnetic field, a particle with a permanent dipole
executes oscillations about its initial orientation. The nature of oscillations depends on ω†, the
ratio of the magnetic field frequency and the viscous relaxation rate. There are small amplitude
oscillations in the orientation vector about the initial orientation for ω† � 1 where the magnetic
field frequency is much larger than the viscous relaxation rate. The amplitude of the oscillations
decreases proportional to (ω†)−1, and the scaled root mean square of the torque fluctuations tends
to a constant value dependent on the initial orientation. The time variation of the orientation angle
and the root mean square of the torque fluctuations are in agreement with the asymptotic results,
Eqs. (40) and (43), in this limit. In the limit ω† � 1, where the magnetic field frequency is much
smaller than the viscous relaxation rate, and the particle orientation is close to the magnetic field
direction for most of the period of oscillation. There are rapid reversals in the orientation when
the field passes through extrema. The root mean square of the torque fluctuations (scaled by the
characteristic magnetic torque) increases proportional to

√
ω† and is independent of the initial

orientation, in agreement with Eq. (42) for ω† � 1.
For different types of nonhysteretic induced dipole models, considered in Appendix, the ori-

entation tends to a steady orientation along the magnetic field direction. The signum model is a
nonhysteretic model where the magnitude of the moment is a constant, and the direction is along the
axis of the particle in the direction with a positive magnetic field component. In the linear model,
the magnitude of the moment is proportional to the dot product of the orientation vector and the
magnetic field, and the direction is along the orientation vector. Analytical solutions are obtained
for these two models which show that the particle aligns with the field in the long-time limit. The
nonhysteretic Langevin model provides a smooth transition between the linear model for low field
and signum model for high field. In this case also, numerical calculations show that the particle
aligns with the field direction in the long-time limit independent of the initial orientation.

The Stoner-Wohlfarth is a hysteretic model in which the magnetic moment is not fixed along
the particle orientation vector, but there is a free energy penalty due to the angle α between the
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particle orientation and magnetic moment. The parameter h0 is the ratio of the Zeeman energy and
the anisotropy energy. Two distinct types of particle motion are observed for the Stoner-Wohlfarth
model. For low h0, the magnetic moment executes small amplitude oscillations about one of the
poles of the orientation vector. The dynamics resembles that of a permanent dipole in an oscillating
field. The amplitude of the angle α between the magnetic moment and the orientation vector is
proportional to h0 for h0 � 1, and the asymptotic results given by Eqs. (47) and (48) accurately
capture the difference between the trajectories for the permanent dipole and the Stoner-Wohlfarth
model. However, the Stoner-Wohlfarth model is different from a permanent dipole in one important
aspect. The trajectory of a permanent dipole depends on the initial orientation. In contrast, the
trajectory for the Stoner-Wohlfarth model is independent of the initial orientation in the periodic
state in the long-time limit. For arbitrary initial orientation, it is found that the trajectory drifts to
a universal trajectory, and the orientation angle tends to a value φu at cos (ω†t†) = 1. In agreement
with the numerical results, an asymptotic calculation shows that φu = π/2 + O(h0) for h0 � 1.

For large h0, the particle orientation executes small amplitude oscillations close to the magnetic
field direction, while the magnetic moment switches between directions close to the the two poles
of the orientation vector. This is due to the dependence of the anisotropy energy and Zeeman
energy on the angle α. The total energy transitions from two minima at two well-separated values
of α to one minimum during the sinusoidal oscillation in the magnetic field, and this results in a
discontinuous change in the magnetic moment. The discontinuous change in the moment results in
a discontinuous change in the torque on the particle and the angular velocity. The amplitude of the
particle orientation vector decreases rapidly as h0 increases. For fixed h0, the amplitude tends to a
constant value for ω† � 1, and decreases proportional to (ω†)−1 for ω† � 1.

For intermediate values of h0, there could be an oscillating magnetic moment or a switching
magnetic moment depending on the initial orientation angle. The transition between these two types
of oscillations is discontinuous as the initial orientation is varied for fixed ω†.

