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Critical charges for droplet collisions
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Two micron-sized water droplets approaching each other do not always coalesce due to
the cushioning effect of the air between them. When the droplets do not carry any electrical
charges, one needs to consider the breakdown of hydrodynamics at very small scales to
decide whether the droplets collide and coalesce or not. In contrast, two approaching
droplets that are oppositely charged always coalesce if the charges are large enough. To find
the charge for which the transition to charge-dominated collisions occurs, we computed the
collision efficiency of charged, hydrodynamically interacting droplets settling in quiescent
air, including the noncontinuum regime at small interfacial distances. For oppositely
charged droplets, we find that the transition occurs when a saddle point of the relative
droplet dynamics exits the region within which the continuum hydrodynamics breaks
down. For cloud droplets with radii 16 and 20 µm, we observe that the transition occurs at
∼103 elementary charges e. For charges smaller than this, we predict that the coalescence
rate depends primarily upon the Knudsen number (Kn, the ratio of the mean-free-path of
air to the mean droplet radius), whereas coalescence for much larger charges does not
depend upon Kn. For droplets charged with the same polarity, we find the critical charge
to be substantially larger (∼104 e for the above radii) for reasons that we discuss.

DOI: 10.1103/PhysRevFluids.9.074302

I. INTRODUCTION

How do micron-sized cloud droplets grow large enough to make drizzle or rain? The question
relates to the fundamental mechanisms that determine droplet-size distributions in atmospheric
clouds [1–3]. In clouds of droplets with different sizes, collisions occur due to differential settling:
the broader the droplet size distribution, the more rapid the droplet growth [4,5]. This process needs,
however, to be initiated, and the way size differences develop initially is an open question. Saffman
and Turner [6] describe theoretically how atmospheric turbulence causes droplets of similar size to
collide, but for typical droplets this process is too slow to explain observations. On the other hand, if
droplet collisions are independent from one another and random, then their collision times are Pois-
son distributed, and fluctuations can cause a small number of droplets to grow relatively rapidly [7].

Hydrodynamic interactions between approaching droplets reduce the likelihood that they collide
[8], which complicates the prediction of collision rates. The effect can be described by the collision
efficiency, or the ratio of the collision cross section of hydrodynamically interacting droplets to
the cross section for droplets that do not interact, the latter being proportional to (a1 + a2)2 for
neutral droplets with radii a1 and a2. Theoretically, the hydrodynamic interaction force diverges
at very small distances, which prevents the neutral droplets approaching in a quiescent fluid from
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colliding at all [9]. Cloud droplets do collide, however, and the contradiction with the theory is
partly resolved by considering the way in which continuum hydrodynamics breaks down at droplet
separations of the order of the mean-free path of air [10]. The consequences of noncontinuum
effects include a weakening of the interaction force between the droplets, and a resulting collision
efficiency that depends on the Knudsen number (Kn), which is equal to the mean-free path divided
by the mean droplet radius. For a shear flow, the particular dependence of the collision rate on Kn
and on the nondimensional relative settling speeds of the droplets can be understood in terms of an
intricate sequence of bifurcations of the collision dynamics [11].

Hydrodynamic interactions, even when considering the breakdown of continuum hydrodynam-
ics, result in a significant reduction of the Saffman-Turner collision rate [12], which is already too
slow to explain observations. Therefore, additional factors are thought to play a role in determining
the collision dynamics of settling droplets. For instance, the inertia of water droplets allows them
to detach from the surrounding turbulent airflow, leading to larger collision rates [13–15]. Recent
work shows that inertia can also reduce collision rates by promoting bouncing [16]. To simplify
the analysis, the inertial effect is often neglected [e.g., 11,12,17]. Klett and Davis [18] show how
the collision rate of similar-sized droplets depends sensitively on the droplet Reynolds number,
which is a measure of the effect of convective fluid inertia upon the disturbance flow caused by the
settling droplets. The reason for this effect is that the Stokes problem for the collision dynamics is
degenerate: equal-sized droplets neither approach nor separate, and convective fluid inertia breaks
this degeneracy [19]. Furthermore, droplets approaching contact may deform each other if the
hydrodynamic forces on the droplets become comparable with the surface tension of the droplets
[20]. The collision dynamics for nonspherical droplets is more complicated than for spherical ones.
Finally, the short-range van der Waals forces can increase collision rates at small Knudsen numbers
[21].

Small water droplets in thunderclouds and in warm rain clouds carry electrical charges [22,23].
These electrical charges can affect the dynamics of water droplets and the rate at which they collide
[1]. In addition to direct electrical interactions between droplets, the electrical charges make the
droplet dynamics sensitive to external electric fields that could lead to enhanced collision rates
[24,25]. The dielectric nature of water droplets may further affect the dynamics. For instance,
the coupling between the hydrodynamic and electrical forces for dielectric droplets in a dielectric
medium leads to charge-driven droplet deformation [26]. Furthermore, the finite electrical conduc-
tivity of droplets can lead to a phenomenon such a tip streaming, absent for perfect conductors [27].

How much charge is required to make a significant difference to the collision dynamics, and
when do we need to incorporate charge in our predictions of droplet collision rates? This question
has a long history, but it has not yet been answered. For instance, Davis [28] finds for droplet radii of
about 20 µm, the typical size of cloud droplets, that more than 800 elementary charges e are required
for the Coulomb force to affect the collision efficiency, while Tinsley and Zhou [29] suggest that
it may take at least 104 e. These differences are not surprising given that the estimates are based
on idealized models that either do not account for the way that hydrodynamic forces change as
droplets approach each other [29–32], or do not consider how the hydrodynamic approximation
breaks down for separations smaller than the mean-free path [28–32]. Indeed, Abbott [33] finds that
the predictions fail to explain experimental observations.

Magnusson et al. [34] uses models for hydrodynamic and electrical interactions valid at large
droplet separations to analyze the collision efficiency of strongly and oppositely charged 20- µm
droplets settling in quiescent air. The collision efficiency is determined by a stable manifold of
a high-dimensional saddle point of the relative droplet dynamics. At the saddle point, the larger
droplet travels below the smaller one, so that Coulomb attraction, hydrodynamic interactions, and
the difference of the gravity forces cancel, resulting in a steady state. When the charges are strong
enough, droplets at the saddle point are far enough apart that noncontinuum effects do not matter,
and that hydrodynamic interactions can be modeled by their large-distance asymptotes. To find the
transition between the large-charge regime considered in Magnusson et al. [34], and the small-
charge regime considered in the prior work discussed above, we need better models.
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FIG. 1. (a) Shows a schematic of two droplets with radii a1 < a2 settling in a quiescent fluid. The separation
vector between their centers-of-mass is R. Also shown is the collision sphere around the smaller droplet
(dashed). The droplets collide if the center-of-mass of the larger one hits the collision sphere. Gravity points
in the negative R3 direction. (b) Illustrates two regimes of the collision dynamics, distinguished by the location
of the fixed point S1 (see text). For charges weaker than the critical charge, S1 is inside the region where
hydrodynamics breaks down (hashed area), at distance s∗ ≡ R∗ − 2a < �. For charges stronger than the critical
charge, the fixed point lies outside, s∗ > �.

To explore the physics of droplets with intermediate charges, we performed numerical simula-
tions of droplet collision dynamics that take into account all the necessary physics, such as droplet
inertia and hydrodynamic interaction forces valid over the full range of droplet separations, includ-
ing their regularization by noncontinuum effects. We modeled the droplets as perfect conductors
[35], which allowed us to consider the effect of induced charges that affect the electrostatic force
at small separations. This latter effect is important because induced charges can cause droplets to
attract each other even when they are charged with the same polarity [36,37].

We found that a critical charge separates two qualitatively different regimes in the collision
efficiency: a small-charge regime where noncontinuum effects determine collision outcomes, and
a large-charge regime where electrical forces determine collision outcomes. The transition region
is broad, but when charge is increased, the qualitative change occurs when a saddle point of the
relative droplet dynamics exits the spatial region where noncontinuum effects dominate. We find
that the critical charge depends on whether the droplets are charged with the same or with opposite
polarities. For two droplets with radii 16 and 20 µm charged with the opposite polarities, the tran-
sition occurs at ∼103 elementary charges e. When the droplets have excess charges with the same
polarity, ∼104 e are required. In addition, a bifurcation occurs around 1.5 × 104 elementary charges,
which leads to two saddle points above the collision sphere. We note that droplets approaching near
the symmetry, the R3 axis in Fig. 1(a), spend considerable time in the vicinity of one of the saddle
points before they diverge along its unstable manifold.

II. MODEL

A. Equations of motion

The motions of two spherical droplets α = 1, 2 are determined by Newton’s equations

ẋ(α) = v(α), (1a)

v̇(α) = [
F (α)

g + F (α)
h + F (α)

e

]
/mα, (1b)

ω̇(α) = T (α)
h /Iα. (1c)

Here x(α) and v(α) are the position and velocity of droplet α, and ω(α) is its angular velocity. Droplet
α has mass mα = 4π

3 �wa3
α and moment of inertia Iα = 2

5 mαa2
α , where aα is the radius of droplet α,
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and �w is the mass density of water. On the right-hand side of Eq. (1), F (α)
g = mαg is the gravity force

with gravitational acceleration g, F (α)
h and T (α)

h are the hydrodynamic force and torque, and F (α)
e is

the electrostatic force on droplet α from the other droplet. The droplets settle through quiescent air.
We denote their center-of-mass separation by R = x(2) − x(1) (Fig. 1), and their relative velocity by
V = v(2) − v(1).

B. Hydrodynamic forces and torques

Settling droplets disturb the air around them, leading to nonzero fluid velocity and vorticity. If the
Reynolds number of the fluid flow around the droplets remains small, the flow velocity and vorticity
satisfy the Stokes equations [8]. This allows to express the hydrodynamic forces F (α)

h and torques
T (α)

h as linear functions of the translational and angular velocities of the droplets,⎡⎢⎢⎢⎢⎢⎣
F (1)

h

F (2)
h

T (1)
h

T (2)
h

⎤⎥⎥⎥⎥⎥⎦ =

⎡⎢⎢⎢⎢⎢⎣
A(11) A(12) B̃(11) B̃(12)

A(21) A(22) B̃(21) B̃(22)

B(11) B(12) C(11) C(12)

B(21) B(22) C(21) C(22)

⎤⎥⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎣

v(1)

v(2)

ω(1)

ω(2)

⎤⎥⎥⎥⎥⎦. (2)

Here A(αβ ), B̃(αβ ), B(αβ ), and C(αβ ) are matrices with components of the form A(αβ )
i j , where i, j label

the spatial coordinates. These build up the grand resistance matrix that maps all velocity and angular
velocity components to forces and torques. It satisfies several symmetry relations, which we briefly
summarize following the discussion in Jeffrey and Onishi [38]. Due to the spherical droplet shape,
the resistance matrices only depend on the droplet separation vector R, and the droplet radii a1 and
a2. By particle exchange symmetry, Eq. (2) is invariant under simultaneous relabeling 1 ↔ 2 and
transforming R → −R. This constrains any element of the resistance tensor to obey the relation

P(αβ )(R, a1, a2) = P((3−α)(3−β ))(−R, a2, a1). (3)

Furthermore, the reciprocal theorem, which gives relations between two different velocity and stress
fields, constrains the grand resistance matrix to be symmetric [8]. This implies that the elements of
the resistance matrix satisfy

A(αβ )
i j = A(βα)

ji , (4a)

B̃(αβ )
i j = B(βα)

ji , (4b)

C(αβ )
i j = C(βα)

ji . (4c)

Finally, for axisymmetric particles, each tensor in the resistance matrix is axisymmetric and may be
written in terms of at most two scalar functions: the radial resistance function Xαβ and the tangential
resistance function Yαβ [8,38]:

A(αβ )
i j = −6πμ

aα + aβ

2

[
X A

αβ R̂iR̂ j + Y A
αβ (δi j − R̂iR̂ j )

]
, (5a)

B(αβ )
i j = −4πμ

(
aα + aβ

2

)2[
Y B

αβεi jk R̂k
]
, (5b)

B̃(αβ )
i j = B(βα)

ji , (5c)

C(αβ )
i j = −8πμ

(
aα + aβ

2

)3[
XC

αβ R̂iR̂ j + Y C
αβ (δi j − R̂iR̂ j )

]
. (5d)

Here μ is the dynamic viscosity of air. The Einstein summation convention is implied in Eq. 5(b)
for repeated indices. The resistance functions Xαβ and Yαβ are nondimensional and depend upon
the radius ratio λ = a1/a2 and upon the nondimensional center-of-mass distance R/a between
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FIG. 2. Resistance functions against interfacial distances s = R − a1 − a2 for spheres with radius ratio λ =
0.8. Small-s asymptotes (red lines) and large-s asymptotes (blue lines) are from Ref. [38], while circles show
the resistance functions matched between the small-s and large-s asymptotes using the procedure described in
Sec. II.

the droplets, where a = (a1 + a2)/2 denotes the mean droplet radius. Moreover, R̂ j ≡ Rj/R. In
total there are 20 resistance functions in Eqs. (5): X A

αβ,Y A
αβ,Y B

αβ, XC
αβ , and Y C

αβ , all with indices
α, β = 1, 2. Using the symmetries in Eqs. (3) and (4), only 10 of these are independent. Jeffrey
and Onishi [38] computed them using a twin-multipole expansion, originally used by Jeffrey [39],
to solve Laplace’s equation. The resulting expressions obtained in the asymptotic regime of wide
separations are illustrated in Fig. 2 for λ = 0.8. In the limit R/a → ∞, the components X A

αα =
Y A

αα = XC
αα = Y C

αα = 1 for α = 1, 2, and all other components are zero. The corresponding resistance
tensors in Eqs. (5) are uncoupled between the particles: A(αβ )

i j = −6πμaδαβδi j , B(αβ )
i j = B̃(αβ )

i j = 0,
and C(αβ )

i j = −8πμa3δαβδi j . Here, each of the two particles undergo independent Stokes drag, with
the force and torque of an isolated sphere in Stokes flow [8]:

F (α)
h = −6πμaαv(α), (6a)

T (α)
h = −8πμa3

αω(α). (6b)

The timescale τp,α = mα/(6πμaα ) defines the Stokes damping time of individual droplets.
Jeffrey and Onishi [38] also computed the resistance functions for nearly touching spheres.

However, the results in this limit contained a number of errors that were corrected by Townsend [40].
We used these corrected functions in our model. In order to verify that these corrections provide
consistent approximations for the hydrodynamic forces and torques, we made the following two
checks. First, for all 10 functions, we summed the expansions derived by Jeffrey and Onishi [38] for
large separations, including 150, 200, 250, and 300 terms, and confirmed that the results matched
smoothly with the asymptotes at small separations for radius ratios larger than 0.1. This matching is
shown in Fig. 2 for λ = 0.8. Second, we compared to results for the radial and tangential mobility
functions of Ref. [12], based upon the series solutions for widely separated, noninertial spheres
in Ref. [41]. We inverted Eq. (2), and set hydrodynamic forces and torques to zero, to obtain the
mobility functions for droplets in the limit of zero inertia. We confirmed that our results matched
the functions L and M shown in Figs. 5 and 9 of Ref. [12]. This is an independent check that our
resistance functions are correctly implemented.