The nonhysteretic induced dipole models are widely used in literature, whereas real magnetic
particles do have some hysteresis, however small. This study demonstrates that for an oscillating
field, the result for an induced dipole with hysteresis is qualitatively different from that for a
nonhysteretic induced dipole. The latter can not be used as an approximation for the former for an
oscillating field, and an accurate model has to at least capture the qualitative features of hysteresis.
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APPENDIX: INDUCED DIPOLE WITH NO HYSTERESIS

1. Signum model

The scaled evolution equation for the signum model, Eq. (22), is

dφ

dt†
= − cos (ω†t†) sin (φ)sgn[cos (ω†t†) cos (φ)]. (A1)

Equation (A1) can be written for one cycle of the magnetic field oscillation as

0 � t† < (π/2ω†) :
dφ

dt†
= − cos (ω†t†) sin (φ),

(π/2ω†) � t† < (3π/2ω†) :
dφ

dt†
= cos (ω†t†) sin (φ),

(3π/2ω†) � t† < (2π/ω†) :
dφ

dt†
= − cos (ω†t†) sin (φ). (A2)

074303-23



I. MISRA AND V. KUMARAN

We have assumed, without loss of generality, that the initial value of φ is in the first quadrant. The
above equations, (A2), can be solved sequentially using the initial condition φ = φi at t† = 0 for the
first equation, and the final value of φ for each equation as the initial condition for the next equation:

0 � t† < (π/2ω†) : tan (φ/2) = tan (φi/2) exp

(− sin (ω†t†)

ω†

)
,

(π/2ω†) � t† < (3π/2ω†) : tan (φ/2) = tan (φi/2) exp

(
sin (ω†t†) − 2

ω†

)
,

(3π/2ω†) � t† < (2π/ω†) : tan (φ/2) = tan (φi/2) exp

(− sin (ω†t†) − 4

ω†

)
. (A3)

This solution shows that φ approaches the fixed point exponentially in time. At t† = 0, the particle
starts moving towards the field. This is because the particle moment for the signum model changes
sign when the field reverses. This causes the torque on the particle to act in the same direction even
when the field reverses. Due to this, the particle orientation angle decreases exponentially in time.

2. Linear model

The scaled evolution equation for the linear model, Eq. (23), is

dφ

dt ′ = − cos (ω′t ′)2 sin (φ) cos (φ), (A4)

where the scaled time and frequency are t ′ = (tμ0χH2
0 /A⊥) and ω′ = (ωA⊥/(μ0χH2

0 )). For the
linear model, there are fixed points at φ = 0 and π/2. The former is a stable fixed point in which
the orientation vector is along the field direction, and the latter is an unstable fixed point where the
orientation vector is perpendicular to the field direction. The analytical solution of Eq. (A4) is

tan (φ) = tan (φi ) exp

(
− t ′

2
− sin (2ω′t ′)

4ω′

)
. (A5)

Here φi is the initial value of φ at t ′ = 0. Equation (A5) shows that the particle orientation
exponentially approaches the field direction. This is because the magnetic moment reverses when
the field reverses, and the direction of the torque remains unchanged.

3. Langevin model

The scaled evolution equation for the Langevin model, Eq. (24), is

dφ

dt†
= − cos (ω†t†) sin (φ)

[
coth

(
3χH0 cos (ω†t†) cos (φ)

m0

)
− m0

3χH0 cos (ω†t†) cos (φ)

]
, (A6)

where scaled time is t† = (tμ0m0H0/A⊥). The two dimensionless parameters in this model are
ω† = (ωA⊥/(μ0m0H0)) and (m0/χH0). The latter is a material-based constant that characterizes
the transition from the linear model for low magnetic field to the signum model for high magnetic
field.

Equation (A6) is solved numerically, and the results for the variation of the angle φ with scaled
time are shown in Fig. 18. In all cases, the angle φ decreases with time and the particle orientation
approaches the magnetic field direction in the long time. For (m0/χH0) = 0.001, the decrease is
close to that for the signum model shown by the dotted red lines for the same ω†. For (m0/χH0) = 5,
the decrease resembles that for the linear model shown by the dotted blue lines for the value of
ω′ = ω†(m0/χH0), corresponding to the values of ω† and (m0/χH0) for the Langevin model. For
an intermediate value of (m0/χH0) = 0.8 and ω† = 0.2, the linear and signum models decrease
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FIG. 18. The variation of the angle φ with ω†t† for the Langevin model (black lines) for (m0/χH0) =
0.001, ω† = 0.1 (
); (m0/χH0) = 0.001, ω† = 1 (∇); (m0/χH0 ) = 0.8, ω† = 0.2 (◦); (m0/χH0 ) = 5, ω† =
0.1 (�); (m0/χH0) = 5, ω† = 1 (�). The blue dotted lines and symbols are the results for the linear model,
ω′ = ω†(m0/χH0) = 0.16 (◦),0.5 (�) and 5.0 (�). The red dotted lines and symbols are the results for the
signum model, ω† = 0.1 (
); 0.2 (◦) and 1 (∇).

faster compared to the Langevin model, but the qualitative nature of the evolution of φ is the same.
Thus, we find that for nonhysteretic induced dipole models, the angle φ tends to a trivial solution
where the magnetic moment is aligned along the magnetic field.
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