When the interfacial distance s = R − a1 − a2 between two droplets is comparable to the mean-
free path � of air, the hydrodynamic approximation breaks down, meaning that the expressions
for F (α)

h and T (α)
h above are no longer valid. Instead, the droplets move in a noncontinuum

flow described by the Boltzmann equation. The resulting noncontinuum corrections to the radial
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hydrodynamic forces between two spheres were first computed by Sundararajakumar and Koch
[10]. They used solutions to the linearized Boltzmann equation to calculate the noncontinuum radial
resistance functions for interfacial distances smaller than the mean-free path. The corresponding
tangential corrections were evaluated by Li Sing How et al. [9]. In our numerical computations we
used the uniformly valid resistance functions (denoted by the superscript uv) quoted in Ref. [42],
their Eqs. (4.12) to (4.15):

X A,uv
αβ = X A

αβ + (−1)α+β a1a2

a(aα + aβ )

(
f ‖
fit

Kn
− a

R − 2a

)
, (7a)

Y A,uv
αβ = Y A

αβ + (−1)α+β a1a2

a(aα + aβ )

[
1

3
√

π
W̃ +

(
1 − λ

1 + λ

)2

Q̃

]
, (7b)

Y B,uv
αβ = Y B

αβ + 2
a1a2

a(aα + aβ )

(
aα

a

)|α−β|[ (−1)β

4
√

π
W̃ − (−1)(α+β ) 3

4

1 − λ

1 + λ
Q̃

]
, (7c)

Y C,uv
αβ = Y C

αβ + a1a2

a(aα + aβ )

(
a1a2

a2

)|α−β|[ 1

4
√

π
W̃ + (−1)(α+β ) 3

4
Q̃

]
. (7d)

The above equations describe corrections to 16 out of the 20 resistance functions mentioned above.
The radial rotational resistance function XC

αβ is not modified [42]. In the above equations, Kn = �/a

is the Knudsen number and a is the mean droplet radius. The functions f ‖
fit, W̃ , and Q̃ are quoted in

the Appendix. The corrections in Eqs. (7) are computed using the linearized Boltzmann equation,
valid when the Mach number remains small. An additional simplification is that the collision term
in the Boltzmann equation is replaced by a collision operator which relaxes the molecular velocity
to a Maxwellian distribution [43], leading to an approximation to the Boltzmann equations which
allows analytical solutions. Finally, the results in Eqs. (7) are valid in the asymptotic limit Kn → 0.

In summary, to evaluate the hydrodynamic force and torque between two droplets in Eq. (2), we
use the resistance matrices in Eqs. (5) based on the uniformly valid resistance functions X uv

αβ and Y uv
αβ

in Eqs. (7), with Xαβ and Yαβ evaluated using the asymptotes shown in Fig. 2. The asymptotes are
matched at the location where their difference is smallest.

The resistance tensors B(αβ ) and B̃(αβ ) coupling translations and rotations in Eq. (2) are sublead-
ing in 1/R compared to the translational resistance tensors A(αβ ) and C(αβ ) [8]. When the droplets
are far apart, their angular velocities may therefore be neglected, as in Ref. [34]. However, for
droplets traveling at small interfacial distances, the angular dynamics must be considered because
hydrodynamic torques tend to cause one droplet to roll over the other one.

C. Electrostatic force

We assume that the timescale at which charges redistribute on the droplets is much smaller than
the shortest timescale of the relative droplet dynamics. In this limit, the droplets can be considered
as good conductors. Lekner [35] derived expressions for the electrostatic force between two charged
conducting spheres. The resulting expressions are valid for arbitrary separations between the spheres
in a dielectric medium, with the assumption that the droplets do not deform. We outline the main
steps of the derivation in Ref. [35] here, and discuss the details of when this model applies in Sec. IV.

The electrical potential energy W of two conductors with charges qα and potentials Vα is given
by

W = ke

2
(q1V1 + q2V2), (8)

where ke is the Coulomb constant. The charges are linearly related to the electrical potentials[
q1

q2

]
=

[
C11 C12

C21 C22

][
V1

V2

]
, (9)

074302-6



CRITICAL CHARGES FOR DROPLET COLLISIONS

FIG. 3. Comparison of asymptotes for the electrostatic force Fe at interfacial distances s = R − a1 − a2

much smaller than a1 + a2 (Fe,near,red) and much larger (Fe,far ,blue) for droplets with opposite charges q =
±20 000e (left) and same charges q = 20 000e (right). Circles show the smoothed force Fe,uv in Eq. (12) with
sm = 0.02 (opposite charges) and sm = 0.01 (same charges). Parameters λ = 0.8.

with capacitance coefficients Cαβ [44]. The capacitance coefficients depend on the radii of the
spheres a1 and a2, and upon the center-of-mass distance R between them as follows [45]:

C11 = a1a2 sinh(U )
∞∑

n=0

{a1 sinh(nU ) + a2 sinh[(n + 1)U ]}−1, (10a)

C22 = a1a2 sinh(U )
∞∑

n=0

{a2 sinh(nU ) + a1 sinh[(n + 1)U ]}−1, (10b)

C12 = C21 = −a1a2
sinh(U )

R

∞∑
n=1

[sinh(nU )]−1, (10c)

with U = acosh[(R2 − a2
1 − a2

2)/(2a1a2)]. Eliminating the potentials in Eq. (8) by means of Eqs. (9)
and (10), one obtains the electrostatic potential energy W . For well-separated droplets, R 

a1 + a2, the lowest-order nonconstant contribution simplifies to the Coulomb energy between point
charges W ∼ keq1q2/R. Moreover, by differentiation of W with respect to R one obtains the
electrostatic force Fe. Truncating the sums in Eqs. (10) allows us to compute the electrical force
when droplets are far apart. In the numerical experiments discussed in this paper, we included terms
up to n = 30 to calculate the asymptotic electrostatic force Fe,far. When R 
 a1 + a2, the sums in
Eq. (10) converge rapidly. When the center-of-mass distance is close to a1 + a2, however, this is
not the case. Lekner derived an approximate expression for the force between perfectly conducting
spheres, valid at interfacial distance s = R − a1 − a2, much smaller than the droplet size, Eq. (3.4),
in Ref. [35]:

Fe,near = −ke
a1 + a2

a1a2s

[(
ψ ( 1

1+λ
) + γ

)
q2 − (

ψ ( λ
1+λ

) + γ
)
q1

]2[(
ψ

(
1

1+λ

)+γ
){

2γ+ ln
[ 2a1a2

(a1+a2 )s

]}+(
ψ
(

λ
1+λ

)+γ
){−2ψ

(
1

1+λ

)+ ln
[ 2a1a2

(a1+a2 )s

]}]2.

(11)

Here ψ (x) is the digamma function, and γ = 0.5772 . . . is Euler’s constant. In order to obtain
an approximation valid uniformly in R, we match the two asymptotes at the interfacial distance sm

where the absolute difference between the two asymptotes reaches a minimum, using exponential
smoothing of the form

Fe,uv = Fe,near e−s/sm + Fe,far (1 − e−s/sm ). (12)

The asymptotes for small and large interfacial distances are shown in Fig. 3 for one set of
parameters. We confirmed that this matching procedure works for the parameter ranges considered
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in this paper. However, we expect that higher-order corrections to Fe,near must be included for charge
ratios outside the range 0.1 < |q1/q2| < 10.

D. Nondimensional numbers

To find a set of nondimensional parameters governing the collision dynamics, we nondi-
mensionalize the dynamics in Eq. (1) as follows. As a length scale we use a = (a1 + a2)/2.
Velocities are nondimensionalized with the differential settling speed of noninteracting droplets,
V0 = g|τp,1 − τp,2|, where τp,α is the Stokes damping time of droplet α. Time is nondimensionalized
with the timescale at which freely settling droplets pass each other τc = a/V0. The resulting
dynamics is governed by five nondimensional parameters. First, particle inertia is characterized
by the Stokes number St = τ̃p/τc, where τ̃p = m̃/(6πμa) and m̃ = (4/3)πa3�w are the relaxation
timescale and droplet mass based on the mean droplet radius a. Second, the Coulomb number
Cu = 2ke|q1q2|/[m̃(a1 + a2)V 2

0 ] is the ratio of the Coulomb energy upon contact and kinetic energy
m̃V 2

0 /2. Related parameters (ratio of Coulomb to average thermal kinetic energy) were used by
Hidy and Brock [46] to quantify the effect of electric charge on Brownian coagulation, and in
Refs. [34,47–49] to parametrize the importance of charge on the dynamics of micron-sized water
droplets in turbulent air. The remaining three nondimensional parameters are the Knudsen number
Kn = �/a, the ratio of the mean-free path of air � to the mean droplet radius, the radius ratio
λ = a1/a2, and the charge ratio λq = q1/q2. The charge ratio can take positive or negative values,
depending on the polarities of the excess charge on the droplets.

E. Numerical integration

To make sure that droplets do not overlap in the numerical simulations when they travel at very
small interfacial distances s for finite times, we followed Ref. [42] and employed a fourth-order
Runge-Kutta algorithm with an adaptive time step. Our prescription for the adaptive time step differs
slightly from the one in Ref. [42]. We used t = ε min{s/|VR|, s/|VT |}. Here, VR and VT are the
radial and tangential relative velocities, and ε � 1 is a numerical constant. The numerical results
shown in Fig. 4 were obtained for ε = 0.08. We verified that reducing the numerical constant to
ε = 0.001 did not change the results shown in Fig. 4(d).

We recorded a collision and stopped the numerical integration as soon as the interfacial distance
became smaller than 10−8 µm. We verified that using a larger cutoff, 10−7 µm, did not change the
results shown in Fig. 4(d).

III. RESULTS

The collision efficiency E is defined in terms of the critical impact parameter bc beyond which
droplet pairs with initial large vertical separation cease to collide, E = b2

c/(a1 + a2)2. The impact
parameter and, consequently, the collision efficiency are influenced by hydrodynamic interactions
as well as by electric charges carried by the droplets. In the following we discuss how the collision
efficiency depends on the excess droplet charge. For droplets charged with equal and with opposite
polarities, we describe a transition at a critical charge qc, from a regime at small charges that is
dominated by noncontinuum effects, to a charge-dominated regime at large excess charges. The
collision efficiency is determined by a high-dimensional saddle point of the relative dynamics below
the collision sphere, and we determine qc as the charge where this saddle point leaves the region
where noncontinuum effects dominate [Fig. 1(b)]. Our results for the collision efficiency are shown
in Fig. 4 for droplets that carry the same amount of charge with different polarities (left), or with
the same polarity (right). We discuss these two cases separately in Secs. III A and III B.

The droplets were initialized far apart in the R1 − R3 plane, with initial velocities of indepen-
dently settling droplets in still air. Since there were no transversal forces between the droplets,
the dynamics remained constrained to the R1 − R3 plane. In addition, the only nonzero component
of the droplets angular velocities was ω

(α)
2 . In summary, for each particle one component of the
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FIG. 4. Collision efficiencies and phase portraits of charged droplets settling in still air, following the model
in Sec. II. (a) Collision efficiency E for droplets with equal amounts of charge of opposite polarity, as a function
of charge q = |qα|, with α = 1, 2 over elementary charge e. Droplet radii: a1 = 16 µm and a2 = 20 µm (green),
and a1 = 8 µm and a2 = 10 µm (black). Kn = 10−3 (solid lines), 10−2 (dashed), and 5 × 10−2 (dashed-dotted).
The vertical solid lines indicate the locations where Eqs. (16) and (17) predict a transition for Kn = 10−3.
Arrows denote the charges in (b) and (c). Horizontal lines show the q → 0 asymptotes for the larger droplet
pair. (b) Shows the relative droplet dynamics in the R1 − R3 plane (where Ri is nondimensionalized by ā),
for a1 = 16 µm, a2 = 20 µm, q =908 e, and Kn = 10−3. Colliding trajectories (blue), noncolliding trajectories
(red). The solid black line is the separatrix between colliding and noncolliding trajectories, and • represents
the saddle point S1. (c) Same as (b), but for q =15469 e. Manifolds of the saddle point S1 (•) are shown as
black solid lines. (d) Same as (a), but for equal polarity. (e) Shows the bifurcations (their locations qc,2 are
denoted by vertical dashed lines) that give rise to saddle points S2 and S3. (f) Shows the relative dynamics in
the R1 − R3 plane for a1 = 16 µm, a2 = 20 µm, q = 6011 e along with the saddle point S1, and (g) corresponds
to q = 21199 e, and shows the saddle point S2.

droplet velocities and two components of angular velocities remained zero throughout the numerical
experiments, v

(α)
2 = 0, ω

(α)
1 = 0, and ω

(α)
3 = 0.

A. Opposite charges

Figure 4(a) shows that electrostatic attraction increases the collision efficiencies E for droplet
pairs of radii 8 and 10 µm (black) more strongly than for droplets with radii 16 and 20 µm (green).
The droplets were charged with the same amount of excess charge, but with different polarities. For
charges weaker than the critical charge, E is approximately independent of charge, but the collision
efficiency depends on the Knudsen number Kn [see different line styles in Fig. 4(a)]. In this limit,
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the collision dynamics resembles that of neutral droplets settling in still air [34] (but note that there
are subtle differences that we discuss below). For charges larger than the critical charge, by contrast,
the collision efficiency is independent of Kn, as explained by Magnusson et al. [34]. The difference
between these two regimes can be understood by following the collision dynamics in the R1 − R3

plane [Fig. 1(a)], corresponding to the rest frame of the smaller droplet.
Consider first the limit of large charges, Fig. 4(c). This panel shows the relative trajectories of

droplets at a fixed charge larger than the critical charge qc. In this case, the collision efficiency is
determined by the stable manifold of a saddle point S1 located on the R3 axis below the collision
sphere. The unstable manifold of the saddle is one dimensional, with a component along the R3

axis. The stable manifold therefore has codimension one. As a consequence, the stable manifold
forms a separatrix for the phase-space dynamics [50]. The set of initial conditions of independently
settling droplets at the critical impact parameters ±bc defines two one-dimensional trajectories on
the stable manifold. These are projected onto the R1 − R3 plane and shown as solid black trajectories
ending at S1 in Fig. 4(c). All trajectories that approach the collision sphere starting within the space
enclosed by these trajectories must collide (blue) with the collision sphere. All other trajectories do
not collide (red). Four of the stable eigenvalues of S1 are complex, allowing phase-space trajectories
to spiral around this fixed point. Indeed, we observe that the trajectories plotted in black in Fig. 4(c)
do slightly overshoot the saddle point S1, but this is not visible in the figure. Since the saddle point
and its stable manifold are far from the collision sphere, the local breakdown of the hydrodynamic
approximation does not matter. As a consequence, the collision efficiency is independent of Kn.
This is the limit analyzed by Magnusson et al. [34]. Their model included only leading-order
corrections in 1/R to hydrodynamic interactions and ignored the breakdown of the hydrodynamic
approximation near contact.

The limit of small charges, shown in Fig. 4(b), is more subtle than the large-charge limit. As
mentioned above, the collision dynamics looks like that for neutral droplets, where the separatrices
delineating collisions from no collisions (solid black trajectories entering from above) are grazing
trajectories. However, our numerics indicates that separatrices shown in Fig. 4(b) do not graze the
collision sphere. They lie very close to the collision sphere, and appear to connect to the saddle
point S1 mentioned in the previous paragraph, which now occurs very close to the collision sphere.
The numerical integration becomes difficult when the trajectory travels along the collision sphere at
interfacial distances s smaller than the mean-free path �. Therefore, we could not resolve the saddle
point in the numerical integration (the trajectories corresponding to the separatrices do not hit the
saddle point, but they pass very close to it).

As outlined above, a transition between the two different regimes shown in Fig. 1(b) occurs when
the saddle point S1 exits the region s < �. In order to compute the charge qc at which the transition
occurs, we start by determining the location of the saddle points of the relative droplet dynamics
for R = x(2) − x(1) and V = v(2) − v(1). At the saddle point, Ṙ = 0, implying that the droplets fall
at a constant separation R∗, with vanishing relative velocity V ∗ = 0. The latter condition implies a
common steady-state settling velocity v(1) = v(2) = v∗

s . Due to the symmetry of the problem, both
v∗

s and R∗ must point along the direction of gravity, v∗
s = −v∗

s R̂3 and R∗ = −R∗R̂3, where v∗
s and R∗

are the components in the gravity direction, and R̂3 is the unit vector in the R3 direction. Since there
is no external torque acting on the droplets, and because of the dissipative nature of the dynamics,
the angular velocities at the saddle point must vanish, ω(α) = 0. What remains is to calculate v∗

s and
R∗ from the condition that v̇

(α)
3 = 0 in Eq. (1b) at the steady state [34]

F (α)
g,3 + F (α)

h,3 + F (α)
e,3 = 0 for α = 1, 2. (13)

Given the forces described in Sec. II, Eq. (13) simplifies to

−m1g+6πμ
(
a1X A,uv

11 + aX A,uv
12

)
v∗

s + Fe = 0, (14a)

−m2g+6πμ
(
a2X A,uv

22 + aX A,uv
21

)
v∗

s − Fe = 0. (14b)
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Here the resistance coefficients X A
αβ and Fe = F (1)

e,3 are functions of R∗. For given droplet radii and
charges, solutions to these equations give the saddle-point location R∗ on the R3 axis, and center-of-
mass settling speed v∗

s . For the parameters corresponding to Fig. 4(b), we find the nondimensional
interfacial distance at the saddle point s∗= R∗ − 2a ≈ 6 × 10−4a. So the equilibrium point is very
close to, but not on, the collision sphere. Numerical evaluation of the stability exponents shows that
it is a saddle point with both stable and unstable eigendirections. However, as mentioned above, we
could not find the stable and unstable manifolds by numerical integration because this becomes hard
close to the collision sphere. As the charge tends to zero, the saddle approaches the collision sphere
R∗ → 2a. Conversely, as the charge increases, the saddle moves down the R3 axis. We conclude
that the saddle point identified in Ref. [34] appears already at small Coulomb numbers, Cu � 1.
Since the numerical integration is more difficult at charges smaller than those shown in Figs. 4(a)
and 4(d), we did not investigate this limit by numerical integration.

How much charge is needed to cross over from the small charge limit where noncontinuum
effects determine collisions to the charge-dominated limit? There is no bifurcation, the same saddle
point determines the collision dynamics in both regimes. But the above considerations indicate that
the transition occurs when the saddle point leaves the region s < � in the R1 − R3 plane, the hashed
region in Fig. 1(b). If the saddle point is close to the collision sphere, its location and its manifolds
depend on Kn. By contrast, when the interfacial separation at the saddle point is much larger than
the mean-free path, s 
 �, the saddle point and its associated separatrix are independent of Kn, and
the collision efficiency is determined by electrostatic forces.

To find the critical charge qc, we set the interfacial separation at the saddle point equal to the
mean-free path � in Eqs. (14). Substituting s∗ = � into Eqs. (14) and solving for v∗

s and Fe we find
the electrostatic force required to maintain a time-independent relative settling velocity vs:

vs = 4a2
1g�w(1 + λ3)

9μλ2

1

2λX A,uv
11 + (1 + λ)

(
X A,uv

12 + X A,uv
21

) + 2X A,uv
22

, (15a)

Fe = 4a3
1gπ�w

3λ3

−2λX A,uv
11 − (1 + λ)X A,uv

12 + λ3
[
(1 + λ)X A,uv

21 + 2X A,uv
22

]
2λX A,uv

11 + (1 + λ)
(
X A,uv

12 + X A,uv
21

) + 2X A,uv
22

. (15b)

To determine the corresponding amount of charge, we approximate Fe and the resistance func-
tions by their asymptotes at small interfacial distances (Sec. II) and solve Eq. (15b). We find

|q1q2| = 1

h(λ, λq)

× a5
2λ

4g�wKn

ke

[
f (1)(λ) ln

(
4λ

(1 + λ)2Kn

)2

+ f (2)(λ) ln

(
4λ

(1 + λ)2Kn

)
+ f (3)(λ)

]
.

(16)

In this expression, the function h(λ, λq) is defined as

h(λ, λq) = 1

|λq|
{[

ψ

(
1

1 + λ

)
+ γ

]
−

[
ψ

(
λ

1 + λ

)
+ γ

]
λq

}2

. (17a)

The expressions for the functions f (k) are quite lengthy. Their full forms are plotted in Fig. 5. Here
we only quote their Padé approximants around λ = 1, of order [3,3] (the transition values shown in
Fig. 4 were obtained using the full forms):

f (1) = 8.98831(λ − 1) − 12.553(λ − 1)2 + 4.18158(λ − 1)3

1 − 3.39659(λ − 1) + 3.95407(λ − 1)2 − 1.59769(λ − 1)3
, (17b)

f (2) = −45.6737(λ − 1) + 2.16728(λ − 1)2 − 0.229416(λ − 1)3

1 + 1.95255(λ − 1) + 0.830927(λ − 1)2 − 0.112841(λ − 1)3
, (17c)
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FIG. 5. The full forms of the functions f (k) with k = 1, 2, 3 in Eq. (16) (lines) and their order [3,3] Padé
approximants around λ = 1, Eqs. (17) (circles).

f (3) = −58.0221(λ − 1) − 5.79319(λ − 1)2 − 2.67774(λ − 1)3

1 + 2.09984(λ − 1) + 1.39178(λ − 1)2 + 0.352657(λ − 1)3
. (17d)

Figure 4(a) shows the predicted critical charge qc = |qα| for droplets with equal charge magni-
tude but opposite polarities (λq = −1), computed using Eqs. (16) and (17) as vertical solid lines.
We see that the theory predicts the transition from the small-charge limit where noncontinuum
effects determine collisions to the charge-dominated regime for both droplet sizes considered.
This confirms the theoretical prediction that the transition occurs when the saddle point leaves the
Kn-dominated region in the R1 − R3 plane. Figure 6(a) shows how the predicted critical charge qc

depends on a2 at fixed λ (red crosses). Equation (16) says that this charge depends on the droplet size
as qc ∼ a5/2

2 , which matches the numerical results (red circles) shown in Fig. 6(a). These numerical
results were obtained by plotting the collision efficiency as a function of charge, similar to Fig. 4(a),
for different values of a2 and then finding the intersection of the large-charge asymptote to the
small-charge asymptote.

FIG. 6. (a) Critical charge qc as a function of size of the larger droplet a2 for three values of a2 = 10,
15, and 20 µm, Kn = 0.01, λ = 0.8 in our simulations (red circles) compared to the theory in Eq. (16) (red
crosses). The dashed line is a guide to the eye. (b) Theoretical prediction (16) for the critical charge against
radius ratio λ of droplets with equal amounts of charge qc with same polarity λq = 1 (black) and opposite
polarity λq = −1 (red), and Kn = 10−3. The critical charge qc is nondimensionalized by (a5

2g�w/ke )1/2. The
nondimensional charge remains a function of λ, λq, and Kn. (c) Collision efficiency E = b2

c/(a1 + a2)2 against
Coulomb number (Cu) from Fig. 4(a) (black line) for Kn = 10−3. Equation (4) from Ref. [30] is shown as a
dashed line. The markers show b2/(a1 + a2)2 from the experimental data in Ref. [34] of passing droplet pairs
with different impact parameters b that either collide (blue crosses) or miss (red circles). (d) Zoom-in of (c).
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Figure 6(b) shows the dependence of the nondimensional critical charge against particle radius
ratio λ for small Kn. For droplets of opposite polarity, the critical charge approaches zero as
λ approaches unity, while for λ deviating from unity, the amount of charge required to balance
differential settling at the saddle point increases. As found above, the critical charge is one order
of magnitude larger for droplets of the same polarity when λ ∼ 0.8. This separation becomes even
larger and diverges as λ approaches unity. For small λ, however, the critical charge is of the same
order for equal and opposite polarities.

Finally, we validate the model predictions by comparing them against experimental observations.
Reference [34] presented collision efficiencies of oppositely charged water droplets with radius
ratio approximately 0.8 where the droplet sizes varied between 17 to 25 µm. In Figs. 6(c) and
6(d) we compared these experiments to model simulations for droplets of sizes 16 and 20 µm. We
see that our model describes the boundary between collisions and noncollisions well. By contrast,
the parameter-fitted equation described in Ref. [30] predicts a collision efficiency larger than that
observed experimentally.

B. Same charges

Figure 4(d) illustrates that the collision efficiencies E for droplet pairs with equal amounts of
excess positive charge tend to zero as the charge increases. Coulomb repulsion prevents collisions
entirely at sufficiently large charges. Furthermore, the collision efficiency vanishes more quickly
for the droplet pair with radii 8 and 10 µm than for the droplet pair with radii 16 and 20 µm,
as expected, because the Coulomb number is larger for smaller droplets with the same charge.
As in Fig. 4(a), we identify two regimes. For small charges, the collision efficiency depends
on Kn but the Kn dependence becomes much weaker as the charge magnitude increases and
the collision efficiency becomes charge dominated. The transition mechanism is the same as for
oppositely charged droplets: despite the fact that the droplets carry charges with the same polarity,
the electrostatic force is attractive at small separations due to extreme polarization of the droplet
charges [35]. This gives rise to a saddle-point S1 below the collision sphere [Fig. 4(f)], where
the attractive force balances differential settling. The corresponding predictions of Eq. (16) with
λq = +1 are shown as vertical solid lines in Fig. 4(d). One difference to the collision dynamics for
charged droplets with opposite polarity [Fig. 4(a)] is that the crossover between the small-charge
regime where noncontinuum effects determine collisions and the charge-dominated regime occurs
at much larger charges in Fig. 4(d). The reason for this difference is that the small-s attractive
electrical force (11) between droplets with the same charge magnitude is weaker than the attractive
force for droplets with opposite charges, implying that larger charge magnitudes are required in
order to balance the right-hand side in Eq. (15b), where the saddle point reaches s = �. Moreover,
the electrostatic force for droplets with the same charge is repulsive at large interfacial distances.
Since the force attracts at small separations, it must change sign at a critical distance sc that depends
on λ and λq. Therefore, the droplet interfacial separation at the saddle point must remain smaller
than this critical distance sc, as the charge increases. For the parameters used here, sc ≈ 0.018a.
This means that the collision efficiency for droplets with the same polarity becomes independent
of the Kn number only when Kn < 0.018. There is no such condition for droplets charged with
opposite charges because the saddle point continues to move down as the amount of charge increases
(Sec. III A).

As the magnitude of the excess charge increases, a bifurcation at qc,2 gives rise to two new
saddle points, S2 and S3 on the R3 axis above the collision sphere. The saddle point S2 results from
the balance between electrostatic repulsion and differential settling. In contrast to S1, the unstable
manifold of S2 is two dimensional, implying that its stable manifold cannot form a separatrix for the
collision dynamics by dividing the phase space into disjoint sets [50]. Despite this, for the droplet
sizes and initial conditions considered, we do not observe any collisions for charges larger than qc,2.
The values of qc,2 are shown in Fig. 4(d) as dashed vertical lines. Interestingly, we also observe
that E tends to become vanishingly small well before the bifurcation occurs. The reason is that
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even before the saddle point appears, the dynamics in the R3 direction slows down in its vicinity.
These slow trajectories are then deflected in the unstable R1 direction so that only trajectories
approaching infinitesimally close to the R3 axis can collide. We hypothesize that the qualitative
form of the collision rate before the bifurcation can be understood by studying the normal form of
the bifurcation for our system.

The second fixed point S3 lies below S2 and is shielded by it from above. Its unstable manifold
is three dimensional. This saddle point is not approached by trajectories starting at large separations
for the Stokes numbers considered here. However, at much larger Stokes numbers, trajectories could
overshoot the saddle S2 and approach the fixed point S3. We determined the charge qc,2 at which
the bifurcation leading to the appearance of S2 and S3 occurs by numerically solving Eq. (14) for
R∗ = [0, 0, R∗

3]T with R∗
3 > 0 and the common settling speed v∗

s . We determined the location of the
bifurcation by computing the value of the droplet charge for which Eq. (14) had exactly one solution
for R3 > 0. The locations of the two saddles on the R3 axis, for R3 > 0, are shown in Fig. 4(e).
Figure 4(f) shows the relative dynamics in the R1 − R3 plane before bifurcation. It is qualitatively
similar to panel Fig. 4(b). At charges weaker than the critical charge qc,2, it does not matter whether
the droplets have the same or opposite polarities. Figure 4(g) shows the case where the charge is
larger than qc,2, showing that the unstable manifolds of the saddle point S2 block collisions. For
both cases, the saddle point S1 exists below the collision sphere due to the attractive force at close
approach.

IV. DISCUSSION

The amount of excess charge required to reach the Coulomb-dominated collision regime depends
on whether the two droplets have excess charges of the same sign, or not. For droplets carrying the
same charges, larger amounts of charge are required to qualitatively change the collision dynamics,
about qc ∼ 104 e for droplets with radii 16 and 20 µm as observed from Fig. 4. For droplets that
are charged with opposite polarities, much smaller charges are required, about 103 e for droplets
with radii 16 and 20- µm. In this case, the critical charge is much closer to the estimate (800 e)
of Davis [28] than the estimate (104 e) of Tinsley and Zhou [29]. However, neither Davis [28] nor
Tinsley and Zhou [29] state their value of the radius ratio λ. We find that qc depends strongly on λ

[see Fig. 6(b)], making a direct comparison challenging. Moreover, these earlier estimates did not
consider how the hydrodynamic and noncontinuum forces vary at small interfacial distances. While
Davis [28] included hydrodynamic forces valid up to 10−3a2 (where a2 is the radius of the larger
droplet), he did not account for noncontinuum effects. As a consequence, his results for the collision
efficiency depend on an arbitrary cutoff assumed to define a collision [12].

Equation (16) shows how the critical charge qc depends upon the parameters of the problem.
From this equation, we see that |q1q2| ∼ a5

2. As mentioned above, Fig. 6(a) confirms this prediction
by comparison with numerical simulations which show that qc ∼ a2.5

2 . This means that the critical
charge qc decreases rapidly as the droplet size decreases. Reference [28], by contrast, used numerical
simulations to study which electrical surface-charge density starts to produce droplet collisions.
They hypothesized that the critical charge leading to collision behaves as droplet radius squared. Our
results instead show that the critical charges scale as a5/2

2 . This indicates that a charge determined
by constant charge density (i.e., scaling proportional to radius squared) is not the factor determining
the critical charge. In addition, as discussed above, even though our numerical result seems to match
the prediction made by Ref. [28], our analysis explains the mechanism determining the critical
charge.

Keeping all parameters the same as in Fig. 4, but with a1 = 4 µm and a2 = 5 µm and Kn = 0.001,
numerical simulations show that a charge of only 30 e is enough to lead to a transition for
oppositely charged droplets. Note, however, that spatial diffusion (not considered here) must affect
the relative dynamics of such small droplets. In the large charge regime, we verified the validity
of our model by comparing to previous experimental results [34] as shown in Fig. 6(c). Our
model shows better agreement with experiments compared to the earlier theoretical result of Paluch
[30].
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The model includes noncontinuum effects due to the breakdown of hydrodynamics at small
interfacial distances for both radial and tangential resistance functions. Reference [42] demonstrated
that at small Stokes numbers (St), the collision efficiencies match those obtained for a model
neglecting inertia (St = 0) from Ref. [12], which did not include noncontinuum corrections to the
tangential resistance functions. Therefore, they concluded that while the noncontinuum corrections
to tangential resistance functions are negligible at St � 1, they might become important for St ∼ 1,
or when the radius ratio of the droplets deviates significantly from unity [9]. For this reason, we
decided to include noncontinuum corrections to the simulations presented in this paper.

Our model has five nondimensional parameters: the Stokes number St (particle inertia), the
Coulomb number Cu (charge), the ratio λ of droplet radii, the charge ratio λq, and the Knudsen
number Kn (effect of mean-free path). We have not yet systematically studied the effect of changing
St, λ, and λq. Instead we chose λ = 0.8, λq = ±1, and two values of the Stokes number, St = 0.48
and 3.82, for the data in Fig. 4. For computing the Stokes number, and in the simulations we
used the values νair = 1.48 × 10−5 m2/s, ρair = 1.22 kg/m3, μ = νairρair, ρw = 997 kg/m3, and
g = 9.8 m/s2. Since the droplet-size distribution in clouds at the onset of collisional growth is
narrow [5], it is natural to consider radius ratios close to unity, as we did here. As a next step, it is of
interest to study the effect of the parameter λq. While the charge distribution of cloud droplets is not
known in general, extreme values of λq can significantly enhance collision rates [36]. Therefore, it
is important to study how the collision efficiency changes as the charge ratio λq varies.

Let us briefly comment on the limitations of the model. First, we did not consider van der Waals
forces, short-range attractive dipole forces that change the collision dynamics at short interfacial
distances s, of the order of the London length λL [51]. Rother et al. [21] computed the collision
rate of droplets settling in still air including van der Waals forces and Maxwell slip (the first-order
correction to the noncontinuum effects). They found that van der Waals forces cause a significant
increase in the collision rate for droplets smaller than 10 µm in radius, but that the effect is small
for larger droplets. This is consistent with the findings of Dhanasekaran et al. [12], who stated that
van der Waals forces do not matter, compared to noncontinuum effects, for water droplets with radii
larger than 10 µm. In order to understand how van der Waals forces affect the collision dynamics of
charged droplets, we included the van der Waals force in our simulations, using [51,52]

F (α)
vdW = −AH

⎧⎨⎩
a1a2

a1+a2

λL (λL+7.0768πs)
s2(λL+2π (1.7692)s)2 for s < 0.25 λL/π,

a1a2
a1+a2

(
4.9λL
60πs3 − 6.51λ2

L
360π2s4 + 2.36λ3

L
1680π3s5

)
for s � 0.25 λL/π.

(18)

Here AH is the Hamaker constant, with typical value AH = 5 × 10−20 J for water droplets in air.
Two new nondimensional parameters come with Eq. (18): λL/a quantifies the interfacial separation
below which van der Waals forces become important, while AH/(m̃V 2

0 ) quantifies the strength of
van der Waals forces with respect to the relative kinetic energy at large separations.

We found that including van der Waals forces in our simulations leads to a small increase of about
15% in the collision efficiency for Kn = 0.01 and droplets of sizes 16 and 20 µm, but does not cause
qualitative changes to Figs. 4(a) and 4(d). This is consistent with the findings of Refs. [12,21]. In
the limit of small charges and small Kn, by contrast, van der Waals forces may change the collision
dynamics qualitatively. We expect that van der Waals forces give rise to a saddle point below the
collision sphere, even for neutral droplets. In this case, the stable manifold of this new fixed point
may determine the collision efficiency at small values of Kn.

Second, our model uses the Stokes approximation for the hydrodynamic forces and torques. The
effects of convective and unsteady fluid inertia were neglected. Klett and Davis [18] explained that
convective fluid inertia makes a significant difference to the collision efficiency of droplets with
radius ratios close to unity because the droplet dynamics in the Stokes approximation is degenerate
when a1 = a2 (see also Ref. [53]). Magnusson et al. [34] considered the leading-order effects of the
particle Reynolds number (Rep) and Strouhal number (Sl) for droplets with Rep ≈ 0.1 and Sl ≈ 0.1,
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at large droplet separations. Here we do not consider these effects because we do not know how to
account for their combined effects at small interfacial distances.

Third, we assumed that the droplets remain spherical before they collide. Yoon et al. [20]
studied the deformation and coalescence of neutrally buoyant droplets in a straining flow. They used
numerical simulations to study how droplet collision dynamics depend on the capillary numbers,
Ca, of the droplets, defined as the ratio between the viscous force (μ2aα|V |) and the product of
surface tension and droplet diameter. Their droplets remain spherical up to contact for capillary
numbers smaller than a critical value. In our case, the capillary number is ∼10−6, much smaller
than the Yoon et al. estimate of the critical capillary number ∼10−4 for 20- µm droplets. While this
estimate supports the spherical droplet assumption used in our study, it is not known how the critical
capillary number varies with charge, particle inertia, and fluid inertia. An alternative parameter
determining droplet deformation is the Weber number We = RepCa [54]. When the Weber number
is much smaller than unity, as for a 20- µm droplet settling at its terminal velocity (We ∼10−6),
droplet deformation is negligible. At much larger collision speeds the Weber number is larger, and
the droplets are expected to deform. This changes not only the electrostatic forces, but also the
hydrodynamic forces and their noncontinuum regularizations, effects not considered here.

Fourth, we assumed that the droplets are perfect conductors. The timescale τC of charge redis-
tribution on a water droplet depends on the ratio of the permittivity of water εw to its electrical
conductivity σ , τC = εw/σ [55]. With the conservative estimate σ ∼ 5 × 10−6 S m−1 for pure
water, and εw ∼ 7 × 10−10 F m−1 [56], one finds τC ∼ 1.4 × 10−4 s. This time is much shorter than
the shortest timescale of the relative droplet dynamics, |τp,1 − τp,2|, for well-separated particles,
where τp,α are the Stokes times of individual droplets.. For a pair of 16- and 20- µm droplets,
one finds τC/|τp,1 − τp,2| ∼ 0.08. The small but nonzero charge relaxation may still have a small
effect on the electrostatic forces which we neglected. Patra et al. [17] included regularization of the
attractive electrostatic force due to finite conductivity in their study of collisions between noninertial
charged droplets. This regularization only affects dynamics at small interfacial distances. We expect
that it will not give qualitative changes to collision efficiencies for the considered range of Kn
values, including those relevant in clouds. However, in related but distinct contexts, nonzero charge
redistribution time can lead to complex dynamics due to electrohydrodynamic effects [57]. One
example is emulsions where droplets are not perfect conductors and their surrounding fluid is not
a perfect dielectric. In this case, electrical forces can become coupled to viscous flows leading to
charge-driven deformation affecting the collision dynamics [26]. A second example is tip streaming
from droplets subject to an external electric field, an effect which is a direct consequence of the
finite conductivity of the droplet and is absent for perfectly conducting droplets [27].

Fifth, we considered special initial conditions. We assumed that the droplets are initially so
far apart that they settle independently with their respective Stokes settling speeds, and we set
their initial angular velocities to zero. As a result, the separatrices shown in Fig. 4 correspond to
intersections between the invariant manifolds and the one-parameter family of curves determined
by the initial conditions.

Sixth, we considered droplets settling in still air. What is the effect of turbulence on the collision
efficiency of charged droplets? Saffman and Turner [6] explained how turbulent strains increase
collision rates of cloud droplets, neglecting their interactions. Dhanasekaran et al. [12] analyzed how
hydrodynamic interactions and their regularization due to the breakdown of hydrodynamics affect
the collision dynamics of droplets settling in a steady straining flow. They found much smaller
collision rates than Saffman and Turner, and that hydrodynamic interactions lead to an intricate
dependence of the collision rate on the straining flow. This behavior is explained by a sequence
of bifurcations, both bifurcations of equilibria and grazing bifurcations [11]. It remains an open
question as to how electrostatic interactions change this picture. Moreover, the close approach of
charged droplets in turbulence was measured in Refs. [47–49], and compared with a theory valid
for large droplet separations, similar to the model described by Magnusson et al. [34]. In order to
quantitatively describe the relative dynamics of nearby droplets, we intend to generalize the model
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to arbitrary linear flows. In the presence of a background flow, convective-inertia effects may give
rise to inertial lift forces [58].

Finally, we considered droplet charges much smaller than the Rayleigh limit (∼1.3 × 106e for
20-µm droplets) [59]. The Rayleigh limit quantifies the amount of electrical charge a droplet can
acquire before the electrical repulsion overcomes the surface tension holding the droplet together,
leading to droplet fission [60].

V. CONCLUSIONS

We analyzed the collision dynamics of weakly charged, µm-sized water droplets settling in still
air by numerical integration of a model that incorporates particle inertia, hydrodynamic interac-
tions in the Stokes approximation, noncontinuum effects, and electrical forces. We observed two
distinct collision regimes. For small charges, the collision dynamics is dominated by short-range
hydrodynamic interactions. In this regime it is crucial to take into account how these interactions
are regularized below the mean-free path of air. As a consequence, the collision efficiency depends
on the Knudsen number Kn in this regime. At large charges, in contrast, the collision efficiency
does not depend on Kn because the separatrix between colliding and noncolliding trajectories is
the stable manifold of a saddle point far from the collision sphere, consistent with the conclusions
drawn in Magnusson et al. [34].

The two regimes shown in Fig. 1(b) occur both for droplet pairs with excess charges of the
same and of different polarities. This may be surprising at first sight, considering that equal point
charges repel each other, while opposite point charges attract. The reason is that induced charges
cause the electrostatic force to always be attractive, at small enough separations [35]. Reference
[36] describes how induced electrical charges enhance the collision rate between a charged droplet
and neutral droplet, where the effect of induced charges is apparent at large separations (where their
model applies). For micron-sized droplets of similar sizes, the electrostatic force changes sign at an
interfacial distance much smaller than the droplet radius. But since this distance is of the order of
the mean-free path, where the hydrodynamic approximation breaks down, the induced charges have
a significant effect on the collision efficiency, as we demonstrated in this paper.

We found that the saddle point S1 (Fig. 4) below the collision sphere exists even at small charges.
But when the interfacial distance at the saddle point s∗ < �, its stable manifolds depend on the
Knudsen number. As a result the collision efficiency depends on Kn, at small charges. The crossover
between the two limits occurs when the saddle point moves further away from the collision sphere
than the mean-free path. The critical charge where this qualitative change in the collision dynamics
occurs is much lower than that stated by Tinsley and Zhou [29]. While our prediction matches
that of Davis [28], they did not include noncontinuum effects at small separations, so that their
result depends upon the cutoff used to define a collision. We observed that for 20- µm droplets,
the transition between the two regimes happens at ∼103 e for droplets charged with opposite
polarities, and at ∼104 e for droplets charged with the same polarities. These charge magnitudes
are comparable to those observed for thunder-cloud droplets [22]. Note, however, that in thunder
clouds, electric fields affect the droplet dynamics. Here we did not consider this effect. Zhang et al.
[24] showed that the attractive force between neutral, conducting droplets due to induced charges
caused by external electrical fields increase the collision efficiency and collision rate of droplets
settling in under gravity. They found that the collision efficiency exhibits a plateau for when the
attractive force is much weaker compared to gravity but increases as the electric field induced force
increases (Figs. 7 and 9 in their paper). While we have ignored the effect of external electric fields in
this paper, we hypothesize that the theory developed in this paper can be used to estimate the critical
nondimensional electric field induced force at which the transition occurs, as well as understand the
mechanism underlying this effect.

The conclusions above are based on a model with five nondimensional parameters, and we have
only analyzed a small part of the parameter space. Including van der Waals forces give rise to
two additional nondimensional parameters [21,51], one quantifying the interfacial separation below
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which the van der Waals force is important, and another quantifying its strength. While previous
studies [12,21] suggest that including van der Waals force does not give rise to qualitative changes in
the dynamics for the parameters typical of cloud droplets with radii larger than 10 µm, we expect that
the qualitative dynamics are different when the Knudsen number becomes vanishingly small. The
reason is that the attractive van der Waal force gives rise to a saddle point below, which determines
the relative dynamics for vanishingly small Knudsen numbers.

Finally, we assumed here that the droplets settle in quiescent air. We did not consider
the effects of turbulent flow. Turbulence can substantially increase the rate at which droplets collide
[6,12] because turbulent strains bring similar-sized droplets together. Atten [25] investigated the
collision rate of conducting droplets suspended in a flowing, insulating liquid in the presence
of an external electric field in order to understand the mechanisms underlying a high-efficiency
electrocoalescer. He proposed that the high efficiency could be attributed to a two-stage process:
a first stage where droplets approach each other driven by the shear and a second stage where
droplets are brought together due to shear coalesce rapidly because the electric field decreases the
characteristic coalescence time by several orders of magnitude. However, the combined effect of
shear and electrical forces has not been quantitatively studied so far. More generally, turbulence
increases spatial clustering of droplets, as measured by the pair-correlation function (see Ref. [15]
for a review). Lu et al. [47–49] measured how electrical charges change the pair-correlation function,
and developed models to explain the observed effects, at separations much larger than the droplet
radii where hydrodynamic interactions can be neglected. It would be of interest to include in the
model the mechanisms described here, in order to determine how charges affect the pair-correlation
function at smaller separations. Similarly, the relative-velocity statistics of charged droplets in
turbulence was investigated in Ref. [61], neglecting hydrodynamic interactions. Our results indicate
that these interactions (and their regularization by noncontinuum effects) cannot be neglected at
small separations. In summary, the phase-space picture presented above shows that fairly small
charges can have a significant effect on the relative droplet dynamics. How this affects the pair-
correlation function, relative-velocity statistics, and collision efficiencies in turbulence remains an
open question.
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APPENDIX: FUNCTIONS f ‖
fit,

˜Q, AND ˜W USED TO DEFINE THE NONCONTINUUM
RESISTANCE FUNCTIONS

Here we list the functions f ‖
fit, Q̃, and W̃ which are required to define the noncontinuum

resistance functions in Sec. II, reproduced from Ref. [9]. These are given by

f ‖
fit =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩
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(
1 + 6k1

δ0

) − 6k1
]
, δ0 > 4.4

(A1)
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where t = ln(1/δ0) + 0.8, δ0 = (R/a − 2)/Kn, and k1 = 1.016,

Q̃ = b1 + b2 ln
(

1
δ0

+ b3
)

1 + b4δ0
, (A2)

where b1 = −0.1580, b2 = −1/5, b3 = 0.65632, and b4 = 0.16330, and

W̃ = b5 + b6 ln
(

1
δ0

+ b7
)

1 + b8δ0
, (A3)

where b5 = −1.6448, b6 = −√
π , b7 = 0.59098, and b8 = 0.19167.

In the limit of Kn → 0, these simplify to f ‖
fit ∼ 1

3k1
+ 1

δ0
and Q̃ = W̃ = 0.
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